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ABSTRACT 

We find the necessary and sufficient conditions for fitting five given moments by a 

triatomic distribution. We consider three examples drawn from fire (large spread), 

individual life (medium spread) and group life (small spread) insurance data, fit them 

with triatomics, and compute the ruin probabilities using well known formulas for 

discrete and for combination of exponentials claim amounts. We then compare our 

approximations with the exact values that appeared in the literature. In the fire (large 

spread) example, we found the triatomic to have 4.8% average relative error, 
triexponential 3.6%, and the Beekman-Bowers 2.1%. In the medium spread example, 

the triatomic has maximum relative error of 0.26% and average relative error of 0.03%. 

In the small spread example, the triatomic has maximum relative error of 0.14% and 

average relative error of 0.02%. We recommend that for ~3/a3 less than 5, the simple 

method of triatomic approximant to the claim amount distribution, which produces 

quick and refiable results, be used. 
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1. INTRODUCTION 

In the classical work of Cram~r (1955, p.43), the following claim amount 

distribution was used to represent data from Swedish non-industry fire insurance 

covering the years 1948-1951: 

p(x)  = 4.897954 e -  5.514588 x + 4.503 ( z +  6 ) - 2 ' 7 5  0 < z < 500. (1) 

Exact ruin probabilities were computed by numerically solving 

I~ o O  

0 u 

which was a nontrivial numericaJ task then(Cram~r 1955, p.45). A modern reference for 

the above integral equation is Exercise 12.11 in Bowers et alii (1986). 

A much easier numerical task even now is to approximate (1) by a distribution 

for which there is a readily executable formula for its ruin probabilities. For the claim 

amount taldng a combination of exponential distributions, there axe the T~.cklind (1942) 

type formulas. See Shiu (1984), Gerber, Goovaerts and K a ~  (1987), Dufresne and 

Gerber (1988) (1989) (1991), and Chan (1990a). For the claim amount taking a discrete 

distribution (mixture of atomic distributions), there are the Tak£cs (1967) type 

formulas. See Beekman(1968), Shiu (1989) and Kaas (1991). We considered the special 

cases of mixture of two atoms (diatomic) and of combination of two exponentials 

(diezponential) in Babier and Chan (1991) and here we consider the tri-exponential and 
tri-atomic claims. 

2. RUIN PROBABILITIES F O R  TRIATOMIC AND T ~ O N E N T I A L  DISTRIBUTIONS 

The ruin probability formula for a discrete claim amount distribution has been 

given by Schmitter (1990). See Kaas (1991, p.136). For similar formulas see Shiu (1989). 

Proof for the atomic case and a reference to Feller (1971) are found in Shiu (1987). We 

list the ruin probability formula for triatomic claim amounts with atoms {Xl, x2, x3} of 

probabilities (Pl, P2' P3} : 
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k 1 k 2 k 2 00 ~ (- z)kl + k2 + k3 e z Pl P2 P3 (3) 
¢(u) = 1 1 + k l ,k2 ,k3  kl!k2!k3! ' 

where z = (u - klX 1 - k2x 2 - kax3) + 
0 + 0), 

The theory of ruin probability for mixture and combination of exponentials is 

well known. See W~.cklind (1942), Shin (1984), Dufresne and Gerber (1988), (1989), 

(1991), and Chaa (1990b). Recall that in a compound Poisson surplus process, the ruin 

probability ¢(u) satisfies 
M x ( r  ) - 1 

I eru ( - ¢ ' ( u ) ) d u  = ~0 . Mx(r)/~r _ 1  (4) 
0 1+0 

# r  

where 0 is the relative security loading, X is the claim amount random variable, and 

# = E(X).(See Bowers ct alii (1986), §12.6) When claim amounts are distributed as a 

mixture of exponentials, i.e., 

for z > 0  where all A i > O  

combination of exponentials 

p(x) = ~ A 1 13 ie -~{  x (5) 
/=1 
n 

and ~ A i = 1, the ruin probability is also a linear 
/=l 

¢(.) = c{  J"{" (6) 
{=1 

where { rl ,  . . - ,  r n } are solutions to the adjustment coefficient equation 

1+0 = M x ( r )  - I ,- (7 )  

and { C1, ... , Cn } axe determined by the partial fractions of the right side of (8): 

MX(O-  1 
n C. r .  

= i - ~  " M X ( r  ) -  I"  (8) 
i=l I+0 - 

p r  
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T h i s  is verified by subs t i tu t ing  (6) in to  the left side of (4) to o b t a i n  the  left side of (8). 

The  denomina to r  on the  r ight  side of (8) is a rat ional  func t ion  with zeros r l , . . .  , 

r n and  simple poles 81, ... , ~n. Therefore  

n 

1+0 Mx(r ) - 1 ] ' I  (ri-r) H__l~i(ri - r )  = It" i~1 = 0 i ~ - r )  (9) 
~'" II (&-~) 

i=1 

w h e r e  the  cons tan t  K has been found by evaluat ing the  first equa l i ty  of (9) at  r=0  and 

using 
M x(r). . - 1 

lira = 1 
r-*0 p r 

The numerator on the right side of (8) can consequently be written as 

M x ( r  ) - 1 ~n ~i(ri-r)  
= 1 + o - o  11 (lo) 

# r i=1 

W i t h  the  left side of (8) wr i t ten  in a common denominator  and  wi th  (9) aud (10) into 

t he  r igh t  side of (8), we t ransform (8) into  an easy part ial  f rac t ion  problem: 

n n 

j=l 
i=l 

n 

I] O'c") 
~ = 1  

= fi ri {~i -r) 0 (11) 
~-i Bi {ri-'r) 1+0 

Multiply both sides by ]'I (ri-r), we obtain 
/=I 

n 

j=1 i • /=i ~ 

At last, let r=-r k 
n 

t:! 
or 
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n r i 
Ck = i ~ k  ~ /=1 f i  W'lgCrk (12) 

/=i 
Consider v-.3 k in (8), or easier yet in (11) for k=l, .-. ,  n to obtain 

ci ri 
= ~ for k=l , . . . ,  n. (13) 

~-I wk- ' i  

To solve (13), consider 

c,- J 
~ = 1+o 1+o ~=1 /=1 

where the two sides are different expressions for the same rational function of (degree 

n - 1 / degree n) with simple poles {rl, ... , rn} and takes the value ~ at z:=fll , ... 

,/~n. Multiply by z - r  k and let z:=r k to obtain 

II m,--rp 
Ck = ~ . /--=ln (14) 

rk { #l#I k(r{- rk) 

/=1 
Comparing (12) and (14), we obtain 

f i  ri 8 
~ 1  ~ = 1+o 

(15) 

Our derivation of (13) is motivated by Shiu (1984 , p.484, (9)) 

multiply (8) by rk - r  and let r-*r k to obtain: 

where he 

(1~) 

The expressions for Ck, (49) and (54) in Dufresne and Gerber (1989), arise 

natlpwally when a more detailed problem including the severity of ruin is studied. These 

two expressions can be obtained from summing (9) and (22) in Dufresne and Gerber 
(1988) over j respectively. In fact, the system in Dufresne and Gerber (1989) 

~1  ~ ok = 1, ~=1,. . . , . ,  (17) 
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can be solved by the same arguement as our solution to (13). Simply consider 

7~ 

ci 1 

where the two sides are different expressions for the same rational function of (degree n 

/ degree n) with simple poles {rl, . . - ,  rn} and takes the value 1 at z:=Zl , . . . ,  ~n and 

the value 0 at z=0. Multiply by x - r  k and let z=r  k to obtain (12). 

The formulas (12), (14), and (15) and their derivations are still valid even when 

members involved in the mixture and combination includes some gamma distributions 

with integral a. To explain how it works, we illustrate by a = 2. The only changes 

needed are that the right side of (81 would have poles of order 2 at ~'s that come with 

gamma distributions and that the system (13) would have fewer equations than 

unknowns. To show (14) is still valid, one needs to perturb the repeated fl's to fl + e and 

let e-*0. Gamma(n,fl) ,  odd integer n > 3 would give one real roots and n -  2 complex 

roots to the adjustment coefficient equation (7); Gamma(n,fl),  even integer n_>4 

would give two real roots and n - 2  complex roots to the adjustment coefficient 

equation (7). Equation (15) would give real 0 because the 

complex roots in {ri} comes in pairs of r and Y. We encountered (omplex roots of the 

adjustment coefficient equation ill Gerber, Goovaerts, and Kaas (1987) for example. 

3. T R I A T O M I C  AND TRIEXPONENTIAL AS APPROXIMANTS 

In Babier and Chan (1991), we studied three claim amount distirbutions and 

compute ruin probabilities of approximating diatomic and diexponential with matching 

first three moments and colnpare the approximations with the exact values of g,(u). In 

the first example (Cranl~?'s fire) the claim amount distribution has a large spread, none 

of the approximations is very close to the exact value, and there we point out the run- 

off error problem encountered in the Tak£cs type formulas. In the second example 

(Reckin, Schwark, and Snyder's individual life) the claim amount distribution has a 

medium spread, both of the diatomic and diaexponential give good approximations. In 

the third example (Mereu's group life) the claim amount distribution has a small 

spread, the diatomic gives an excellent approximation, and tile spread is so small that 
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there is no diexponential fit. 

The new contribution here is that we fit triatomics with matching first five 

moments to all three examples. Cram6r's fire has high ~3/~r3 that our triatomic 

approximant works poorly, and Wikstad's (1971) triexponential fares better. The other 

two examples are discrete distributions with smaller spreads. The triatomic 

approximants work so excellently for both cases that there is no need to work out the 

triexponential approximants. In fact, that Mereu's group life has c~2/p2 = .2508 would 

require four exponentials close to a gamma(4, /z - 1); but its ~3 is too small for such a 

gamma. Titus we have only done the triexponential approximation for the first example. 

Example h We consider Cranl6r's fire insurance data, the one mentioned in the 

introduction. In the following table, the exact values of ~b(u) for 8 = 0.3, and the values 

for the Cram6r-Lundberg approximation is fi'om Craan6r (1955, p.45). The values for the 

Beekman-Bowers apl)roximation is flora Beekman (1969, p.279). The ruin probability 

for diatomic claims, (9), encounters convergence problems when u is large. Our 

experience echoes with that reported iu Seah (1990, §4). For values of u close to and 

above 30 tinles #, large numbers are subtracted off each other and we obtain 

probabilities less than zero or greater than one. In Babier and Chan (1991), these 

problemic valuse were listed as **. This time we use Mathematica to 68 digit accuracy 

to handle u = 40, 60, 80, and 100 for the diatomic and triatomic cases. In the table 

below, the approximating diatomic has atoms { .7657175616, 181.1382584 } and 
1 probabilities { .9987011192, .001298880855 }, the approximating diexponential has 

=60.75201696, 1 = .6552147239, and A = .005737165094 ; as done in Babier and Chan 

(1991). The approximating triatomic with atoms { .60220174840013, 77.32991843481469, 

371.6249366477063} and probabilities { .995231341384981, .00466023012321588," 

.0001084284918028845 }. The approximating triexponential is given by Wikstad (1971) 

with 

p(x) = (.0039793)(.014631)e - .014631x + 

(.1078392)(.190206)e - .190206x + (.8881815)(5.514588)e - 5.514588x 

and the corresponding ruin probability is fom~d to be 

~;,(u) = .514735 ¢ -  .007381 u + .223197 e -  .099058 u + .031300 e -  4.84374 u 
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T A B L E  
= 1, ~ / ~ 2  = 

u ~(u)  CL BB 

20 .5039 .4524 .5140 

40 .3985 .3904 .4079 

60 .3280 .3370 .3369 

80 .2757 .2909 .2812 

100 .2346 .2511 .2369 

1 C r am & ' s  Fire Insurance 

42.20323069, ~3/a3 = 27.69286626 

diatom diexp t r ia tom triexp 

.4133 .4666 .5122 .4749 

.3841 .4010 .4401 .3874 

.3535 .3447 .3586 .3311 

.3214 .2962 .2715 .2853 

.2877 .2546 .2314 .2461 

u g,(u) CL/¢,(u) B B / g , ( u ) d i a / ¢ , ( u ) d i e / ¢ , ( u ) t r i a / W ( u ) t r i e x p / ¢ ( u )  

20 .5039 0.898 1.020 0.820 0.926 1.014 0.942 

40 .3985 0.980 1.028 0.964 1.006 1.104 0.972 

60 .3280 1.027 1.027 1.078 1.051 1.093 1.009 

80 .2757 1.055 1.020 1.166 1.074 0.985 1.035 

100 .2346 1.070 1.010 1.226 1.085 0.986 1.049 

Example  2: In this example, we consider the individual life insurance date from Reckin, 

Schwark, and Snyder (1984). This is also the claim dis t r ibut ion in Example 3 of Seah 

(1990). The  claim amount  X is discrete with support  {1,2,3,4,5,7,8,10,12,13,15,16} and 

probabili t ies (in order) {.5141, .3099, .0639, .0220, .0194, .0096, .0276, .0036, .0041, 

.0019, .001a, .0226}. Since the claim amount  dis tr ibut ion is more spread out, (i.a) of 

Proposi t ion 2 in Babier  and Chart (1991) is satisfied and we have a diexponential  fit. 

T A B L E  2.1 ¢ ( u ) b y  S e a h f o r R S S ' s / . n d i ~ d u M  Life l.nsttrance Data  

p = 2.2896, 32/~ 2 = 1.43257300, ~3 /33=3 .60560786  

0 = . 1  8 = . 2  8 = . 3  0 - - . 4  8 = . 5  

u = 0 .909091 .833333 .769231 .714286 .666667 

u = 10 .644361 .450722 .334890 .260412 .209732 

u = 20 .469129 .254324 .152965 .099371 .068466 

u = 30 .341528 .143813 .070341 .038430 .022840 

u = 40 .248408 .081101 .032173 .014735 .007526 

u = 50 .180700 .045752 .014725 .005654 .002482 
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T A B L E  2.2 dia tomic a p p r o x i m a n t / ¢ ( u )  for RSS's  Da ta  

The  approx ima t ing  diatomic has a toms  { 1.580450117, 12.887964915 } and probabil i t ies  

{.9372389245,.06276107517} by ( 3 ) , ( 4 ) , ( 5 ) ,  and (6). 

0 = .1 0 = .2 0 = .3 0 = .4 0 = .5 

u = 0 1 i i 1 I 

u = 10 1.013 1.029 1.045 1.060 1.073 

u = 20 1.003 1.007 1.012 1.015 1.018 

u = 30 1.001 1.000 0.996 0.990 0.981 

u = 40 1.001 0.999 0.992 0.982 0.968 

u = 50 1.001 0.997 0.988 0.974 0.957 

T A B L E  2.3 t r ia tomic  a p p r o x i m a n t / ¢ ( u )  for RSS's Data  

The  approx imat ing  diatomic has a toms  {1.328358114, 5.718977791, 15.50183293} and 

probabil i t ies { .848776854065243, .1208354358483337, .03038771008642312}. 

0 = .1 0 = .2 0 = .3 0 = .4 0 = .5 

u = 0 1 1 1 1 1 

u = 10 0.99979 0.99987 1.00033 1.00113 0.99744 

u = 20 1.00006 0.99998 0.99972 0.99924 0.99852 

u = 30 1.00002 1.00006 1.00009 1.00008 0.99996 

u = 40 1.00000 1.00001 1.00006 1.00007 0.00027 

u = 50 1.00001 1.00011 0.99973 1.00000 1.00000 

T A B L E  2.4 dicxponent ial  a p p r o x i m a n t / ¢ ( u )  for RSS's  D a t a  

The  approx ima t ing  diexponential  has 1 =5.448377581, 1 = 1.930653556, 

A = .1020393986 by (23), and (19). 

and 

0 = .1 0 = .2 0 = .3 0 = .4 0 = .5 

u = 0 1 1 1 1 1 

u = 10 0.997 0.984 0.966 0.947 0.928 

u = 20 0.994 0.985 0.979 0.978 0.984 

u = 30 0.995 0.991 0.997 1.016 1.047 

u = 40 0.996 1.000 1.022 1.066 1.132 

u = 50 0.998 1.009 1.048 1.119 1.224 
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Example  3: In this example,  we consider the group insurance data  from Mereu (1972). 

This is also the claim distr ibut ion in Example  2 of Seah (1990). The claim amount  X is 

discrete with support  {4,6,8,10,12,14,16,20,25} and probabili t ies (in order) 

{.15304533960, .07882237436, .11199119040, .10432698260, .09432769021, .10925807990, 

.09727308107, .18073466720, .07022059474}. 

T A B L E  3.1 if(u) by S e a h f o r M e r e u ' s  Group L i ~ I n s u r a n c e  Data  

#=12 .61243786 ,  o2 /#2=0 .25079144 ,  a 3 / a 3 = 0 . 3 0 5 5 6 1 4 5  

0 = . 2 5  0 = . 5  8 = . 7 5  8 = 1  

u = 0 .8 .666667 .571429 .5 

u = 25 .433995 .232316 .141606 .094198 

u = 50 .222739 .072766 .030113 .014607 

u = 75 .114114 .022685 .006349 .002236 

u = 100 .058463 .007072 .001339 .000342 

T A B L E  3.2 dia tomic approximant / f f (u)  for Mereu's  Group Life Insurance Da ta  

The approximat ing diatomic has atoms { 7.187946466, 19.96691435} and probabili t ies { 

.5755141225, .4244858774) by (3), (4), (5), and (6). 

0 = .25 0 = .5 0 = .75 0 = 1 

u = 0 1 1 1 1 

u = 25 0.9995 0.9992 0.9986 0.9977 

u = 50 1.0003 1.0004 0.9988 0.9962 

u = 75 1.0000 0.9978 0.9929 0.9857 

u = 100 0.9997 0.9962 09888 0.9795 

The diatonlic approximant  is producing excellent values! Since the variance is 

quite small, there is no diexponential  fit as indicated by Proposit ion 2 A, (v) in Babier  

and Chan (1991). Note tha t  because the approximat ing claims distr ibut ion has the same 

mean  and variance as the originai, the non-ruin probabil i ty is overes t imated as well. 
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TABLE 3.3 triatomic approximant /¢(u)  for Mereu's Group Life Insurance Data 

The approximating triatomic has atoms { 5.257664493, 13.89153404, 23.08844433} and  

probabilities { .3461811629837337, .4679100083847454, .185908828631521}. 

8 = . 2 5  8 = . 5  8 = . 7 5  8 = 1  

u = O  1 1 1 1 

u = 25 0.99974 0.99939 0.99902 0.99864 

u = 50 1.00000 1.00000 1.00003 1.00007 

u = 75 1.00000 1.00000 1.00000 1.00000 

u = 100 1.00000 1.00000 1.00000 1.00000 

4. NECESSARY AND SUFFICIENT CONDITIONS FOR TRIATOMIC FIT 

Given three atoms {x, y, z) with mean=0 and var iance=a  2, the probabilities are 

determined to be 

a 2 + yz a 2 + zx  a 2 4- xy  

{ (y ----~-)(; : x ) '  (z - - - ~ ' ;  : ~) ' (x - z)(y - z) )"  

The third to fifth moment equations can be written as: 

aa 2 + c = ~3 

(a 2 -  b)a 2 +ac  = f 4  

(a 3 - 2ab 4- c)a 2 4- (a 2 - b)c = v 5 

where ~3 f 4  v 5 are the third to fifth central moments and 

a = x + y + z  

b = x y + y z . - l - z x  

C ~-  X~IZ  

(18.1) 

(18.2) 

(18.3) 

(19.1) 

(19.2) 

(19.3) 
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Solve (18.1) for a, subs t i tu te  in (18.2) to solve for b. Subst i tute both the a and 

the b obtained into (18.3) to solve for c. Now substitute back for a and b. The solution 

for (a, b, e) is 

(cr4~3 + ~3f4 _ o 2 v 5  a2~6 _ a4f4  + f8  _ ~3v5 ' ~9 - 2a2~3f4 + a4v5) 

a6 + ~6 _ a2f4 

In stead of solving for x,y ,  and z from (19), we shift to make the a zero and 

change scale to make b - 3/4. Whatever  become of c, write it as - h. 

~" +y  +'~ = 0 (20 .1)  

, ~  . . . .  3 + y z  + z z  = - -  4 (20.2) 

y ~ = - h (20 .3)  

Solving (20.1) for "~ and subs t i tu te  into (20.2) and (20.3). Solve the resulting (20.2) 

which is quadratic in ~' for ~' and substi tute into the processed (20.3). Both solutions 

for ~' give the same equation in "~ : 

3 ,~ 2) "~ ( - ~ +  z = - h  (21) 

which has solutions 

This can be verified by using Sin3A = 3 S i n A - 4 S i n 3 A .  (Thus explains the strange 

normalizat ion of - 3/4 in (20.2).) Note that  (21) will have three real root if and only if 

Ihl  < I  as a plot  of the left s ide of (21) will show. This then translates back to the 

necessary and sufficient condition for having a triatomic fit. 
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