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ABSTRACT 

Six methods are included for calculating the probability of 
ultimate ruin, where the waiting times between claims are 
independent and identically distributed; those distributions need 
not be exponential. 

The first three use Monte Carlo and the last three do not. 

The ~irst ~ont~ Carlo method uses two-dimensional random 
sequences to generate a distribution of maximal aggregate losses 
and the connection between the maximal aggregate loss random 
variable and the probability of ruin. The first CODvo1ution 
method is similar to the first Monte Carlo method except that the 
distribution of maximal aggregate loss is generated by performing 
two-dimensional generalized numerical "convolutions". 

The ~gcond Monte Carlo method uses one-dimensional random 
sequences to obtain the probability of ruin, starting with a 
given initial surplus. The second ConvolutiQn method is similar 
to the second Monte carlo method except that the probability of 
ruin is generated by one-dimensional numerical convolutions. 

The third Monte Carlo method uses the second Monte Carlo method 
starting with zero initial surplus, together with the fact that 
the maximal aggregate loss random variable has a compound 
geometric distribution. The third Convolution method uses the 
second Convolution method starting with zero initial surplus, 
together with the fact that the maximal aggregate loss random 
variable has a compound geometric distribution. 

Some preliminary one-dimensional convolutions are performed to 
establish two parameters ~ and ~, which are then used in any of 
the six methods. 

The appendixes introduce techniques to facilitate the performing 
of one- and two-dimensional regular and generalized numerical 
convolutions. 
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INTRODUCTION 

There is an apparent paradox (ref[2]) in the idea that Monte 

Carlo trials (simulation by random numbers) can be used to 

evaluate probabilities of u~timate ruin. However, such an 

approach is possible, and quite practical except where the 

relative security margin is close to zero. 

Six methods are included for calculating the probability of 

ultimate ruin, where the waiting times between claims are 

independent and identically distributed; those distributions need 

not be exponential. 

The first three use Monte Carlo and the last three do not. 

The ~st MontQ Ca~lo peChod uses two-dimensional random 

sequences to generate a distribution of maximal aggregate losses 

and the connection between the maximal aggregate loss random 

variable and the probability of ruin. The ~irst Convolution 

me~hod is similar to the first Monte Carlo method except that the 

distribution of maximal aggregate loss is generated by performing 

two-dimensional generalized numerical "convolutions". 

The second Monte Carlo method uses one-dimensional random 
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sequences to obtain the probability of ruin, starting with a 

given initial surplus. The seqoDd C0qvolution method is similar 

to the second Monte Carlo method except that the probability of 

ruin is generated by one-dimensional numerical convolutions. 

The third Monte CarlQ ~ethod uses the second Monte Carlo method 

starting with zero initial surplus, together with the fact that 

the maximal aggregate loss random variable has a compound 

geometric distribution. The third Convolution method uses the 

second Convolution method starting with zero initial surplus, 

together with the fact that the maximal aggregate loss random 

variable has a compound geometric distribution. 

Some preliminary one-dimensional convolutions are performed to 

establish two parameters ~ and ~, which are then used in any of 

the six methods. 

The appendixes introduce techniques to facilitate the performing 

of one- and two-dimensional regular and generalized numerical 

convolutions. 

We will use the following random variables among others: 

W is the waiting time between claim number i-I and claim number 
L 

i ;  t h e  W ' s  a r e  i n d e p e n d e n t  i d e n t i c a l l y  d i s t r i b u t e d  random 
l 

variables. The W's could be exponentially distributed, as is 
L 
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true in the Compound Poisson Process; but they need not be so 

distributed. 

X i is the size of claim number i. The Xi's are independent 

identically distributed random variables. The X's are not 
L 

restricted to taking, on only nonnegative values; however, we are 

requiring that the E[X,] be nonnegative for each i. 

We assume that W,, W , .... XI, X2, ... are mutually independent. 

H,= c w I - X I is the change in surplus from just after claim 

number i-1 to just after claim number i, where c is the rate at 

which premiums are collected. We further assume that the H's 
i 

are mutually independent; they are identically distributed 

random variables. 

vn(u) = u + H, + H 2 + ... + H is the surplus just after claim 
n 

number n, having started with an initial surplus of u. 

Other subscripted small letters such as wl, xl, h i and u I will 

be used to represent possible outcomes of the random variables 

W i, X,, H, and Ui, respectively. 

and 2 will denote the expected value and variance, 

respectively, of the random variable shown in the subscript 

position of those symbols. 
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u will denote the initial surplus. 

~(u;n) will denote the probability of ruin before n+l claims, 

where the initial surplus was u. 

Pr{Lsu;n) will denote the probability that the maximal loss 

random variable L will be less than u during the period of n 

claims. 

@(u) wall denote the probability of ultimate ruin, where the 

initial surplus was u. 

If we were interested in the probability of ruin occurring 

anytime before a certain number, say no+l, of claims have 

occurred, then we could use a random number qenerator and compute 

a number, say m, of trial sequences 

W I t X i , W 2 e X 2 , • - • I Who • Xno 

Of outcomes for 

• t W z, X z, W 2, X 2, ... , Who Xn ° 

respectively, and record whether any v I in the sequence 
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V ° = U (the initial surplus) 

V = V + C " W -- X 
I 0 ] 1 

= v + c • w 2 - x 2 v2 I 

v = v + c • w - x 
n o n0-t n o n o 

is less than zero. 

Then, the ratio r/m, where r is the number of trial sequences in 

which for some i < no+l v i is less than zero, and m is the total 

number of trial sequences, would be an estimate of the 

probability ~(u;n0) of ruin occurring sometime before no+l 

claims. The expected error in the estimate would, of course, 

tend to decrease as m increases. 

We can use a modification of this procedure to establish 

intervals within which the probability @(u) of ultimate ruin is 

likely to lie. We will describe six such modifications, 

referred to as "bridges" here. 
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DETERMINING Q, ~ AND 

In APPENDIX #i we prove three assertions, from which we can 

conclude that given an initial surplus of, say u, and an E > 0 

there exists a negative real number ~ and a positive integer ~ of 

claims such that 

(a) the probability Pr{L>-~;~} of a maximal loss of more that -~ 

before n+l claims is less than c; and, 

(b) the probability of a surplus of less than -~ just after 

claims number ~ is less than c. 

The validity of these assertions leads us to the following 

heuristic technique to obtain ~ and n. 

Let H = c W - X and generate the distribution of H by 

convoluting the distribution of c • W with the distribution of 

-X. 1 

iFor details on how to perform one-dimensional convolutions see 
APPENDIX #2. Throughout the paper we assume that we are dealing 
with either discrete or discretized distributions. The section A 
NUMERICAL EXAMPLE illustrates how continuous distributions can be 
discretized. 
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Let H,, H 2, ... be mutually independent and identically 

distributed as H. 

Let V = H and let V be distributed as H 
I ! ] I 

Let V 2 = V, + V and obtain the distribution of V 2 by convoluting 

the d i s t r i b u t i o n  o f  V w i t h  i t s e l f .  
] 

Let V 4 = V 2 + V 2 and obtain the distribution of V 4 by convoluting 

the distribution of V with itself. 
2 

Etc. 

As we complete each of these convolutions, we observe the minimum 

outcome after discarding the "probability products". 2 The 

minimums will tend to decrease, reach a minimum, and then 

increase. 3 We t~ke ~ to be t~ minimu~ o_~f the minimums. See 

Comm%n~ below. 

Generating the minimum of the minimums from the distributions of 

v z, V4, Ve, ... will often be good enough for the purpose of 

determining ~. Closer estimates can be obtained by generating 

2"probabi!ity products" for univariate convolutions are defined 
at the (*) in APPENDIX #2. 

3Although this tendency is real, this statement should not be 
taken too literally. Transient local minimums are not ruled 
out. 
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the minimum of the minimums from the distributions of V2, V3, V4, 

..., but the increase in computer time may outweigh the value of 

the improvement in accuracy. 

A 

Suppose n is a positive integer such that v turns out to lie in 

the distribution of VE . Generate the distributions of 

V~.2 = VE + V K 

V~.ae = VK. 2 • V~. 2 

V~.23 = V .z2 + V E.z2 

again observing as we complete each of these convolutions the 

minimum outcome after discarding the "probability products." 

The minimums will tend to increase. 4 Continue the process until 

the minimum is z the positive real number -~. We rgcord the 

~mallest Do~itive in~eqer ~ ~Qr which the distribution of V- has 
n 

minimum ~ ~h~ positive real Dumber -~. 

Cqm~en~: ~ can turn out to be inordinately large; and , this 

situation may become apparent as we are looking for the minimum 

of the minimums. This may happen if the relative security margin 

4Although this tendency is real, this statement should not be 
taken too literally. Transient decreases in the minimums are 
not ruled out. 
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is very close to zero, or if one ef the distributions (of the 

univariate random variables W or X) is sufficiently pathological. 

However, these situations are not likely to occur in practice. 

Once again, closer estimates can be obtained by generating 

~ini~ums for the distributions of V~, V~.I, V~.2, ..., but the 

increase in computer time may outweigh the value of the improved 

accuracy. 

The final cumulative of the distribution of V- will be less than 
n 

unity, because of discarding "probability products" totalling, 

say, ~. At this point we have established values for the positive 

real number -Q and the positive integer ~ such that 

Pr( L ~ -v ; n ) < ~ and 

n 

Each of the Bridges to follow make use of the values of ~ and ~. 

So, although "probability products" totalling ~ were discarded in 

the convolutions, ~ itself is not being discarded permanently. 

If ~ is larger than we wish, we can restart the calculations 

using a smaller value of c in performing the numerical 

convolutions. 5 

5See (*) in APPENDIX #2 for definition of c here. 
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MONTE CARLO BRIDGE #I 

This method involves setting the initial surplus u ° equal to 0, 

using Monte Carlo to generate trial sequences of outcomes 

w I, x, w2, x2, . .. , w~, x~ 

for 

W,, Xl, W2, X2, ... , W~, X&, respectively, 

and generating the number pairs ( u I, vl) where 

v = 0 
0 

U = 0 
o 

v = 0+C-W - X 
1 1 1 

= rain( v u ° } 

V a= V + C'W -- X 
2 I 2 2 

U z = rain{ v2 ' Ul } 

V- = V- + C'W- - X. 

u~ = rain{ v~, u~_, 1. 

The value of u- from each trial sequence would be recorded. 
n 

N o t e  t h a t  t h e  u - ' s  a r e  n o n p o s i t i v e .  
n 

~ n be the number of trial sequences generated. The 

distributuion implied by attaching i/n to the negative of each u. 
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would be the approximate distribution of maximal losses, say L, 

during the period of the first ~ claims. This distribution of 

can be used to obtain the value of ~(u;£) using the relationship 

~(u;~) = 1 - Pr{ £ ~ u; £). 

There is some degree of error due to using a finite number of 

Monte Carlo trial sequences, and we would like to know how close 

^ ^ A 
#(u;n) is likely to be to the accurate probability #(u;n). We 

can obtain a k% confidence interval 6 for #(u;~) using the sample 

value ~(u;~), the number n of trial sequences, and the fact that 

we are dealing with Binomial random variables (i.e. for any given 

u we have -u^ s u or -u^ • u). Let p(u) and p(u) be the 
n n 

positive real numbers such that ( p(u) , p(u) ) is the k% 

confidence interval for @(u;~). 

Let @(u) = p(u). 

6From ref[l] a l-I/t 2 confidence interval [pl,pu ] for a binomial 

parameter p such that 

Pr{ p, -~ p ~ Pu ) z l-I/t 2 

is given by 
.5 

pl = X/(l+t2/n) + (t2/n- (4t2/n.X.{l-~)+t4/n 2) )/(2(l+t2/n)) 

.5 
pu = X/(l+t2/n) + ( ta/n + (4t2/n.X (l-X)+t4/n 2) )/(2(l+t2/n)), 

where X is a sample mean for a sample of size n. 
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We must also consider the possibility that survivors through 

claim number ~ may eventually become ruined, even though the 

surplus just after claim number 6 is greater than -Q; and, 

finally, there are the "probability products" totalling ~ which 

we discarded in determining ¢ and ~. See section "Determining 

Q, £ and ~." 

Let @(u) = p[u) + 

+ (l-~(u)) -~ 

+ (l-#(u))2-~ 

+ (i-#(u))3-~ 

+ . • ° 

= p(u) + ~l(i(u)), 

collapsing a geometric series. Then, at least k% of the time we 

can expect @(u) to lie in the interval (@(u) , #(u) ). 

The fact that #(u) is an upper bound (with at least k% 

confidence) for #(u) follows from a consideration of successive 

periods of ~ claims: for each such period we consider the 

product of (I) an upper bound (with at least k% confidence) for 

the probability of not going ruined before that period, and (2) 

an upper bound for the probability of going ruined during a 

period of n claims given that the surplus at the beginning of 

that period was at least -~. 
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MONTE CARLO BRIDGE #2 

This method involves setting the initial surplus u o equal to u, 

using Monte Carlo to generate trial sequences of outcomes 

W I, X I, W 2, X 2, . .. , W~, X~ 

for 

W,, XI, W2, X2, .... Wn, X&, respectively, 

amd generating trial sequences of surplus values 

V = U o 

V I = V O + C "%q I -- X I 

v 2 = v I + c-w 2 - x 2 

v* = v. + c.w- - x-. 
n n-~ n n 

Rather than each trial sequence consisting of exactly ~ terms, we 

truncate each trial sequence as soon as v i < 0 for some i, 

recording the number, 7 say m, of trial sequences that terminate 

with v I < 0 and the total number, say n, of trial sequences. 

m/n is a first estimate of @(u). 

But how close in m/n likely to be to the exact value of #(u). 

First, there is the error due to using Monte Carlo. 

7If we intend to use M.C.B.#3, we also record the absolute value 
of each vl, calling it r I. The empirical distribution of, say 

R, will then be available. 
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Second, there is the possibility that a survivor through claim 

number ~ will eventually go ruined. 

And, thirdly, there are the "probability products" totalling, 

say, ~, which we discarded in determining ~ and ~. We can 

obtain a k% confidence interval for #(u;£) using the sample value 

m/n, the number n of trial sequences, and the fact that we are 

dealing with a binomial distribution, i.e. for any given u a 

trial sequence either goes ruined or it does not. Let 

(p(u) , p(u) ) 

be that confidence interval for @(u;n). Letting @(u) = p(u) we 

are assured that at least k% of the time @(u) will be greater 

than #(u). 

To determine a value #(u) such that @(u) can be expected to be 

less than @lu) at least k% of the time, we let 

~lu) = p(u) + 

+ (i-# (u)) • 

+ (l-~(u))2-~ 

+ (I-# (u))~.~ 

+ oo, 

= p(u) + ~/~(u), 

by collapsing a geometric series. 
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@(u) ~ #(u) at least k% of the time, by the reasoning described 

in the last paragraph of MONTE CARLO BRIDGE #i. 

Then at least k% of the time we can expect #(u) to lie in the 

interval (9(u) , @(u)). 

MONTE CARLO BRIDGE ~3 

This method involves setting the initial surplus u equal to zero, 

and using MONTE CARLO BRIDGE #2 to determine @(0) and #(0i. We 

then construct compound geometric distributions using 

for the parameter q: either #(0) or #(0) and 

for the severity distribution: 

the conditional distribution of R, recorded as we 

determined m/n in M.C.B.#2. 

Each of these compound geometric distributions can be generated 

as follows: 8 

l-q is an estimate of the probability of never having a 

8See Ref[4] for other ways of generating these and some other 
compound distributions. 
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surplus less than zero; 9 thus, this probability is associated 

with an ultimate maximal loss of 0. 

q'(l-q) is an estimate of the probability l0 of having only one 

negative surplus, that is, a first negative surplus, followed 

by no additional negative surpluses thereafter; thus, this 

probability is multiplied into the probabilities in the 

distribution of R; 

convolute the distribution of R with itself to obtain the 

distribution of R + R; q2'(l-q) is an estimate of the 

probability II of having a negative surplus, followed by an 

additional negative surplus, followed by no additional 

negative surpluses thereafter; thus, this probability is 

multiplied into the probabilities in the distribution of R + 

R; 

recursively for each positive integer i (i ~ 2,3 .... ): 

convolute the distribution of R with the distribution of 

R+R+...+R~ to obtain the distribution of R+R+...+R ; 

| L e r m $  1 - 1  t e r m s  

qi'x. (l-q) is an estimate of the probability 12 of having a 

9having started with an initial surplus of u=0. 

10Ibid 

llIbid 

121bid 
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negative surplus , followed by i additional negative 

surpluses, followed by no additional negative surpluses 

thereafter; thus this probability is multiplied into the 

probabilities in the distribution of R+R+...+R ; % 

I~ ~erm$ 

continue until the sum of all of the resulting probabilities 

is within say 4, 13 of unity; the concatenation of the 

resulting partial distributions is, except for the discarded 

probabilities totalling 4, the desired compound geometric 

distribution. 

Letting L and L be the random variables associated with the 

compound geometric distributions generated using for q: @(0) 

and #(0), respectively, the probability of ultimate ruin ~(u) 

can be expected at least k% of the time to lie in the interval 

( 1 - Pr( ~ s u ) - 4 , 1 - Pr{ L s u + 4 ). 

L and L are called maximal loss random variables. 

134 is the total of the probabilities discarded in truncating the 

series q*-(l-q) (i=0,i,2 .... ) and the "probability products" 
discarded in performing the convolutions to obtain the 
distributions of R, R+R, R+R+R, etc. 
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INTRODUCTION TO CONVOLUTION BRIDGES 

We cannot be as definite about the intervals containing @(u) for 

the CONVOLUTION BRIDGES as we were for the MONTE CARLO BRIDGES. 

This is because the performing of numerical convolutions (regular 

or generalized) involves selecting and using mesh intervals or 

mesh rectangles. The results are "almost exact" (in the sense 

that finer meshes will tend to produce more accurate results), 

but nevertheless approximate. This should be born in mind when 

reading about the CONVOLUTION BRIDGES because the description 

does not emphasize the less rigorous nature of the results. 

CONVOLUTION BRIDGE #i 

Let the initial surplus be u~0. 

Let M = c w - X, and generate the distribution of H by 

convoluting the distribution of c • W with the distribution of 

-X.14 

Let H, H2, .... H~ be mutually independent and identically 

distributed as H. 

14See APPENDIX @2 for an algorithm to perform univariate 
convolutions 
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Let V I = H I and U I = min( H, , 0 ). V, is the surplus just 

after the first claim. U, is the smaller of the initial surplus 

of 0 and the surplus just after the 1 "~ claim. 

= + H }. V 2 is the surplus Let V 2 =V I + H 2 and U 2 min( UI, V, 2 

just after the 2 nd claim. U 2 is the lower of the surplus just 

after the I st claim and the surplus just after the 2 "d claim; 

that is, U 2 is the lowest surplus experienced at any time during 

the period of the first 2 claims. -U 2 is called the maximal 

loss during the period of the first 2 claims. 

Etc. 

Let V.n =V-n_, • H-n and U-, = min( U~_I, V-n_, + H.n )" V-n is the 

surplus just after the £th claim. U. is the lowest of the 
n 

surplus experienced at any time during the period of the first 

claims. -U~ is called the maximal loss during the period of the 
n 

first ~ claims. 

Consider the bivariate random variables (UI,VI), (U2,V2) , ... , 

(U~,V~). The distribution of (U ,VI) is immediately available 

from the distribution of H,, since 

V = H and U = min{ H , 0 ). 
1 I I I 
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For any n ( 2 -~ n s ~ ) the distribution of (U .Vn ) can be 

obtained by "convoluting ''15 the distribution of (Un_I,V =) and 

the distribution of H_t, using the formulas 

v =V • H 
n n-1 n 

and 

U min( V + H }. n = U_ t t . - t  . 

Thus we can generate the distribution of (U~,V~) recursively. 

Alternatively, we could generate the distribution of (U~,V~) 

recursively as follows: 

For any n ( 2 s n s ~ ) which is a power of 2 the distribution 

of (U ,~) can be obtained by "convoluting "16 the distribution of 

U' V' , and the distribution of ( ~2' ~2 ) using the (U/2.V./2) 

formulas 

v =V • v' 
n n / 2  r J 2  

and 

iSSee APPENDIX #3 for an algorithm to perform these generalized 
bivariate convolutions. It may be helpful to think of H i as a 

bivariate random variable (Hi,0) . The word convoluting is shown 

in quotation marks to indicate that a generalized operation is 
involved and not merely a convolution for sums. 

16The word convoluting is shown in quotation marks to indicate 
that a generalized operation is involved and not merely a 
convolution for sums. See APPENDIX ~3 for an algorithm to 
perform these generalized bivariate convolutions. 
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t 

U = min{ V + U ) 
n U~2' ~ 2  ~ 2  

, t 

where (U z.V 2 ) is a bivariate random variable independently 

and identically distributed as (U 2.V 2 ). If ~ is not a power 

of 2, the procedure is easily modified to "convolute" appropriate 

nonidentical distributions to generate the distribution of the 

desired bivariate random variable (U~,V&). 

Summing the probabilities from the (partial) distribution of 

(u~.v~) we would have unity, except for the "probability 

products ''17, which have been discarded in performing the bivariate 

"convolutions". Let ~. be this deficiency in the probabilities. 
n 

The marginal distribution of the absolute values IU&I is the 

estimated distribution of maximal losses, say L, during the 

period of the first £ claims, ignoring the set of outcomes with 

probability less than ~-. The distribution of L can be used to 
n 

determine the distribution of #(u;6), using the formula 

~(u;~) = i - Pr( i ~ u; & ). 

^ 

Let ~(u) = @(u;~). 

17"probability products" for bivariate "convolutions" are defined 
at the (**) in APPENDIX #3. 
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A A 

Let #(u) = #(u:n) + ~. 
n 

+( 1 - ~(u;n) ) .~ 

+( 1 - $(u;£) )2.~ 

+( I - $(u;fi) 1~.~ 

+.., 

= $(u;~) + Z. + ~ • (I/$(u;~) - 1 ) 
n 

#(u) and #(u) are lower and higher estimates, respectively, for 

~(u). We can use the nonrigorous intervals (~(u) , @(u) ) to 

decide how far to round our estimate of @(u). 

Defining #(u) as we have is motivated by a consideration of 

successive periods of ~ claims. For each such period we 

consider the product of (i) an approximate upper bound for the 

probability of not going ruined by the end of that period, and 

(2) an approximate upper bound for the probability of going 

ruined during a period of n claims given that the surplus at the 

beginning of that period was at least -~. 
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CONVOLUTION BRIDGE #2 

This method is analogous to Monte Carlo Bridge #2, except that 

here we use univariate numerical convolutions. 

Let H = c.W - X and generate the distribution of H by convoluting 

the distribution of c.W with the distribution of -X. Let H 
i e 

H 2 , ... , H& be mutually independent and identically distributed 

as H. Let V, = u + H I and obtain the distribution of V, by 

adding the initial surplus u to the amounts (not the 

probabilities) in the distribution of H . 
i 

For each positive integer i ( 2 s i s ~ ): 

let S i be the random variable which assumes the zero add positive 

values of V, with the associated probabilities. The values of S i 

can be considered to be outcomes for survivors just after the i th 

claim. The (partial) distribution of S l is thus part of the 

distributon of V . Let R be the random variable which assumes 
| i 

the absolute ya~u@ of the Deqative values of V i with the 

associated probabilites. The values of R i can be considered to 

be outcomes for ruineds which occurred with the i th claim. The 
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(partial) distribution of Rj is thus part of the distribution of 

V i. Let Vl÷ * = S i + Hi÷ I and obtain the (partial) d~stribution 

of Vl. * by convoluting the (partial) distribution of S with the 

distribution of H .18 ! 

Summing the probabilities from the (partial) distributions of 

R,,R2, ... , R~n and S-n we would have unity, except for the 

"probability products ''19 which have been discarded in performing 

the numerical convolutions. Let ~(u) be this deficiency in the 

probabilities, where the initial surplus was u. 

The probability of an outcome being a survivor just after 

claims is the sum of the probabilities in the distribution of S^. n 

The probability of an outcome being ruined anytime prior to £+i 

claims is the sum of the probabilities in the (partial) 

distributions 

R,, R2, ..., R-.n 

And there are the probabilities (totalling ~) which were 

discarded in determining ~ and $. 

Let #(u) = [Pr(RL} We must consider the possibility that 

I=I 

the survivors after £ claims eventually become ruineds. 

18See APPENDIX #2 for an algorithm to perform univariate 
convolutions 
19See (*) in APPENDIX #2 for definition of ,,probability products" 
which are being discarded in performing univariate convolutions. 
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Let @(u) = @(u) + A~(u) 

+ (z-e(u)) .Z 

+ (l-~(u))2~ 

+ (z-~(u))3,~ 

+ °.. 

= ~(u) + a~(u) + ~ • ( l/ ~(u) - i ). 

@(u) and #(u) are lower and higher estimates, respectively, "for 

#(u). We can use the nonrigorous intervals (@(u) , @(u) ) to 

decide how far to round our estimate of #(u). The motivation for 

defining @(u)" as we have here is analogous to that described in 

the last paragraph of CONVOLUTION BRIDGE #I. 

CONVOLUTION BRIDGE #3 

This method involves using CONVOLUTION BRIDGE @2 to generate a 

lower estimate @(0) and a higher estimate ~(0) of @(0). We then 

construct a compound geometric distribtuion using 

for the parameter q: either @(0) or @(0), and 
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for the severity distribution: the conditional distribution of 

the amounts in the severity distribution obtained by 

concatenating the C.B.#2 (partial) distributions of 

Rt,R2,...,R ~ and normalizing the probabilities to sum to 

unity. 

For details on how ~o generate these compound geometric 

distributions using 1-dimensional numerical convolutions, see the 

relevant part of MONTE CARLO BRIDGE #3. 

Letting L and ~ be the random variables associated with the 

compound geometric distributions generated using for q: #(0) and 

@(0), respectively, 

1 - Pr{ ~ s u ) - A 

and 

I - Pr{ L -~ u ) + A 

would be higher and lower estimates for ~(u), respectively, where 

A is as defined in a footnote to MONTE CARLO BRIDGE ~3. We can 

use the nonrigorous intervals (#(u) , ~(ui ) to decide how far 

to round our estimate of @(u). 
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COMPARISON OF BRIDGES 

Whether you will ultimately prefer to use a MONTE CARLO BRIDGE or 

a CONVOLUTION BRIDGE may be difficult to determine in advance. 

The MONTE CARLO BRIDGES use random numbers and have the advantage 

of producing rigorous confidence intervals for the probability 

@(u) of ultimate ruin, but have the disadvantage in certain 

situations of requiring the generation of more pseudo-random 

numbers than can be done in a reasonable time. 

The CONVOLUTION BRIDGES use regular or generalized univariate or 

bivariate "convolutions" and do not use random numbers, but have 

the disadvantage of not producing rigorous confidence intervals 

for the probabiliy ~(u) of ultimate ruin. The bivariate 

generalized "convolutions" are not quick even on the fastest of 

personal computers, and are not likely to produce as fine results 

as univariate convolutions. 

MONTE CARLO BRIDGES #i and #3, and CONVOLUTION BRIDGES #i and ~3, 

have the advantage of producing distributions from which @(u) is 

available for all values of u at once. 
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A NUMERICAL EXAMPLE 

Assume that the size X of individual claims is distributed 
according to pro~l~Ly density function 

p(x) = 12"(e "3x - e'4X), x>0; 

and assume that the waiting time W between claims is distributed 
according to probability density function 

q(w) = e-", w>0; 

and let the rate c (at which the premiums are received) be i. 

Find the probability ~(u) of ultimate ruin, given an initial 
surplus of u. 

Solution 

In practice the random variable X and the random variable W are 
likely to be chosen as discrete empirical distributions based on 
relevant experience. However, an advantage of solving this 
particular numerical example (which happens to involve continuous 
distributions) is that Reference [I] provides exact (and various 
approximate) values of ~(u) for u=.O, . 5, 1.0, 1.5, ... , i0.0. 
So we can compare the results of our six methods with those of 
the three methods used in Reference [i]. 

Using the definition of p(x) and integrating, we have for any 
fixed positive integer n: 

(t*I)/n 

f p(x) dx = 

I/n 

-3"(i*l)/n -4"(l*I)/n 
( - 4'e + 3-e )- 

-3"I/n -4"I/n 
( - 4 - e  + 3 . e  ) 

,(i=0,I,2 .... ) ; 

and 

(#~) 

( I ~ . I ) / n  

x-p (x) dx = 

t/n 
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-3. (l+1)In -3 "J/n 
12"( -(i+l)/n-I/3.e + i/n.I/3.e 

- 3 "  ( l . 1 ) / r s  - 3 "  I / n  
i/9"e + i/9"e + 

- 4 "  ( l . ~ ) / n  - 4  • l / n  
+ (i+l)/n.i/4.e - i/n- i/4-e + 

-4" ([*1}/n -4 'I/I~ 
+I/16"e 1/16.e ) 

,(i=0,1,2 .... ). 

Select a small positive real number, say c. By simple trial and 
error we determine a positive integer , say no, such that the 

inequality 

r - I  (L.l)/n 
0 0 

1- [ ; pC×)dx< 
L : O  l/n 

0 

is satisfied, where r is a reasonable number of rows to use in 
0 

the discretized version of the distribution of X. 

In our solution here we decided to use an r of about 4000 and an 
0 

C=10 - i s .  T h i s  l e d  t o  o u r  c h o o s i n g  n o = 3 6 0 ,  f o r  w h i c h  r ° t u r n e d  

out to be 4311. So, we used the following matrix as the 
discretized version of the distribution of X: 

(J+1)/n 
0 

x'p(x)dx 

L/n 
0 

(l+l)/n 
0 

p(x)dx 

L/n 
O 

(|÷|)/n 
0 

, ~ p (x) dx 

L/n 
0 

i=0,4310;no=360 

where the values of the integrals are immediately available from 
formulas (#) and (##) above. 
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A similar procedure led to our using the following matrix as the 
discretized version of the distribution of W: 

( I ÷ 1 ) / n  0 

f w'q(w)dw 

L/n 0 

( l , l ) / n  0 

q (W) dw 

|/n 
O 

( l * l ) / n  
0 

, f q(w) dw 

I/n 
o 

i=0,4144 ; n0=120 

where the values of the integrals are immediately available from 
the following formulas: 

(|~l)/n 

q (w) dw = 

[/n 

-(l.1)/n -s/n 
-e + e , (i=0,I,2,...) ; 

and 

f w-q(w) dw = 

|/n 

- ( l ~ l ) / n  
- (i+l)/n-e 

-(i+t)/n - I / n  
-e + e 

-|In 
+ i/n- e + 

, (i=0,I,2,...) ; 

See below! 

MONTE CARLO BRIDGE #i 
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MONTE CARLO BRIDGE #2 

Choosing parameters nax=4000, mesh=l and epsilon=10 -Is, ~ and 

turned out to be 387 and .05128746, respectively. Then, 

choosing n=106, ~(0) and 4(0) turned out to be .582671 and 

.585213, respectively. The exact answer given in tel[l] is 

.583333. 

To generate 
used 

MONTE CARLO BRIDGE #3 

the appropriate compound geometric distribution we 

for the severity distribution: 
the conditional distribution of the absolute value of 
the losses at time of ruin captured as a byproduct of 
the MCB#2 run; 

for the geometric distributions: 

q=~(0)=.582671 and 

g=~(0)=.585213; 

nax=4000, mesh=l and epsilon=10-*s; 

The geometric distribution involved enough rounding that the 

probabilities totaled just slightly different than unity; we 

normalized the probabilities to sum to unity; 

The compound geometric distribution discarded probabilities 

totaling on the order of 10"I°; and we simply ignored this fact. 
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The following table shows the resulting l-Pr{~u;~) and 

l-Pr{Lau;~} for each of the indicated values of u; and, for 

comparison, shows the corresponding exact answers to 6 decimal 

places from ref[l]. 

MCB#3 

u Pr(~u) 

0.01.417329 
0.5 .625097 
1.0 .771621 
1.5 .861310 
2.0 .915977 
2.5 .949118 
3.0 .969159 
3.5 .981316 
4.0 .988688 
4.5 .993146 
5.0 .995847 
5.5!.997455 
6.0 .998477 
6.5 .999077 
7.0 .999441 
7.51.999661 
8.0 .999795 
8.5 .999876 
9.0 .999925 
9.5 .999954 

i0.0 .999972 

l-Pr{~u) 

.582671 
.374903 
.228379 
.138690 
.084023 
.050882 
.030841 
.018684 
.011312 
.006854 
.004153 
.002515 
.001523 
.000923 
.000559 
.000339 
.000205 
. 0 0 0 1 2 4  
.000075 
.000046 
.000028 

exact 

.583333 

.375661 

.229644 

.139433 

.084583 

.051303 
.031117 

018873 
011447 
006943 
004211 
002554 
001549 
000940 

1.000570 
.000346 
.000210 
.000127 
.000077 
.000047 
.000028 

l-Pr(I~u}IPr{r~u) 
.585213 !.414787 
.377637 .622363 
.230781 !.769219 
• 140571 .859429 
.085475 .914525 
• 051914 1.948086 
• 031573 968427 
.019183 980817 
.011658 988342 
.007086 992914 
.004307 995693 
.002617 997383 
.001590 998410 
.000967 999033 
.000587 999413 
.000357 999643 
.000217 999783 

.000132 999868 

.000080 i 999920 

.000049 999951 

.000030 999970 

See below! 

CONVOLUTION BRIDGE ~I 
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CONVOLUTION BRIDGE ~2 

Choosing parameters nax=4000, mesh=l and epsilon=10 -I$, n turned 

out to be 387. Again using nax=4000, mesh=l and epsilon=lO "Is 

~(0) turned out to be .583239; and, 

@(0)=.583239+.0s128746/.583239=.583241. That is, there was 

almost no difference between ~(0) and @(0). The exact answer 

given in ref[l] is .583333. 

CONVOLUTION BRIDGE ~3 

To generate the appropriate compound geometric distribution we 

used 

for the severity distribution: 
the conditional distribution of the absolute value of 
the losses at time of ruin captured as a byproduct of 
the CB#5 run; 

for the geometric distribution: 
q=.583239; 

nax=4000, mesh=l and epsilon=10"~s; 

The geometric distribution involved enough rounding that the 

probabilities totaled just slightly different than unity; we 

normalized the probabilities to sum to unity. 

The resulting compound geometric distribution discarded 

probabilities totaling on the order of 10"1°; and we simply 
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ignored this fact. 

The following table shows the resulting ~(u) for each of the 

indicated values of u; and, for comparison, shows the 

corresponding exact answers to 6 decimal places from ref[l]. 

CB~3 

u i ~(u)* 
r 

0.0 •583239 
0.5 375688 
1.0 229678 
1 . 5  139398 
2.0 .084590 
2.5 .051308 
3.0 .031116 
3.5 .018874 
4.01.011449 
4.51.006943 
5.0i.004210 
5.5 .002554 
6.0 .001549 
6.5 .000939 
7.0 .000570 
7.5!.000346 
8.0 .000210 
8.5 .000127 
9.0 .000077 
9.5 000047 

i0.0 .000028 

exact 

583333 
375661 
229644 
139433 
084583 
051303 
031117 
018873 
011447 
006943 
004211 
002554 
001549 
000940 

.000570 

.000346 

.000210 

.000127 
•000077 
.000047 
.000028 

*Rounding both #(u) and @(u) to the number of decimal places 

shown in the column labelled #(u), we exhibit a single value. 
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MONTE CARLO BRIDGE #1 

Looking ahead to having generated the 2-dimensional random 

sequences dictated by this method, consider the formula for @(10) 

for example. If ~=1.28-i0 -6 and @(I0) + .000028, then since 

the ratio of these two figures is about .046, #(10) would turn 

out to be much too large for practical purposes. Therefore, if 

we are interested in determining a practical interval within 

which #(i0) will fall with at least 95% confidence, we will have 

to reco=pute -~ and ~ starting with a smaller epsilon. By so 

doing we can generate a smaller value of ~. 

Doing the recomputation starting with epsilon = 10 -21 , we find 

that Q=-41.92, 6=768 and ~=.0916678; in fact, n was smaller than 

768, but we did not need to take the time to determine it more 

precisely. Once again we choose n=106. 

The following table shows the resulting @(u) and @(u) for each of 

the indicated values of u; and, for comparison, shows the 

corresponding exact answers to 6 decimal places from ref[l]. 
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MCB#I 

u Pr(t~u} 

.0 .416741 

.5 .625398 

.0 .772625 

.5 .862786 

.0 .917755 

.5 .950694 
0 .970730 
5 .982486 
0 .989544 
5 .993864 
0 .996359 
5 .997850 
0 .998737 

.5 .9992651 

.0 .999556! 

.5 . 9 9 9 7 3 0  I 

l-Pr(~u) 

.583259 

.374602 

.227375 

.137214 

.082245 

.049306 

.029270 

.017514 

.010456 

.006136 

.003641 

.002150 

.001263 

. 0 0 0 7 3 5  

. 0 0 0 4 4 4  

.000270 

#(u) 

.576271 

.367783 

.221503 

.132421 

.078443 

.046333 

.026979 

.015753 

.009112 

.005126 

.002883 

.001587 

.000851 

.000439 

.000230 

.000117 

exact 

.583333 

.375661 

.229644 

.139433 

.084583 

.051303 

.031117 

.018873 

.011447! 

.006943 

.004211 

.002554 

.001549 

.000940 

.000570 

.000346 

~(u) 

.590214 

.381471 

.233356 

.142152 

.086214 

.052459 

.031750 

.019468 

.011996 

.007343 

.004598 

.002912 

.001875 

.001231 

.000859 

.000624 

CONVOLUTION BRIDGE #i 

Using the same reasoning as described under MONTE CARLO BRIDGE #i 

immediately above, we again use ~=768 and ~=.0916678. 

For the bivariate generalized numerical convolutions we use 

nax=64, nay-320 and epsilon=10 :s ~76s turned out to be 

.0s19475. 

C.B.#I takes the most computer time relative to the accuracy 

obtained in the results; for that reason we obtained the 

numerical results for C.B.#1 by running an IBM RS 6000/530 at 
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PolySystems, Inc.; the numerical results for each of the other 

Bridges were obtained by running a Gateway 2000 (486/25mh). 

CB#1 

u I #(u)* 

0.01.58473 
0.5 .37771 
1.0 .23212 
1.5.14319 
2.0.08590 
2.5i.05292 
3.0 .03153 
3.5 .01951 
4.0.01154 
4.5.00720 
5.01.00426 
5.51.oo265 
6.0.00158 
6.5 .00098 
7.0 .00058 
7.5 .00036 
8.0 .00022 
8.5 .00013 
9.0 .00008 
9.5 .0O005 

I0.0 .00003 

exact 

58521 
37764 
22964 
13943 
08458 
05130 
03112 
01887 
01145 
00694 
00421 
00255 
00155 
00094 
00057 
00035 
00021 
00013 

.00008 

.00005 

.OO003 

*Rounding both @(u) and @(u) to the number of decimal places 

shown in the column labelled #(u), we exhibit a single value. 
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APPENDIX #1-ASSERTZONS 

We will prove three assertions, from which we can conclude that 

given an initial surplus of, say u, and an c > 0 there exist a 

negative real number ~ and a (positive) number £ of claims such 

that 

(a) the probability of a maximal loss of more than 

during the period of the first ~ claims is 

less than c; 

and 

(b) the probability of a surplus of less than -~ just after 

claim number £ is less than ¢. 

Assertion #1: 

Given an a > 0 there exists a positive integer n such that 
I 

Pr{ V.(0)-~ o ) < c for all n z ~. 

Assertion #2  

Given an ~2 > 0 there exists a negative real number ~ such that 

182 



Pr(v.(0) s ~ ) < ez for all n such that 0 < n < n. 

Assertion #3  

Given an ¢ 
3 

• 0 there exists a positive integer ~ such that 

Pr(Vn(0) ~ -v ~ < ¢3 for all n > ~. 

PROOF OF ASSERTION #i 

From probability theory we know that 

E[Vn(O)] = o + n-E[H] 

and 

Var[V (0)]] = n-Var[H] 

and Chebyshev's Inequality* assures that 

I Vn(0) - E[V (0)] I ~ E[V(0)] 

Var[V(0)] 

ECV(0)] 2 

tSee Ref[3]. 
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t by choosing t in the Chebyshev Inequality to be E[V (0)]. 

Substituting for E[V (0)] and Var[V (0)] in this statement we 

have 

Pr{ j V (0) - (0 + n'E[H]) , a 0 * n.E[H] } _ , n.Var[H] 

(0 + n.E[H]) 

Now, by L'Hopita!'s Rule 

n'Var[H] Var[H] 
lim = lim = 0 
m->m 

(O+n.E[H])2 " ' ' ®  2.(0+n.E[H]).E[H] 

So, given c I > 0 there exists a positive integer n such that 

n-Var[H] 

{O+n.E[H]) 2 
< C 

I 
for all n > n. 

Thus 

Pr{ I Vn(0) - (0 + n-E[H]) f a 0 + n.E[H] } ~ ci for all n>n. 

If Vn(0) s O+ n'E[H], then 

] Vn(0) - (0 + n-E[H]) I = 0 + n.E[H] - V(0} 

%We are assuming that the relative security loading ~ (i.e. 
E[W]/E[X] - I) is positive, so t is positive as required by 
Chebyshev's Inequality: 

{ } Var[X] 
Pr I X - E[X] I ~ t 

t z 
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and 

Pr( 0 + n'E[H] - V (u) z 0 + n'E[H] ~ s c, for all n>n. 

Therefore, 

Pr(V,(O) - 0 } , c for all n>n. 

If v,(o) > 0 + n-E[H] then V (0) > 0, since 0 + n.E[H] > 0; i.e. 

Vn(0) is DQ~ less than or equal to zero. 

qed 

PROOF OF ASSERTION #2 

If H assumes only positive values, 

@(u) = 0 for all u > 0. 

If H assumes only negative values, then 

@(u) = i for all u > 0. 

So we assume that H takes on some positive and some negative 

values. 

If H is bounded from below by a negative quantity, say ~, then 

, .. , + H z + ... + HH H I H, + H2, . H, 

are bounded from below by 

~, 2.~, 3"~, .... n.£, respectively; 

So, n-h is a lower bound of 
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v,(0), v2(o) ..... v~{o); 

and, letting Q = n'~, we have 

Pr{ Vn(0 ) -~ ¢: } = 0 < c for any c > 0. 

This would prove the assertion. 

If H is unbounded from below, then we can prove the assertion as 

follows. Since for each positive integer n (I s n ~ n) we have 

v (0) = H I + H z + ... + H~ 

We know from probability theory that 

~V(O) 

U H 

~V(o) 

2 

=v ( 0 ) 

= . . . .  and   oCO) = 

where 

is the expected value of H, 

2 is the variance of H, 
~H 

is the expected value of Vn(0 ) 

and 

is the variance of V (0). 
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For each n (isnsn) Chebyshev's Inequality guarantees that 

n ~ 
t 2 
n 

for any t > 0. 

I 2~ 1/2 
n. ~H~ 

Given c a > 0, for each n (l~n~n) choose t n = ~ , which is 
[ 2J 

> 0. Then 

2 

2 
n" ~H 

t 2 
n 

and Pr I I Vn(0 ) -n .UK I z t } s c2; 

but, Pr{ I V (0)- n-UH I z t ~ - 

prIV (0)-n.~Hz0 & V (0)-n.~H~-t" or V (0)-n-~H<0 & n'~H-V (0)zt) 

-~ C 2 

and 

Pr{ V (0) < n-, H and V (0) -~ n., H - t n ~ 

pr(Vn(0l-n-~Nz0 & Vn(0)-n',Hzt" or Vn(0)-n.~H<0 & n.~H-V (0)~-t}; 

hence 

p~{  v,,(o) < n-,.% ~.n~ ",,',CO) ~ n-,.,~ - to ~) _~ ~ .  
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- - t 2, .. ~-u H - t~ Let Q = rain i'~ H t I, 2"~ H • , , 
J 

SO, 

< 0, since t 
n 

noting that 

was chosen ~ n-u H for each n (l~n~n). 

Then, for each n (l~nsn) we have 

Pr{ V (0) < n-~ H and V (0) s n.~ H - t n } ~ c2" 

But 

Pr( V (0)< n-UH and V (0) ~ ~ } 

Pr{ Vn(0) < n'u H and V (0) ~ n-, H -t~ 

since Q ~ n-u H - t ; 

Pr( V (0) < n., H and V (0) s Q } s ¢2 for each n (l~n~n). 

c~e!l 

PROOF OF ASSERTION #3  

Once again by Chebyshev's Inequality we have 
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l 
Pr[l V (0)- (0 + n.E[H])I z 0 + n. E[H] + Q 

n-Var[H] 

( 0 + n.E[H] + ~ )2 

substituting ( 0 + n.E[H] + Q ) for t. 

Now, by L'Hopital's Rule 

lim 
n->w 

n.Var[H] 

( 0 + n.E[H] + ~ )2 

So, given ~3 

fin 
m->w 

2"C 0 + n.E[H] + Q )-E[H] 
there exists a positive integer ~ such that 

n.Var[H] 

( 0 + n-E[H 3 + ¢ )2 
< c for all n>~. 

3 

Thus, 

r 
Prl I V "(0) - (0 + n-E[H]) I z 0 + n- E[H] + ~ ~ ~- c 3 for all 

^ 
n>n. 

If V (0) > ( 0 + n-E[H] ), then 

Pr{ V,(0) - (0+n'e[h]) z ~ ~ _~ c3 for all n>~. 

If Vn(0) < ( 0 + n.E[H] + ~ ) , then 

189 



Pr{ 0 + n.E[H] - V (0) 
% 

-~ 0 + n.E[H] + Q ) ~ ¢3 for all n>£. 

qed 
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APPENDIX #2 - UNIVARIATE GENERALIZED NUMERICAL CONVOLUTIONS 

If fx and fy are independent distributions of the discrete finite 

univariate random variables X and Y, respectively, then the 

distribution fz = fX+Y of the sum Z=X÷Y is the convolution fx + 

$ 
fy of fX and fy for sums. 

Let fX be expressed in element notation as 

ix p] 
x p. 

which we will also express as 

Xi Pl ) l--l,m 

Similarly, let fY be [ Yj qj I)=~,. 

Then fz = fX+Y = fX + fY = 

t We are using the operation + instead of * between two 
distributions to indicate convolution for sums; that is, fx + fY 
instead of fx * fY- we use the notation fx/fy for the 
convolution of fx and fy for quotients X/Y. 
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x,+Y 1 Pt'ql 

xI+Y 2 P1"q2 

x1+Y n P:'q~ 

xz+Y I P2"ql 

x2*Y 2 P2'q2 

x2+Y . P2"q,, 

x.+Y I P.'q, 

x.+Y 2 P.'~ 

x.+Yn P.'qn 

Matrix (I) 

which we might also express as x,+yj p,.qj ] 

1=l,m;J=l,n 

For a generalized convolution of fx and fy to generate ~he 

distribution fX/Y of the random variable X/Y this expression 

would be replaced by 
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If m and n are (say) I000, then generating this matrix would 

involve 106 lines. $ This would be practical if we do not 

intend to use fz in further convolutions. But, if for example 

we want to convolute fz with itself, then we would be dealing 

with 10 *2 lines. $ A/Id, this would be impractical, because of 

both the amount of computer storage and the amount of computing 

time required. The following algorithm has been designed to 

overcome these problems. 

The Univariate Generalized Numerical Convolution Algorithm 

Choose c>0. Typically c is chosen to be 10 -1° or i0 -Is. 

Loop #i: 

Perform the calculations indicated in Matrix (l) above, 

discarding any lines for which the resulting probability is less 

than c; that is discard lines for which 

p,.qj < c. (*) 

Z There may be some collapsing due to identical amounts on 
different lines. The number of lines produced is reduced by 
representing on a single line all lines with identical amounts; 
on that line is the amount and the sum of the original 
probabilties. 
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The purpose of this is to avoid underflow problems and to 

increase the fineness of the partitions (meshes) to be imposed. 

Calculate 

= + YJ ~ 0 ] pi'qj > C }* ~ lowz min( X i 

1 = 1 , 2 , . . .  ,m 

)=i, 2 , . . .  ,n 

and 

- + yj " 0 I PL'qJ > c }*~ highz max{ x, 

i-I,2,.., pm 

j=l,2 .... ,n 

Let naz z4 be a positive even integer selected for the purpose of 

* In many applications we replace xi÷y j by log(x,~yj), which will 

allow finer subintervals at the low end of the range. Of 
course, to be able to use logs the range of X+Y should not 
include values less than one (to avoid theoretical and numerical 
problems ) . 

For a generalized convolution of £X and fy to generate the 

distribution fX/Y of the random variable X/Y these expressions 

would be replaced by 

lowu = rain( x/Yl - 0 I P*'ql > c ) 

I=I,2,...,m 
J = l , 2  .... ,n 

and 

highu = max{ xl/y ) - 0 I P,'qj > c } 

i=l, 2,... ,m 

.1=1.2 . . . .  , n  
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creating the following partition: 

highz-lowz 
let A = 

naz/2-2 

partition the interval (lowz-A,highz+d) into naz/2 

I ( r ) :  

subintervals 

naz/2 

r Subinterval l(r) 

[o,0] 
( lovz-a, lowz ) 
[ lowz, IOWZ÷I'A ) 
[ lowz+l'A, lowz+2"~ ) 

[ Dighz,highz+A ) 

Subinterval Ic,) is the degenerate interval consisting of 0 

alone. If for some ro>l 0 ~ I(,o), then 0 is deleted from 

I(ro); that is, that particular subinterval has a hole at O. 
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Loop #2: 

For each r (r=l,2,...,naz/2+l) set to zero the initial value of 

each of the accumulators 

m (r) 
0 

~I (r) 
1 

m (r} and 
2 

m ( r )  . 
3 

For each i (1=1,2 ..... m) and j (j=l,2 .... ,n) for which 

pi'qj > C, 

determine the positive integer r for which 

x+yj • I(r) 

and perform the accumulations 

Do(r) = too(r) + pL'qj 

rot(r) = rot(r) + (x,+yj)l'pi'qj 

mz(r) = m2{r) + (x +yj)Z-p,'qj 

m3(r) = m3(r) + (x,+yj)3"pi'qj 

That is, we generate the probability and the 0 th through 3 rd 

moments for each mesh interval I(r} (r=l,2 .... ,naz/2 ). 
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Loop ~3: 

VonMises Theorem and algorithm (ref[5]) guarantee that for each r 

(r=l,2, .... naz/2 ) there exist and we can find two pairs of real 

numbers 

(Z(r),Pr{Z(r)) and (~(r),Prz(~(r)) t 

such that 

z(r) e I(r) and ~(r) ~ I(r) 

and such that the following local moment relationships hold: 

i (r} for i=0 1,2,3. .Pr(~{r)} + ~'-Pr{~(r)) = m 

Using the 0 th through 3 rd moments we can produce two points t and 

t In some cases x~=x 2 and what would otherwise be two pairs 

( ~ , Prz{~(r} ) ) and ( ~ , Prz{~r) ) ) collapse into one pair 

( ~ , Prz(~(r) ) ). This would happen, for example, where the 

values of x i + yj that fall into I(r) are all identical. 

t Ibid 
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associated probabilities, with the feature that these moments are 

accurately retained. 

Having kept accurately the 0 th through 3 ra moments of X+Y within 

each mesh interval, we have automatically kept accurately the 

corresponding global moments. 

We can then express the full distribution fz " fX+Y of the 

univariate random variable Z = X+Y as 

[ z~r] rz(ZCr)) 1 

~(r] Pr z (~¢r)) r-1 ,.az~2 

We will now describe how we actually obtain the number pairs 

(Z,r), PrZ{zcr) ) ) and ( z~r~, Prz{~Cr} ) ) 

for any given value of r (r=l,2,...,naz/2 ). To simplify the 

notation in this description we will replace the symbols 

mi~r~ by m I for i=0,1,2,3 

and 

zcr, by z and ~(r] by 

If m0=0 and m,0, then we let 

z = 0 
u 

Z = 0 

Prz(Z ) = m ° 

Prz{Z) = 0; 
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otherwise, 

if mo-m 2 - m1"m I < I0 -*°-Ira21, we let 

£ ffi m/m o Prz{~} ffi m o 

ffi 0 Prz(~) ffi 0; 

that is, in effect, use a single number pair rather than two 

t 
number pairs if the variance in I~r) is close to zero. 

otherwise, perform the following calculations: 

m I - m3-m 2 • m 
c 0 - 

m -~ -m .m 
o 2 i i 

m .ma-m o. m 3 

C 1 --  
m "m - m  " m  

0 2 I 1 

1 I '  s 
a = 2 ( -cI -[ cI" cI 4. c o 

1 
a 2 ffi ~'( "c .Icl-c ' - 4-col 5 ) 

m o- a2-m I 
s - - -  

1 a -a 

2 ! 

m - I n  • a 
i o I 

S - 
2 a - a  

2 1 

z = a z Pr z( z } = s 

t We treat this situation differently in order to avoid exceeding 
the limits of precision of the numbers being held by the 
computer. 
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Z = a 2 Pr Z = s ; 

we check that z and z both lie in I~r;; and, if 

not, then 

if I(~ is a degenerate interval (i.e. consists of a 

single point), then we let 

= m,/m o Prz{ £) = m o 

= 0 Prz{~) = O; 

t 
otherwise, we let 

. s  
= l(-m,lm 0)'( m,lm 0)+(m/m0)l 

m,/m ° - left endpoint of I(r) I 
k ~ right endpo------int o-7 ~(-7, - ,./--%o 

.s 
z = -(r. lkT + m,/m o Pr{z) = mo/(!+k) 

= o-/Ikl "s + m/m o Prz(~} = Pr{~).k; 

Thus, for each r (r=l,2,...,naz/2 } we have generated 

Z(r~ Prz (z(~)) ] 

~Ir) Pr z (~(r)) 

t This situation will occur only when the accuracy of the numbers 
being held by the computer is being impaired by the fact that the 
computer can hold numbers to only a limited degree of precision; 
since this situation occurs only where the associated probability 
is extremely small, the fact that not all of the first three 
moments are being retained in thia situation is not of practical 
significance. 
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And the full distribution fz = fX+Y can be expressed as 

~(r) Pr z (~(r)) 
r = L ,  r~t 7 J 2  

It is desirable to use double precision floating point 
numbers in performing these calculations; otherwise, you may run 
into numerical difficulties. 
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APPENDIX #3 - BIVARIATE NUMERICAL CONVOLUTIONS 

If fX,Y and fZ,T are independent distributions of the bivariate 

discrete finite random variables (X,Y) and (Z,T), respectively, 

then the distribution fu,v = fX+Z,Y+T of the bivariate random 

variable (U,V)=(X+Z,Y+T) is the bivariate convolution 

fx Y + f t of , Z,T fX,Y and fZ,T for sums. 

be expressed in element notation as ~ Let fX,Y 

(xl,Y,) P, 

(x2'Y2) P2 

(x,y) PB 

which we will also express as 

fX,Y = [ (xi'yL) P* 11=,... 

Similarly, let fZ,T be 

t We are using + instead of * to indicate convolution for sums; 
that is, fX,Y + fZ,T " 

$ We represent a line in the distribution fX,Y as a number pair 

(xl,YL) and its associated probability p.. We could just as well 

have used a vector [x L y, p,]. 
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fZ,T = [ (zj'tJ) qJ Ij=l,. 

Then 

fU,V = fX+Z,Y+T = fX,Y + fZ,T = 

(Xi+Zl, Y:+t * ) P1"q~ 
(X~+Zz,YI+tz) P1"q2 

(x1+zn, Y,+t . ) P1"q% 
(X2+ Z:, y2+tl ) Pz" q~ 

(X2+ Zz' Y2+t2 ) P2" qz 

(X2+Zn' Yz+t~ ) P2" 

(x+z,,y+t) p -~ 

(x+z 2,y+t 2) p-g~ 

Matrix 

which we might also express as 
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(xL+zJ'Yi+tJ) Pi'qJ] L=t.. 

J=t,n 

If m and n are (say) 103 , then generating this matrix would 

involve as 106 lines. $ This would be practical if we do not 

intend to use fu,v for further convolutions. On the other hand, 

if we want to perform further convolutions such as convoluting 

fu,v with itself, then we might be having to generate i0 *z = 

106-106 lines; t¢ and this would be impractical, because of the 

amount of both computer storage and computing time required. The 

following algorithm has been designed to overcome these problems. 

* For a generalized convolution of fX,Y and fZ,T to generate for 

example the distribution fmin(X,Y+Z},Y+T of the bivariate random 

variable (min(X,Y+Z), Y+T ) this expression would be replaced by 

( min{x*'YL+Zl)' Yi+tl ) P*'q~]t=,.. 

j=l.n . 

$ There may be some collapsing due to identical amount pairs on 
different lines,; that is, the number of lines produced is 
reduced by representing on a single line all lines with identical 
amount pairs; on that single line is the amount pair and the sum 
of the original probabilities. 

t¢ Ibid 
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The Bivariate Convolution Algorithm 

Choose c>0. Typically c is chosen to be I0 "z° or I0 -Is. 

Loop #I: 

Perform the calculations indicated in Matrix #i above, discarding 

any lines for which the resulting probability is less than c; 

that is, discard lines for which 

PL'qj < c. 

The purpose of this is to avoid underflow problems and to 

increase the fineness of the partitions (meshes) to be imposed. 

Calculate 

io~u t = rain { xi+zj=0 I P1"qj > c }~ 

|=l.2....,m 

J : l , 2 , . . . , n  

and 

t"lovu" stands for "lowest amount on the u-axis." 

$ For a generalized convolution of fX,Y and fZ,T to generate the 

distribution fmin{X,Y+Z},Y+T of the bivariate random variable 

( min(X,Y+Z}, Y+T ) these expressions would be replaced by 

lowu = rain { min(xl,y,+zl)=0 I P*'qJ > c)) 
|=t,2.....m 
j=1.2 ..... n 

highu = max { min(x~,y1÷zj)=0 I P*'ql > C ) 
|=~,2,...,m 

J = t , 2  . . . .  , n  
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highu *t = max { x1+zj-O I P,'qj > c }% 

1= l ,2 , . . . ,m  

J = l , 2 , . . . , n  

Let nau ~4 be a positive even integer selected for the purpose 

of creating a partition. 

highu-lowu 
let ~ = 

nau/2 - 2 

partition the open interval (lo&,u-~,highu+~) into nau/2 . 

subintervals I~r): 

nau/2 

Subinterval I ( r )  

[0,0] 
(lowu-~,lovu] 
(lowu,lowu+~) 
[lovu+~,lovu+2.~) 

[highu,highu+A) 

Subinterval Icl ) is the degenerate interval consisting of 0 

alone. 

If for some r0>l 0 E ICro), then 0 is deleted from I(rol; that 

is, that particular subinterval has a hole at O. 

tt"highu" stands for "highest amount on the u-axis." 

*"nau" stands for "number of amounts along the u-axis." 
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Loop #2: 

For each r (r=l,2 .... ,nau/2 ) calculate 

IOWV = rain{ yi+tj=0 I P~'qj > C and x1+z J ~ I ( r }  } t  
r 

|=l,2,...,m 

J=1,2, l . . ,n  

and 

highv r = max( ¥,+tj*0 

l = l , 2 , . . . , m  

J=1,2....,n 

PL'qj > c and xi+z j E I(r) )* 

let nay ~ be a positive integer selected for the purpose of 

tFor a generalized convolution of fx,Y and fZ,T to generate the 

distribution fmin(X,Y+Z) ,Y+T o f  t h e  b i v a r i a t e  random v a r i a b l e  

( minlX,Y+Z}, ¥+T ) these expressions would be replaced by 

lowu = rain( y,+tl-0 I P*'ql > c and min(xl,yl+zj) E I(r)} 

I=1,2 ..... m 

J=1.2, .... n 

highu = max( yL+tj*0 I PL'ql > c and min(x,,y,+z3} ~ I{r)} 
t=1,2, . . , ,m 

J=l,2, . . . ,n 

"nav" stands for "number of amounts along the v axis." 
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creating the following partition: 

calculate 5 = 
r 

highv -low 
r r 

nay~2 - 2 

partition each of the open intervals 

into naw/2 

(lowr-6 r, highvr+~ r) 

s u b i n t e r v a l s  J c , l :  
r 

nav/2 

s Subinterval JrC,) 

[0,0] 
~lOWr-~r,low ] 
(iov~ ,lOWr+~ ~) 
[ lowr*a r,lowr+2"a ) 

[highVr,highvr+a r) 

Loop #3: 

Let I~r)XJrC,) (called a mesh rectangle) denote the Cartesian 

product of I(r~ and Jr~s). 

For each ordered pair (r,s) 

(r=l,2 ..... nau/2 ; s=l,2 ...,nav/2 ) 
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set to zero the initial value of each of the moment accumulators 

for each i (l=l,2,...,m) and 

moo (r, $) 

mlo(r, s) 

m20(r,s) 

~30(r, s) 

IRo1(r,$) 

mo2{r,s) 

r~3(r,s) 

ml l ( r ,s)  

and  

j (j=l,2,...,n) for which 

pi'q] > £, 

determine the positive integers r and s for which both 

xL+z J ~ I(r) and Yi+tj ~ J cs) r 

and perform the accumulations 

l I~o(r 's) = moo(r's) + PL'q3 

mzo(r.,) = m20Cr..) + (Xi+Zj)I'pa'qj 

m2oCr.,) = m20(r,,} + (Xi+Zj)2"p1"qj 

3 
m30(r.s) = ~30(r.~) + (X,+Zj) "Pl'qJ 

~01{r,$) = 1~ot(r,s) + (yi+tj)1"pi'qj 

mo2(r.s) = mo2¢r.s) + (y,+tj)2-p,'qj 
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m03{r.,; = mo~{r.s~ + {yl+tj)3"p,'qj 

m1~cr.s* = m:1{r.s~+(x1+zj)- (yl+tj)-p~.qj; 

that is, we generate the probability, the 0 th through 3 rd 

x-moments, the 0 th through 3 ra y-moments, and the joint first 

moment for each mesh rectangle 

I¢r~XJrC,) (r=l,2,...,nau/2 ; s=l,2 .... ,nay~2 J.  

Loop #4: 

For each pair (r,s) (r=l,2 ..... nau/2 ;s=l,2,...,nav/2 ] there 

exist and by the end of this Appendix we will have described how 

to calculate four triplets of real numbers 

U{r,s) V[r,$) 

U ( r . $ )  ~(r , s )  

U(r.s) V(r,s) 

~(r.$) ~(r,$) 

Pru,v{ (u~r.,~ ,Xc~.,~) } 

Pru,v( C_ucr.,;.~,.,, ) } 

Pru,v{ (Scr,,~ ,VCr,,~ ) 

Pruj V{ (SCr.,, ,~Cr.sl) ) 

such that Pru{ (u{r,s).~{r.,)) } ; 

U(r.s)  E I{r)  
I 

~ { r . s )  E I ( r )  
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V(r,s) E J {$) 

~(r,s)  E J ($) 
r 

and such that the 0 t" through the 3 rd (local) moments agree: 

I 
~(r.,) "Pru(~Cr,s) } + 5(r.,)I'Pru{5(r,,) ) = m,0(r.,), where 

i = 0 , 1 , 2 , 3 ;  

Z(~.,)I-Prv{Z(r.,)) + ~(~.$)1-PrV(~cr,,) ) 
j=0,I,2,3; 

= m0j(r,i) , where 

We note that each of the points 

(u~, ,) ,v~r. ,~ ) 

(U(F, ,),V(r,,)) 

(Ucr,,) ,Z(r,,)) 

and 

(Sc,,,,,~r,,)) 

G I ×J [$) . 
r r 

VonMises To The Rescue In The U-Direction 

TO simplify the notation in this description we will abbreviate 

u(r.,) by u 

5Or,,) by 5 
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mlo(r.$) by mlo 

For any particular (r,s) : 

if mlo=O and moo - O, then we let 

and 

for i = 0,1,2,3. 

= 0 Pru(~} = mlo 

= 0 PrU{U) = 0 ; 

otherwise, 

if m "m - m -m 
c~ 20 lO lo < 10 "10"jmlo I ,  we let 

u = too/~ 

Pru{~) = m 

~=0 

Pru{~} = O; 

that is, in effect, use a single number pair rather than two 
t 

number pairs if the variance in Icr) is close to zero. 

We treat this situation differently in order to avoid exceeding 
the limits of precision of the numbers being held by the 
computer. 
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Otherwise, perform the following calculations: 

c 
o 

mlo.m3o - m2o.m2o 

m .m - m "m 
oo 20 10 i0 

c 
o 

mlo'm2o - moo-m3o 

moo.m2o - mlo.mlo 

I .5 

a, 2 ( -c {c I c, - 4. Col ) 

i .5 

a2 = 2" ( -c + { c .c I - 4'c ol ) 

m .a -m 
oo 2 1 0  

S = 
l a - a 

2 1 

m - m .a 
1 0  O0 1 

S - -  
2 a - a 

2 1 

u= a 
- -  l 

Pru{U) = s 2 

5= a 
2 

Pru{5)= s2; 
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we check that u and ~ both lie in I(r) ; and, if not, then 

if I~r~ is a degenerate interval (i.e. consists of a single 

point), then we let 

U = ml0/moo 

P r u f u ~  = m 

~--0 

otherwise t, we let 

Pru(~ ) = 0 ; 

= I (-mlo/m~)'(m,olm~) + (m Im ) I 

m,0/m ~ - left endpoint of Icr) 

k= I 
right endpoint of Icr~ - re,o/moo 

.s 

.S 

U = -~. Ikl + mlo/moo 

t This situation will occur only when the accuracy of the numbers 
being held by the computer is being impaired by the fact that the 
computer can hold numbers to ony a limited degree of precision; 
since this situation occurs only where the associated probability 
is externely small, the fact that not all of the first three 
moments are being retained in this situation is not of practical 
significance. 
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Pru{ ~) = m~/(l+k) 

= + ml Jm00 

Pru{~ ) = PrU(~).k ; 

It is desirable to use double precision floating point numbers t 

in performing these calculations; otherwise, you may run into 

numerical difficulties. 

In this way we calculate UCr.,* and ~cr.,) for each pair (r,s) 1 

(r=l,2,...nau/2 ;s=l,2 .... ,naY/2 ) 

VonMises To The Rescue In The V-Direction 

To simplify the notation in this description we will abbreviate 

Zlr,$] by v 

moj<r.$ ) by mcj for j = 0,1,2,3. 

tin the "C" programming language we use "long double" floating 
point numbers. 
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For any particular (r,s): 

= 0 and m - 0, then we let if m01 

v=O 

Prv{Z) = m01 

Prv(~ = o ; 

otherwise, 

if ~oo-m02 - m0 .mo~ < 10 -1°.1m011, we let 

= mol/m ~ 

Prv(Z) = m 

= 0 

Prv{~ ) = O; 

that is, in-effect, use a single number pair rather than two 

number pairs if the variance in J c,) is close tozero, t 
f 

* We treat this situation differently in order to avoid exceeding 
the limits of precision of the numbers being held by the 
computer. 
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otherwise, perform the following calculations: 

c O 

tirol • 11103 -- too2 • too2 
== 

moo.mo2 - mol'mol 

C 
! 

~101.m02 - mo0"m03 

~oo.mo2 - mol.mol 

1 . 5  

al = 2 ( -ci Ic I"c - 4. col ) 

1 
a2 -- ~ ' (  -% + I % ' %  - 4"Co1"S) 

moo.a  2 - ;flol 
S - -  

I a - a 

2 1 

toOl - moo. a 
s - 

2 a2 _ a l  

V = a 
-- 1 

Prv(Z} = s, 

2 

Prv(~ } = s2; 
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check that v and ~ both lie in J ($) ; and, if not, then 
-- r 

if J (,) is a degenerate interval (i.e. consists of a single 
r 

point), then we let 

V = tool/moo 

Pry(y}- moo 

7 = 0  

Prv(~ } = 0 ; 

otherwise + , we let 

.S 
c~ = I ( - too/moo)"  (too/moo) + (moz/moo) I 

mot/moo - left endpoint of Jr(,) 

k=l I 
right endpoint of Jr(*) - mojm0o 

+ This situation will occur only when the accuracy of the numbers 
being held by the computer is being impaired by the fact that the 
computer can hold numbers to ony a limited degree of precision; 
since this situation occurs only where the associated probability 
is extremely small, the fact that not all of the first three 
moments are being retained in this situation is not of practical 
significance. 
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.s 
Z = -~" Ikl + m0:/m~ Pry(Z9 = moo/(l+k) 

÷~/l kl "s 
= + tool/moo 

Prv{~ } = CPrv(Z))-k ; 

In this way we calculate for 

[r=l,2, .... nau/2 ;s=l,2,...,nav/2 ) 

each pair (r,s) 

Pru(~) 

5 Pru(~) 

Z Prv{Z} 

Prv(~} 

with the feature that the first three marginal u-moments and 

the first three marginal v-moments are accurately retained. 

Loop #5 

Let the partial distribution of ( X + Z, ¥ + T) restricted 

to I c r )xJ  Cs) be represented by the four points and 

associated probabilities 
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(u, v) Pru,v((H,Z)) 

(~. ~) Pru,v{(~,~)} 

(5. Z) Pru,v{(5,Z ') 

(u. v) Pru,v{(U,V)} 

where the probabilities are determined as follows: 

we have Pru(~}, Pru(U), Prv(~} and Prv(~); we want to 

determine 

P=u,v((H,Z)) 

Pru,v((~,~)} 

Pru,v((5,Z)} 

and 

Pru,v((U,V)), 

each in the interval [0,i], so that 

Pru,v((H,Z)) • Pru,v((5,Z,) = Pry(Z) 

Pru,v((U,~)) • Pru,v{(~,{)} = Pry({ ) 

Pru,v((~,Z)) • Pru,v((~.~)} = Pru(~) 

Pru,v((~,Z~) - Pru,v((5,5)} = Pru(U ) 

220 



and so as to minimize the absolute value of the error 

I m1, - (~'z'Pru,v((~,Z)) + 

~-~-Pru,v((~.V)) + 

U-z-Pru,v((5,Z~) + 

U'U'PrU,V((U,5)} ) I 

in the joint moment. 

We note that choosing a value for Pru,v((~,Z) j will 

determine the values for Pru,v{(U.~)), Pru,v((5,Z) } and 

Pru,v{(~,~) ) in the four ecp/ations. Our choice of 

Pru,v((~,Z) } is not completely arbitrary, since 

Pru,v{ (~'~) }, Pru,v{ (~,Z) } and Pru,v((U,~) ) must each 

[0,i]. But, restricting Pru,v{(~,Z) } to this extent, 

we can proceed to choose Pru,v{(~,Z)) so as to minimize 

the absolute error in the joint moment. Choosing 

Pru,v((U,[)) to do this is straightforward, because the 

error in the joint moment can be expressed as a linear 
t 

function of Pru,v{(~,~)). The next section 

describes the details of these calculations. 

t 
The absolute value of the error in the joint moment is linear 

in two pieces, because of the absolute value being taken. 
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The Attempt To Minimize The Absolute Value Of The Error In The 

Join= Moment 

Calculate 

t= u-v - u.~ - 5.v + ~-~ 

if t < 10 "I° and I u - ~ I < 10-5° and I v - ~ I < I0-'°, 

then let 

Pru,v((u,v_)) = PrU(u } + Pru(U ) 

Pru,v{ (u.~)) = 0 

Pru,v((~,v,} = o 

Pru,v{(U,V) } = 0 ; 

if t < 10 "1° and I u - 5 I a I0 "*° and I v - ~ I < io'*°, 

then let 

Pru,v{ (u,v) } = Pru{U ) 

Pru,v{ (U,v)} = Pru{U } 

Pru,v((u.U) } -- 0 
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Pru,v((~,~)) = o ; 

if t < i0 -~° and I ~ - ~ I • I0-~° and I Z - ~ I ~ i0-~°, 

then let 

Pru,v((~,Z)) = Prv[Z} 

Pru,v((U,Z)) = o 

Pru,v((u,v)) = o . 

if t z i0 -~° and prv(~} - Pru(U ) > O, then 

let lower = Pry(V) - Pru(~); 

let higher = minimum( Pry{ ~} , Pru{~) ); 

let Pru,v((u,v)) = 

-u.~-PrU(u) 

-5-v- Prv(v) 

-~-~- (Prv{5)-Pru(U)) 

/ 

( u_.v - u-~ - 5. Z ) 
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if Pru,v((~,~) ) < lower, then let Pru,v((~,~)) = lower; 

if Pru,v((U,Z)) > higher, then let Pru,v{(~,Z)) = higher; 

if Pru,v{ (~,Z)) < o, then Pru,v{ (u,z)) = O; 

let Pru,v((u.5)) = Pru(~) - PrU,V{(~,Z)}; 

if Pru,v{ (u.Q)]< O, let Pru,v{(~.5)) = O; 

let Pru,v{(5,~)) = Prv(~) - Pru{(~.~)); 

if Pru,v((5,~))< 0, let Pru,v((5,~)) = O; 

let Pru,v{ (~,Z~} = Pru(5) - Pru,v((U,~)); 

if Pru,v{ (5,Z,)< O, let Pru,v{ (u,z,) = O; 

If t z 10 "1° and Prv{~) - Pru(~ } s O, then 

let lower = Pr u (~) - Prv{[)~ 

let higher = minimum( Pru(~} , Prv(~) )~ 
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l e t  Pru,v{ (~,~)) = 

(m 
12 

-U'~-Prv{~ ) 

-H-Z-Pru{U } 

-U.V- (Pru{u]-Prv(~}) 

/ 

( u. Z - u-~ - 5. Z ) 

if Pru,v{ (5,~)} < lower , then let Pru,v{ (U,Q)} = lover; 

if Pru,v{ (~,~) } > higher, then let Pru,v{ (~,V)) = higher; 

if Pru,v{ (5,~) } < O, then Pru,v{ (5,~)) = O; 

let Pru,v{ (U,v,) = Pru(~} _ Pru,v{ (~,V)); 

if Pru,v{ (~,v~)< O, let Pru,v{(5,v~} _- O; 

let Pru,v{ (u.~) } = Prv{~) _ Pru,v{ (~,~)); 

if Pru,v{(H,~)) < o, let Pru,v{ (u.~)) = o; 

let Pru,v{ (u,v)) = Pru(U} _ Pru,v{ (u.~) }; 

if Pru,v((u,v) } < O, let Pru,v((u,v)) -- O; 
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Conclusion 

Having kept accurately the first three moments of each of X + Z 

and Y + T, respectively, within each mesh rectangle, we have 

automatically kept accurately the corresponding global moments. 

For each mesh rectangle 

I(r)×J (s) ( r=l,nau/2 ; s=l,nav/2 ) 
r 

there corresponds 

(uc~.,,. Z~r ,)) 

(U~r ,,. ~,~.,,) 

Pru,v{ (U(r.s),VCr,s))) 

Pru,v{ (u(r..).~cr..))) 

Pru, V((Scr.,) ,v(r.,)) ) 

Pru,v((Scr.,) ,~cr.,)) ) 

We can then express the full distribution fu,v = fX+Z,Y+T of 

the bivariate random variable (U,V) = (X+Z,Y+T) as 

(uc~.,,. _v~r.,,) 

(SCr.,,, V_~.,)) 

(Scr.,), ~(r.,)) 

Pru,v( (_ucr.,, ,wr.,,) ) 

Pru, v((U~r.,).~Cr.,~)) 

Pru,v((5(r.,) ,v(r.,,) ) 

Pru,v((5(r.,),~(r.,))) r=l,nax/2 
s=l ,nayl2 

226 



REFERENCES 

1. Blum, J. R. and Rosenblatt, J. I., Probability add Statistics, 
W. B. Saunders Company, Philadelphia, 1972, pp 271-2 

2. Dufresne, F. and Gerber, H. U., "Three Methods to Calculate 
the Probability of Ultimate Ruin", Astin Bulletin, Vol. 19, No. 
i, April 1989 

3. Feller, W., An Introduction to Probability Theory and Its 
Appl$cations. Vol. I, John Wiley & Sons, Inc., New York, 1968, pp 
233-4 

4. Panjer, H., "Recursive Evaluation of a Family of Compound 
Distributions", Ast~n Bulleti~, Vol. 12, 1981 

5. Springer, M. D., The Alaebra of Random Variables, John Wiley & 
Sons, Inc., New York, 1979, pp 269-270 

ACKNOWLEDGEMENTS 

I want to thank Larry Hickey of PolySystems, Inc., in Chicago for 
focusing my attention on Von Mises Theorem and for patiently 
tutoring me in the "C" programming language. He has been helful 
to me over the years as programmer, mathematicican and 
codesigner. Josh Zirin, formerly of Kemper Group, assisted in 
implementing the VonMises algorithm in a "C" language program. 
Charles Fuhrer, F.S.A., of Washington National provided editorial 
assistance. Thanks also to Anne Hoban of Kemper National and 
the CHIWRITER scientific/multifont word processor. 

227 




