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Standard multiple-decrement models in the actuarial mathematics of life 
contingencies treat two random variables: the future lifetime T of a status  
and an /n t e g e r  variable J indicating which of m 'causes' was involved in 
the failure of the status. In addition, there are usually introduced some 
'associated single-decrement models' or 'absolute rates of decrement' that 
can be used in the construction of the full multiple-decrement model i£ 
special assumptions are made such as 'UDD' or 'constant force'. A prob- 
lem wit~ these associated single-decrement models is that it is sometimes 
unclear what they actually mean- - tha t  is, to what sort of decrement 
they actually refer. Thus it may be difficult to have any sense of how 
to choose appropriate single-decrement models to use in the construction 
of a desired multiple-decrement model. Another--but minor--difficulty is 
that these single-decrement models often fail to behave as do many stan- 
dard single-decrement mode/s /n  that the probability of decrement may 
not tend to unity as duration increases. A strength of using associated 
single-decrement models is that they may be chosen quite freely and will 
produce a proper multiple-decrement model. 

This paper introduces the alternative notion of 'corresponding con- 
ditional single-decrement models'; these models: I) do have both an in- 
tuitive and a precise probabilistic meaning; 2) do behave as do standard 
single-decrement models; and 3) can easily be used to construct the £uli 
multiple-decrement model wi thou t  any special assumption. 

1. I N T R O D U C T I O N :  T H E  S T A N D A R D  A P P R O A C H .  
Consider the standard multiple-decrement model for the failure of a life status 

subject to various causes of failure or decrement. Following [Bowers et alia, Actu- 
arial Mathematics, Society of Actuaries, 1986, pp. 259-280], let T be the random 
variable giving the future t ime at which the status fails, and let J be the integer 
random variable indicating which of m causes produced the failure of the status. 
For ease and simplicity of presentation, only lifelike statuses are considered in this 
sec t ion-- tha t  is, statuses for which: 1) the status is intact  when first observed and 
remains intact until  some future time T, after which t ime it is not intact; and 2) T 
is a continuous-type random variable on (0, oo). The simplest such status is just  the 
non-select (x) denoting a life aged x; equally possible are select statuses [x], joint  
statuses such as (x: y) or (Ix]: y), and so on. Excluded in this section are statuses 
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with mixed-type distributions for T, such as (~  y) and (x: h-l). These can of course 
be handled in much the same way, for example by al lowi~ point masses in the 
densities and foroes of decrement. We denote a general l ife~e status by X, since 
the Greek 'chi' is reminiscent of the common status (¢); the notation X + k then 
denotes the status X still intact k years later--just as with the standard Ix] + k. 

As in [Bowers et a//a, pp. 260-267], let f ( t , j )  be the density function for the 
joint distribution of T and J, in terms of which the following standard symbols are 
defined: 

eq(J) -- Pr[J = j and T <: t] -- f (s ,  j )  ds 

hCi) = Pr [ :  = ~] = , ~ ® , q [ >  

,q(x ~) = Pr[T < t] = ~ ,q(f  

~p(x ~) = Pr[T > t] = I -,¢(x ~) 
a _CJ) 

~+ ,  = f ( t j )  ~ , ~  

• (~ )  = R "  C~) 
PX +t  Z ~ / ~ x + t  " 

i = l  

Each of the preceding symbols has a probabilitstic intewpretation. The fizst four 
were explicit ly stated as probabilities; the f i l th is the probabil i ty density function 
for decrement an instant alter time t from cause j ,  conditioned on T > t; the last 
is the probability density function for decrement an instant a~er t ime t from a.uy 
cause, conditioned on T > t. 

Associated single-decrement models. 
In terms of the forces of decrement ~) /zx+ t one can also define [Bowers et a/~a~ 

pp. 271-278] the so-called 'absolute rates of decrement': 

• l ' ¢  O )  

tpx (J) = e-Jo"x+.  , 

,~x U) = I -  Lp~ (j)- 

The m different functions ~p~J) are usually viewed as definiag m associated single- 

decrement models, in that u~x (j) is viewed as analogous to tPx in a standard single- 
decrement setting. These associated single-decrement models that were defined 
fi'om the multiple-decrement model can of course instead be used in the reverse 
manner: so long as all the tpx C/) decrease f~om 1 and at least one decreases to 0 
as t increases fzom 0 to infinity, knowledge of all the cp~ 0) for all t easily produces 
the CJ) . (~') ¢..p(x ~') ~zx+t, then then exp(-  f0 (~) ~x+t, = #x+s ds), and finally the basic density 
f(t,j) = 09 U) tPx ~x+t from which the multiple-decrement model is defined. 
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The associated single-decrement data is often given in tabular form as values 

.,U) Unfortunately, the corresponding discrete data of the discrete probabilities ~ x+k" 

q(J). for the multiple-decrement model cannot be computed exactly from the q~O) k 

without some additional special assumption on the form of, say, tq(x i) for all t. For 
example, either assuming that all the U) #x+t are constant within each integer interval 

k < t < k + 1 or assuming that all the tq~ ) are linear within each such interval 
leads to the following scheme--only the fourth step of which actually depends on 
the special assumption--for computing the Ux+k-g) from the Ux+k. 

,U) _,g) 
PX+k = l - - t / x+k  

~(~) v-t ,(i) 
, 'x+k = 1 1  v x+k 

j=l  

q(~) = 1 - ~ ( ~ )  X+k l'x+k 
• ,0) 

g) in p x~-k .C~) 
qx+k = , (~) ux+t¢ 

mPx+k 

The preceding paragraph noted one of the common difficulties in using the ab- 
solute rates in a discrete single-decrement model to construct the discrete multiple- 
decrement model--the need to make special assumptions. Another commonly noted 

-I(/) are difficult to interpret: they do not ac- difficulty is that the absolute rates qx+k 
tually equal the probability of any particular meaningful event associated with the 
multiple-decrement model--which makes it rather difficult to know how to choose 
a set of absolute rates to use in constructing a multiple-decrement model appropri- 
ate to a given real situation. [Absolute rates are also criticized for not behaving 
like true single-decrement probabilities in that not all of the tPx U) need tend to 
0 as t tends to infinity; this is also true, however, of truq probabilities tPx asso- 
ciated with important non-lifelike statuses such as X = (~:: Y) and should not be 
viewed a serious concern.] Absolute rates can intuitively be viewed as probabilities. 
for some imag/nary independent causes which, had they been combined to form 
a multiple-decrement model, would have produced the original multiple-decrement 
model. Note, however, that this does not  mean that those imaginary independent 
causes are in any sense like the true causes in the multiple-decrement model; it need 
not make sense to view one as 'death-like', another as 'retirement-like', and so on 
in an employee-bemefits multiple-decrement model, for instance. 

Another interpretation for absolute rates comes from the relation 

[UX+s -- Ux+sJ t-s'~ x+s " 

This leads to the intuitive interpretation that tq~ D represents the fraction of people 

either who do decrement for cause j by time t ( the fraction tq(x i)) or who would have 
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had they not decremented for another cause (the fraction given by the integral)--if 
it 's t ruly possible to understand what is meant by the number of people who would 
have been disabled had they not died, for example. In simple examples in which 
tqx U) represents the probability of decrement by death, however, it  is easy to show 
that  tq~ U) usually does not equal the fraction of people tha t  die regardless of other 
events. 

Thus the problems with the associated singie-decrement models and their abso- 
lute rates axe three: 1) i t 's  hard to interpret them and hence to know how to select 
them in constructing a multiple-decrement model from absolute rates; 2) special 
assumptions have to be made to construct the multiple-decrement probabilities 
when only discrete absolute rates axe avaiable such as in tabular data; and 3) they 
need not behave as do single-decrement probabilities associated with lifelike sta- 
tuses (not really a serious problem). These difficulties can be surmounted by using 
'corresponding conditional single-decrement models'. 

2. CORRESPONDING CONDITIONAL S I N G L E - D E C R E M E N T  M O D E L S .  
Suppose that you axe an employee-benefits actuary. Although you may not 

know a numerical value, you can at least consider the probabili ty that  an employee 
dies in the next year when it is ~ven that the employee will not otherwise terminate 
employment during the year. That is, you can consider the conditional probability of 
decrement from death conditioned on not decrementing from the other causes. We 
will show that  such probabilities behave as do single-decrement-model probabilities 
and that  they can be used to easily construct the full multiple-decrement model 
without special assumptions. 

Consider again the full multiple-decrement model from Section 1. The general 
status X need not be assumed to be lifelike, in the sense that  the future-lifetime 
random variable T can be allowed to be of mixed or continuous type - - tha t  is, to 
have point masses in its probability density function. Although it is possible to allow 
positive probability that the status never fail (that is, that  T = co), for convenience 
the analysis here is restricted to the case in which ~q(r) tends to 1 as t tends to 
infinity. 

(1) Definition. The j th  corresponding conditional probability o f  decre- 

m e n t  t ~  ) is defined as the conditional probability 

t ~  ~) = Pr[J  = j and T < t I NOT(J  # j  and T <_ $)], 

-U) 
and the associated survival probability tp~x ') and force ~t×+ t are defined by 

tp~x ') - -1-~q~x ),  

~U) - d t  t ~ , ×  

/zx+ t = t ~(xj) 
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(2) 

The intuitively clear meaning of t ~  j) and its technical definition as a probability 
avoids one of the problems associated with tq~ (#). The questions that remain concern 
its computation, behavior, and usefulness. 

Theocem. The jth corresponding conditional probabilities tq-x ") and ~ x  ') 
can be evaluated from the multiple-decrement probabilities as 

,q~) ,qx O) 

1 -  ` )  = 

PROOF: The second formula follows directly from the first. The first is 
defined as a conditional probability; to calculate a conditional probabil- 
ity Pr[A [ B] one divides Pr[A and B] by Pr[B]. In our case, the event 
[A and B] is the same as the event [A] alone, since the condition J = j 
in [A] makes the condition J # j false and hence makes the event [B] au- 
tomatically true. So Pr[A and B] = Pr[A] = tqp ) is our numerator term. 
Our event [B] is actually [ NOT(C)], so we need 1 - Pr[C] for our denom- 
inator. Now [C] occurs in any of the m - 1 disjoint cases J = k and T < t 
for 1 < k <_ m and k # m, each of which has probability ~q(~). The 
sum of these m - 1 probabilities is ~_## ,q(k) _- tq(,) _ tqOxj), and so our 

denominator becomes i - )'~-k#.i ,qO:) = 1 - -  ( ,qO')  - ,qxO')) = d : } ( x ' ) +  ,q(xJ). 
This m~l~es the quotient for the conditional probability exactly as claimed 
a b o v e .  • 

Since Theorem 2 shows how to calculate the corresponding conditional prob- 
abilities of decrement, it is easy to see how they behave. In the formula above 
for tq~x "), the numerator clearly eq~al-~ 0 for t ---- 0 and is non-decreasing as t in- 

creases. Since the denomlnator in the formula is 1 - ~v.## tq (M and each tq (k) 
is non-decreasing, that denominator is non-increasing. Thus the quotient defining 

tq~x ') is non-decreasing. Note also that each tqx ~) must increase to a positive limit-- 

not necessarily 1--as t tends to infinity. Since ,p(x ~) tends to 0, the quotient defining 

tq~x ") must tend to i and thus ~#) to 0. Moreover, all the ,~) tend to 0 at the 
same rate, since 

tends to h(k)/h(j), which is positive. This proves the following. 

(3) Theoeem. The corresponding conditional single-decrement models de- 
scribed by the corresponding conditional probabilities ~q~(~J) and tp~ ) be- 
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(4) 

have as do true single-decrement models, in the sense that ,  for each j ,  
tq~x ) increases from 0 to 1 and t ~  ) decxeases from 1 to 0 a.s t increases 
to i n f i n i t y ,  allowing tq~x ) to serve as a cumulative distribution function. 

Moreover, all the d ~  ) decrease to 0 at the stone rate, in tha t  t~)/d:~x )=) 
tends to h(k)lh(j). 

Example.  Suppose that the multiple-decrement model has constant forces 

gx+tU) = .01j for j = I, 2. Then it is easy to see that 

t.P(X ~') : e - -03t  

,q~J) = ~ (1 - ~-.o~,)  

tp'xU ) = e-.OU t 

~1) = 3~-'03t 

I + 2e --°3t 
3e-'°3t 

tP-(x2) = 2 + e --°3t" 

Note that the ~) share other properties besides what Theorem 3 shows. For 
example, if t~x ~) -- 0 for some t, then the ~rne is true for all the t~x ). Similarly, 

point m a s ~  m ,~) are ~ e r ~ e d  by the ,~) .  
While of little practical importance, it's interes~ng to note that straightforward 

calculus produces the following relationship among forces of decrement: 

-CJ) ~), (~) , .~j), (J) 
~ X + t  ~ t~X ~ c + t  "1- u. ,  x t~)c+t. 

3. CONSTRUCTING MULTIPLE-DECREMENT MODELS. 
Theorem 2 showed how the corresponding conditional single-decrement models 

described by tq~x ") and t/>x ~ )  can be constructed from the mukiple-decremeat model. 
Consider now the reverse. 

Working with continuous data. 

Suppose that  the corresponding conditional single-decrement probabilities tq~x ) 
and t ~  ) axe known for all t and the task is to construct the multiple-decrement 
probabilities uv (~) and tq U) for all t. The formula in Theorern 2 is easily solved for 

tq~ ) to give 

tq~x ) tp~x, ) ~U) tp~x~) 
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if ca(/) is used to denote the odds ratio ,q~x)/(1 - tq-(x 1)) = tux~-qJ)//tvx ~ )  corresponding 
to the probability tq-(x 2 .  But then 

m m 

tp(x ~) : 1-~q(~)= 1 -  ~ tq U) = 1 -  ~_, wU)tp(~) 
j = l  j = l  

can be solved for tp(x ~) to give 

(5) 

1 1 
tp~)(r = 1 + ~-~j~=l w(/) -- 1 + ca(Y) 

~rL with ca(Y) = ~ j = l  ca(j) So the multiple-decrement model can be constructed from 

the corresponding conditional probabilities tq~(x j) and tp~x ") as follows: 

1 1 
tp(~ ) = 1 t~  j) = l + ~ J m = l  caU) _ l + c a  (~) 

tqU) = t X (-r) =wUltp(x. ) ~ tPx 

Does this mean that  a proper multiple-decrement model will result from applying 
Equation 5 to an arbitrary set of cumulative distribution functions chosen to serve 
as tq~x)? Not necessarily. Recall from Theorem 3 that  the t ~  ) must  all tend to 
0 at the same rate; this restricts the choice of the tp-(x j). To construct a multiple- 
decrement model with m causes by first constructing corresponding conditional 
single-decrement models, proceed as follows: 

1. Choose the values h( j )  for eventual failure from cause j ,  being careful that  the 
h(j)  sum to 1. 

2. Choose cumulative distr ibution functions t ~  j) in a consistent manner  so that  

tp-(xJ)/~p-'(x k) tends to h(k ) /h ( j )  as t tends to infinity. 
3. Construct the multiple-decrement model using Equation 5. 
4. Ver i fy  t h a t  t h e  c o n s t r u c t e d  tq-(x j) a re  n o n - d e c r e a s i n g .  

The fourth step above is essential, since it is possible for some tq~x j) produced in 
this manner  to have a decreasing region; this is the difficulty in using corresponding 
conditional probabilities for al l  t to construct the multiple-decrement probabilities. 
But there is a better  way to perform the construction. 

W o r k / n g  f rom  tabu lar  da ta .  
In practice, models based on discrete tabular  data  are more commonly used 

than  are those with analytical formulas for the various probabilities as a function of 
t, as discussed above. We saw in Section 1 that,  if the absolute rates of decrement 

~ 0 )  were given only in tabular  form for each year as ~ x+k, then special assumptions 
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had to be made in order to compute the multiple-decrement probabilities. This is 
not necessa_u¢ when using corresponding conditional models, however; for example, 
setting t = k in Equation 5 immediately produces discrete data from discrete data. 

Typically, however, discrete data axe displayed in multiple-decrement tables 

that give the values of A J) rather than of kqx 0). These can in fact easily be ~x+k 
produced from similar tables for q×+k. How? Since X + k denotes a status just as 

=-(D with t = 1, we can .--0) is shorthand for the probability tqx+k does X, and since Ux+k 
simply use Equation 5 with t = 1 and X replaced by X + k for each k to compute 
the discrete multiple-decrement probabilities .(D for each k. This leads to the ~x+k 
following procedure. 

(6) Theorem. Suppose that for the lifelike status X and for each non-negative 
integer k, the corresponding conditional single-decrement one-year proba- 
bilities 

q-(J) = P r [ J = j a n d T < l [  N O T ( J • j a n d T <  1)] x+k - -  - -  

~J) = 1 - qx+k axe known, where J denotes J ( x  + k) and T denotes and ~x+k 

T(X  + k). Then the multiple-decrement one-year probabilities ~(~) and I..'X+ k 
qU) x+k can be computed as follows: 

p(,) _ 1 
x+k 

l + Ej : ,  
~'X+& 

=U) 

q × + k  

Px+k 

Theorem 6 is the main result of this paper--it  shows how to use the intu- 
itively meaningful corresponding conditional one-yeax probabilities of decrement 
from cause j given non-decrement from the other causes in order to construct the 
full multiple-decrement model. 

(7) Example. Suppose that there axe three causes of decrement and that the 
• ~ j )  

corresponding conditional one-year probabilitms qx+k axe constant with 
respect to k and equal .01, .02, and .03, respectively. Then Theorem 6 
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produces the multiple-decrement probabilities as 

(7) 1 
p,+k = 1+$+$g+$g 

= .9422 

(pk = -01 (7) 
x+ -@j Px+k = .0°g5 

(2) 
qx+k 

.02 (7) = 198pX+k = .0192 

Q (3) _ a3 (4 
x+k - z &+k = .OB1 

for all k. 

4. BIBLIOGRAPHY. 
1. Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J., 

Actuarial Mathematics, Society of Actuaries, 1986. 
2. Gerber, H.U., Life Insurance Mathematics, Springer-Verlag, 1990. 
3. Hickman, J.C., “A statistical approach to premiums and reserves in multiple 

decrement theory,” ‘Ikansactions of The Society of Actuaries, XVI(1964), 1-16. 
4. Jordan, C.W., Life Contingencies, Society of Actuaries, 1967. 
5. Nesbitt, C.J., and Van Eknam, M.L., “Rate functions and their role in ac- 

tuarial mathematics,” The Record of the American Institute of Actuaries, 
XXXW( 1948), 202-222. 

237 




