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A b s t r a c t  

Many  areas of actuarial work involve situations which are conveniently viewed in 
terms of  multi-state processes. Often an individual's presence in a part icular state, 
or movement  from one state to another ,  has some financial impact .  The task of the 
ac tuary  is then to quantify this impact ,  allowing for the stochastic na ture  of the process. 
The use of a Markov assumption in modelling these processes has the advantages of 
parsimony, mathematical  t ractabi l i ty  and ease of parameter  es t imat ion.  

In this  paper,  we show how probabili t ies and actuarial values may be calculated 
using a time-homogeneous Markov model. Piecewise constant transit ion intensities 
are suggested as a way to extend the approach to the inhomogeneous case. In the 
event t h a t  the Markov assumption is found to be inappropriate,  the  s ta te  space can be 
modified as an alternative to assuming a more general stochastic process. 
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1 I n t r o d u c t i o n  

It is very appealing intuitively to use multi-state processes to aid in the understanding of 
actuarial problems. We assume that the process occupies one of a finite number of states at 
any given point in time. Quantities of interest then depend on the state of the process over 
time. The state may indicate the health status of an individual, the presence or absence of 
certain risk factors, the cause of death of an individual, or the members of a group of lives 
that are still alive. 

The simplest situation involves only two states and one possible transition, as shown in 
Figure 1. This could be used when considering life insurance or annuity products. In the 
case of a simple whole life insurance policy, the policy is issued to an individual in state 
1. Premiums are payable while the insured is in state 1, and the death benefit is payable 
upon transition to state 2. For a life annuity, a single premium is paid when the contract 
is issued to an individual in state 1. Benefits are then payable until transition to state 2. 
The probabilistic behavior of this process depends only on the distribution of the t ime until 
death. Of course, when dealing with life insurance, we usually wish to consider withdrawals 
as well as deaths, and may be interested in the cause of death. 

Figure 1: E x a m p l e  o f  T w o - S t a t e  M o d e l  

i 

l Alive ,I 2 Dead 

I 
Figure 2 illustrates a three-state process which might be used in analyzing disability 

income insurance. Here, a policy is issued to an individual in state 1. Premiums are payable 
while in state l, and benefits are payable while in state 2 (usually after a waiting period). 
This situation is more complicated than the two-state case since we allow individuals to cycle " 
between states 1 and 2. 

There are many other situations in which multi-state processes can be helpful. For 
instance, in modelling long-term care, we may have several levels of care which we wish 
to consider. We could also use a multi-state process to describe movement amongst risk 
categories such as smoking status (see Tolley and Manton 1991). In analyzing automobile 
insurance, we could use a multi-state process with states which represent the the insured's 
driving record. 

Many authors have considered actuarial applications of multi-state processes. In much 
of this work it has been assumed that the process satisfies the Markov property. Under 
this assumption, Hoem (1969 and 1988) generalized a number of standard results from llfe 
contingencies. The stochastic properties of the profit earned on an insurance policy were 
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Figure 2: E x a m p l e  of T h r e e - S t a t e  M o d e l  

1 Healthy "] 2 Disabled 

3 Dead / 

examined by Ramlau-Hansen (1988a and b). Tolley and Manton (1991) proposed models 
for morbidity and mortality which include various risk factors in the model state space. 
In modelling the mortality of individuals infected with the HIV virus, Panjer (1988) and 
Ramsay (1989) used a Markov process with states which represent the stage of infection. The 
development of formulas for probabilities and the estimation of parameters were discussed 
by Waters (1984). More general multi-state processes have been considered by Hoem (1972), 
Hoem and Aalen (1978), Seal (1970) and Waters (1989 and 1990). 

This paper investigates how we can obtain results of interest for multi-state processes 
by taking advantage of the tractability of the time-homogeneous Markov model. In Section 
2, we introduce the Markov assumption and examine some of the properties of the Markov 
process. Section 3 considers the calculation of actuarial values. In Section 4, we discover 
the advantage of the time-homogeneity or constant intensity assumption. We relax this 
assumption, but retain its benefits in Section 5 by allowing the transition intensity functions 
to be piecewise constant. In Section 6, we look at how we can alter the state space of a semi- 
Markov model in order to create a Markov model which adequately describes the process of - 
interest. The results of the previous sections may then be used. 

2 The Markov Assumpt ion  

Consider a process {X( t ) , t  >_ 0} with state space {1 ,2 , . . . ,  k}. Thus, X( t )  represents the 
state of the process at time t. {X(t), t > 0} is a Markov process (or continuous-time Markov 
chain) if, for all s , t  > 0 and i , j , x (u )  e {1,2 , . . . ,k} ,  

Pr{X(s + t) = j [X(s )  = i , X ( u )  = x(u),O <_ u < s} 

= Pr{X(s + t) = jlX(s) = i}. 
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Thus, the future of the process (after time s) depends only on the state at time s and not 
on the history of the process up to time s. We define 

and assume that 

pl j (s , s  + t) -~ Pr{X(s  + t) = j l X ( s )  = i}, 

k 

y ~ p o ( s , s + t )  = 1 for a l l  t > 0.  
5=1 

We also assume the existence of the transition intensity functions 

#it(t) = lim Pii( t ' t  + h) - ~fi.i 
h--o* h ' 

where 
1 i f i = j  

6ij = 0 otherwise. 

The functions ttli(t) correspond to the forces of decrement considered in multiple decrement 
theory. 

It is easily seen that 

k 

viAs, s + t + ,,) = ~ p,t(s, ~ + t)p~j(~ + t, • + t + ~), (1) 
I=1 

for i , j  6 {1 ,2 , . . . ,  k} and s , t , u  > O. These are known as the Chapman-Kolmogorov equa- 
tions. 

The transition intensity functions and the transition probability functions are related by 
the Kolmogorov forward and backward equations. These are 

Opi j ( s ,  s k + t) = ~ p . ( s , ~  + t)u,A~ + t), (2) 

and 
0 k 

~ p , j ( s ,  ~ + t)  = - F_. u , , ( s )po(~ ,  ~ + t) ,  (3) 
l = l  

respectively, with boundary conditions pij(s, s) = 60. Further properties and examples of 
continuous-time Markov chains are discussed by Ross (1983, ch. 5). 

The main advantage of the Markov assumption is its simplicity. In stochastic modelling, 
we seek the simplest model which reasonably describes the process under consideration. Such 
a model is more convenient mathematically and easier to fit to data than more complicated 
models. 

The reasonableness of the Markov assumption depends somewhat on the level of detail 
in the state description. For example, consider the three-state process shown in Figure 2. 
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In this case, the Markov assumption may be inappropriate. The future health of a recently 
disabled individual is likely to differ from that of someone who has been disabled for a long 
period of time. In Section 6, we suggest a way to get around this problem. 

Often the data available does not allow us to assume a more general process. If transition 
times are unknown, we may have to assume a Markov process. In the insurance context, 
data is generally fairly good. Here there is a mechanism in place for keeping track of certain 
transitions (i.e. claims administration). 

3 Actuar ia l  Values  

Consider a general policy with a continuous annual cash flow of bj(t) for an individual in 
state j at t ime t and lump sum cash flows of bij(t) payable upon transition from i to j at t ime 
t. Amounts may be either positive or negative. We are interested in the random variable 
Fi(s), representing the present value of future cash flows for an individual in state i at t ime 
s. We find that the expected value of this quantity is 

E[r , (~) l  = ~ ( , )  
k 

= ~ , / c o  vt-'PO( s, t)bj(t)dt (4) 
j = l  J s  

k 

i o + ~ ~ vt-'plj(s, t)#j,(t)bj,(t)dt. 
lCj j = l  

From Ramlau-Hansen (1988a), the variance is 

k 

Var[Fi(s)] = ~ ~ /o~ v2('-')Pi~( s, t)#j,(t)[V~(t) + b~t(t) - Vj(t)]2dt. (5) 
l~j j = l  J s  

This general policy does not allow for the possibility that an amount becomes payable . 
after the policyholder has been in a particular state for a given period of time. This is usually 
the case with disability income insurance. In such a situation, expressions for the expected 
value and variance of the present value of future cash flows are somewhat more complicated. 

In order to apply (4) and (5) we must obtain the transition probability functions, p~j(s, t). 
As explained by Waters (1984), this involves the numerical solution of a system of simulta- 
neous differential equations. In the very special case of transition intensity functions which 
are constant with respect to time, explicit expressions for the transtion probability functions 
can be obtained. These expressions become extremely complicated as the number of states 
increases. However, in the next section we describe an approach in which concise represen- 
tation of the transition probability functions is possible even when the number of states is 
large. 
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4 T i m e - H o m o g e n e o u s  M a r k o v  P r o c e s s e s  

In this section, we assume that /z,j(t) = /~i~ for all t. Such a Markov process is referred to 
as time-homogeneous or stationary. The assumption of constant intensities implies that the 
time spent in each state is exponentially distr ibuted.  Also, the functions pij(s, s + t) are the 
same for all s. Thus, 

p , j ( s , s  + t) =_ p,J(O. 
It is convenient to express the transition intensity and transition probability functions in 

matrix form. Let Q be the k x k matrix with ( i , j )  entry/~ij and P(t)  be the k x k matrix 
with ( i , j )  entry pij(t). Corresponding to (1), the Chapman-Kolmogorov equations are given 
by 

P(I + u) = P(t )P(u) .  (6) 

Also, corresponding to (2) and (3), the Kolmogorov differential equations may be written 

P'(t) = P(t)Q (7) 

and 
P'(t) = QP(t).  (8) 

Equations (7) and (8) have the solution 

P(O = e Q' 

Q:t 2 
= I+Qt+-~-F.  + . . .  

This is of limited use since the series may converge rather slowly. However, as noted by Cox 
and Miller (1965), if Q has distinct eigenvalues, d l , . . . ,  dk, then Q = A DC where C = A -1, 
D = d iag (d l , . . . ,  dk) and the ith column of A is the right eigenvector associated with d,. 
Furthermore, 

P(t) = Adiag(ed~t, . . . ,  e dk') C. (9) 

Therefore, the problem of finding the transition probability functions is reduced to a 
problem of determining the eigenvalues and eigenvectors of the transition intensity matrix, " 
Q. Software to perform this task is readily available. 

The requirement that Q have distinct eigenvalues imposes no practical restriction. In the 
situations we consider, this will be the case for almost all parameter values (exceptions are 
a set of measure zero). 

From (9), we may now write 

k 

p,At) : ~ a , ~ / ° ' ,  (lO) 
n = l  

where a~j and cli are the (i, j )  entries of A and C, respectively. The calculation of actuar- 
ial values such as (4) and (5) is easily accomplished using transition probability functions 
obtained from (10). 
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5 P i e c e w i s e  C o n s t a n t  I n t e n s i t i e s  

In the previous section, it was assumed that transition intensities are constant with respect 
to time. This permits convenient representation of the transition probability functions. 
Unfortunately, in many actuarial applications, this is impractical. We require intensities 
which vary with age. We can accomplish this, while preserving the tractability of constant 
intensities, by using intensity functions which are piecewise constant. 

Let gij(t) = gl~ ) if t E ( t , , - l , tm],  for m = 1,2 . . . .  , where to = 0. Also, let (m) p~j (t) be 
the transition probability functions associated with t ime intervals contained in ( tm-h t,~]. 
In matrix form, we have Q(m) and P{m)(t). Now define m~ to be the t ime interval which 
contains time t. Then from (6), we have 

P ( s , t )  = P(m')( t , , , ,  - s)P(rn'+l)( tmo+l -- t i n , ) ' ' "  P(m' ) ( t  - t i n , - , ) .  

Thus, given s a n d / ,  the transition probability matrix can be computed. We first determine 
A ('~), D ('~) and C (m) = (A(m)) - '  as described in Section 4. Furthermore, if we let H (m) = 
P ( s , t , ~ _ , ) A  (m), then for t • ( t m - , , t m ] ,  

k 

h (m) c(,,,)_g~')(t-~m_~ ) p , j ( s , t )  = E ,~ . i  ~ 
n = l  

6 M o d i f i c a t i o n  o f  t h e  S t a t e  S p a c e  

In some situations, the Markov assumption is clearly inappropriate for modelling a process. 
An example is select mortality. Here the mortality rate depends on the t ime that an indi- 
vidual has been in the insured state, as well as the age of the individual. Another example 
arises in disability insurance. The rate of disability termination is typically larger for those 
more recently disabled. In these cases, a semi-Markov assumption can be used. The future 
of a semi-Markov process depends on the time since entry to the current state. Hoem (1972) 
discussed applications of semi-Markov processes. 

An alternative way to reflect this duration dependence is to treat each state as a collection 
of one or more substates. We then assume that the Markov property holds for the process 
indicating the substate occupied by an individual at each point in time, but not for the 
original process. For example, we might assume that the "insured" state in a life insurance 
situation consists of two substates: "insured, insurable" and "insured, uninsurable." This 
was suggested by Norberg (1988) as a way of explaining select mortality. Norberg showed 
that, if 

1. only insurable lives may enter the insured state 

2. insurable lives may become uninsurable 

3. uninsurable lives may not return to the insurable state 
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4. the force of mortali ty for insurable lives is less than that for uninsurable lives 

then, for a fixed age, the force of mortality increases with duration since becoming insured. 
Mailer (1990) showed that the result also holds if assumption 3 is relaxed, and explored the 
selection effect using more than one uninsurable state. 

To examine this model more closely, consider the setup shown in Figure 3. Suppose that 

Figure 3: M o d e l  for Se lec t  M o r t a l i t y  

1 Insurab le  12Uninurbe t 
3 Dead 

the #ij represent transition intensities for some age group. As a function of the duration 
since issue of the insurance policy, the force of mortality may be written 

C -(u12+'u13 )t~t.gl3 Jr f t  e-(u12+uaa)zp12e-tt23(t-=)dx]d23 
p ( t )  = 

e--(Ul2+ttl3)t + f~ e-(m2+u13)z#12e-#23(t-~:)dz 

= ( # ~  - # ,~ ) (u , ,  + u~)e - ( " ' + " ' ) '  - u ~ u ~ e - "  (11) 
(P2s - m3)e-(#,2+~,l*) t  - #12e-u2~t 

Thus, #12, #]z and #2z should be chosen so that (11) best represents the selection effect for 
this age group. 

We find that, for any choice of the three parameter values, there is a second choice which 
produces exactly the same/a(t).  That is, if #12 = /]12, #13 = ~13,  and #2a =/]23, then we can 
achieve the same #(t) by letting #12 =/]12, m3 =/~la, and #23 = /~23, where/~12 =/~23 -/~13, 
~13 = t~13, and /~23 = ~12 + ~Iz. If we restrict our attention to the subset of the parameter 
space for which #23 > #12 + #~a or #2a < #12 + #la, then, for each #(t), the parameterization 
is unique. In the absence of prior information about the parameter values, an arbitrary 
choice of subset may be made. Our objective is simply to find the best #(t) based on this 
three-state setup. Ordinarily, we have no data on the three transitions shown in Figure 3, 
but only on transitions from states 1 and 2 combined to state 3. 
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