
Page 1 of 16

Estimating Mortality of Insured Advanced-age Population

With Cox Regression Model

By Zhiwei Zhu, Ph.D.; Michael Hoag, FSA; Stéphane  Julien, FSA; Sufang Cui, Ph.D. 1

Risk Management, Transamerica Reinsurance

ABSTRACT

As with other populations, the survival curve of advanced-age populations is

influenced by a combination of many risk factors such as age, gender, smoking

status, etc. Survival analysis provides an array of statistical modeling tools for

estimating the blended impact from multiple factors on the underlying force of

mortality. This is a report of a study in which we applied the Cox proportional

hazard model, a widely used survival analysis tool, to profiling the mortality of

an insured advanced-age population.

Transamerica Reinsurance (TARe) used data from 14 companies in this analysis.

This data represents policies issued between 01/01/1997 and 12/31/2000 to

policyholders of age 60 or older. It is reasonable to conclude that our data is a

good sample of the US insured advanced-age population. The major study results

include measures of mortality variations by selected risk factors, estimated

mortality experience of the underlying population, and a comparison of mortality

experience estimated by direct calculation, the Society of Actuaries’ (SOA) 1990-

95mortality study, and our extended Cox modeling technique.

                                                                
1 All of the authors were employees of Transamerica Reinsurance at the time the paper was written.
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1. Introduction

Mortality is the most important risk of the life insurance industry. As the population in the U.S.

ages, both the government and the insurance industry recognize the importance of a better

understanding of mortality in advanced-age populations.  In order to design products that meet

the financial needs of customers in different market segments, insurance companies need to

understand the mortality of individuals with similar risk profiles.  This is most important in

creating financially sound social and private insurance programs for the elderly.

Regularly, the SOA compiles mortality experience reports (see [1]) based on policy data

voluntarily contributed by insurers. At Transamerica Reinsurance (TARe), mortality has also

been studied using similar life insurance policy data. When such detailed data is collected and

used for studies, researchers usually face such challenges as:

a) Massive amount of data to analyze and process;

b) Lack of a common standard across various organizations;

c) Insufficient death claims for estimating mortality of certain market segments (e.g., advanced-

age segment);

d) Significant data preparation requirements for utilizing advanced statistical modeling

methodologies.

In this paper, we focus on presenting one of the solutions--applying Cox regression modeling

technique to analyze mortality of the advanced-age insured population--to the last two challenges

mentioned in the previous paragraph.  By utilizing a standard statistical software package, SAS,

not only are we able to estimate mortality experience, but we are also able to quantify the degree
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of mortality variations based on policyholders’ risk factors such as gender, issue age, smoking

status and product type.

The following data elements were also used in our study:

• Issue age

• Duration

• Gender

• Product type

• Smoking status

• Number of Claims

• Issue Date

•    Termination Date

In the remaining four sections of this paper, we will present:

1. Data description – providing more details regarding the data sources and definitions;

2. Model and methodology description – presenting how and why the specific statistical

model was selected;

3. Result interpretation –quantifying mortality variation by multivariate risk factors,

extending the Cox model to generate experience mortality, and comparing these findings

to direct experience and to SOA’s experience studies.

4. Discussion – commenting on the strengths and weaknesses of this study.

1. Data Description

This study used a total of 66,989 policies that were issued from 1997 to 2000 by 14 US insurance

companies to policyholders of age 60 or older. Among these policies, 424 filed for death benefit

claims. Though the amount of data to process is overwhelming, the selected policies and claims
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were concentrated between issue ages 60 and 70.  In other words, very few death observations

are available from policies that were issued to people of age over 70, which is one complication

in the estimation of advanced-age mortality. (The scarcity of observed deaths in ages above 70

makes it difficult to compute a stable estimate of advanced-age mortality. )

Consider each policy a case study and each claim an event.  Our goal, then, is to define the risk

of death and to formulate the relationship between this risk and the observable policy

characteristics.  In terms of survival analysis, this risk is called the hazard rate, and the

observable characteristics are called risk factors.

The proportional hazard model proposed by Cox (see [2]) is an ideal tool for formulating the

relationship between event risks and their associated factors. When the underlying data is

properly formatted, the estimated parameters, or coefficients, of the model provide intuitive

measurements of risk variations for a given factor. Therefore, reformatting the data to achieve

more informative results is one of the key steps in our modeling effort.  The next two sections

present more theoretical and technical explanations on this issue.

Some of the data elements selected for our study have categorical values (e.g. gender, smoking

status, etc.) and others are continuous (issue age,  etc.). After testing various model

configurations, it has been determined that, in order to achieve the best modeling results

possible, we need to convert all continuous variables into categorical variables, and reduce the

number of value categories for some of the variables. This resulted in the following categories

for our preliminary data preparation.

Issue Age Category: 60-65, 66-70, 71-75, 76-80, 81-85, and 86 +

Gender: M: Males

   F:  Females
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Smoking Status: Non-Smoker (NS)

Smoker (SM)

Unknown (UNK)

Product Type: Term

Whole Life

Universal Life

Other

Table I gives a summary of the data.

Table I:  Inforce and Claims Summary

Variables Description  Inforce Policies Claims Claims
Number Percent Number Percent

Issue Age 60-65 46892 70.00% 258 60.85%
66-70 14219 21.23% 99 23.35%
71-75 4823 7.20% 57 13.44%
76-80 853 1.27% 6 1.42%
81-85 198 0.30% 4 0.94%
86+ 4 0.01% 0 0.00%

Gender F 17236 25.73% 88 20.75%
M 49753 74.27% 336 79.25%

Smk Status NS 53912 80.48% 337 79.48%
SM 4094 6.11% 43 7.31%
UNK 8983 13.41% 44 10.38%

Product Type Term 19079 28.48% 201 47.41%
Whole Life 4277 6.38% 19 4.48%
U.L. 3905 5.83% 46 10.85%
Other 39728 59.31% 158 37.26%

Total 66989 100.00% 424 100.00%

2. Model and Methodology Description

The Cox proportional hazards model evaluates risk factors to determine the magnitude and

significance of their effects on survival or failure time. Each risk factor is incorporated in the

model as a variable, and its value, or factor level, is used to describe the category to which each

individual belongs.
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Let T be the number of months from a policy’s issue date to the date of the policyholder’s death.

The probability of an individual surviving beyond a given time t is called a survival function,

which is given by:

(2.1)

Similarly, given the vector of risk factors Z, the conditional probability that a policyholder will

die between in force months t1 and t2 can be written as

If we denote Qx|Z as the mortality rate for duration X, given a risk factors Z, then:

(2.2)

Another fundamental quantity in survival analysis is the hazard function (known as the force of

mortality in demography), which measures the risk at time t of an individual who has survived

up to time t, and is defined as:

The risk that an individual dies in a period [0, t], denoted by )(tΛ , is the cumulative hazard in

this period, and can be expressed as:

t
tTttTtP

t
t ∆

≥∆+≤<=
→∆

)|(
lim)(

0
λ

)()( tTPtS >=

∫=Λ
t

duut
0

)()( λ

)|(
)|()|(

)|(
)|()|(

),|(
1

21

1

21
121 ZtS

ZtSZtS
ZtTP

ZtTPZtTP
ZtTtTtP

−=
>

≥−≥=><≤

),0|120(|1 ZTTPQ Z ><≤=

),12|2412(|2 ZTTPQ Z ><≤=



Page 7 of 16

Similarly, we can derive mortality for any given period. For example, the mortality during the

second policy year will be:

If T is a continuous random variable, the survival function )(tS , and the cumulative hazard

function )(tΛ are related by:

Therefore, given )(tS , one can derive )(tΛ , and vice versa. This property is useful later in our

calculation of mortality.

Consider a policy data file with n observations. The information available from the observations

can be described by the triples (Tj,δ  j, Zj), j=1,…, n, where Tj   is the time of study for the jth

policy, δ  j is the death indicator, and Zj = (Zj1 ,…, Zjp ) is the vector of risk factors for the jth

policy. If a policy has lapsed, or is in force beyond the study period, it is called a censored case.

In our study δ  j  has a value of 1 if a death is observed, and 0 otherwise.

 Let  )|( Ztλ  be the hazard rate at time t for an individual with risk factors Z. The basic Cox

regression model is as follows:

where )(0 tλ is an arbitrary baseline hazard function, and t
p

t ),,( 1 βββ L=  is the coefficient

vector to be estimated. The Cox model is often called a proportional hazard model because,

given two individuals with risk-factor values Z1 and Z2, the ratio of their hazard rates is:
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This ratio is constant over time and is independent from t; hence, the hazard rates of any two

cases are proportional. Their constant hazard ratio measures the relative risk of an individual

with risk factor Z1 comparing to the other individual with risk factor Z2.

If the data is properly coded, the ratio of hazard rates will be a function of the coefficient vector.

Consider a model in which Z consists of only one risk factor, ‘Gender’. If we assign a value of 1

for males and 0 for females, then the ratio of hazard rates will be:

If β  is estimated as 0.26,

which means that the probability of dying for males is 30% higher than the one for females.

In general, if a variable has K categories, this variable can always be represented by a set of (K-

1) indicator variables. For example, in our data, Smoking Status  has three categories. We can

create two (3-1=2) indicator variables, (Smk2, Smk3), to represent the three categories of the

variable Smoking Status  as follows:

(Smk2, Smk3) = (0,0) if Smoking Status = NS

(Smk2, Smk3) = (1,0) if Smoking Status = SM

(Smk2, Smk3) = (0,1) if Smoking Status = UNK
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This form of coding is known as indicator coding. When incorporating these indicators into a

Cox model, we let each set of indicator variables represent one category of the underlying risk

factor. The set represented by zeros is the reference category, the category to which all others

will be compared. In the above example, if we replace the risk factor Smoking Status  with

Smk2, and Smk3 in a Cox model, the category Smoking Status = NS, or (Smk2, Smk3)=(0,0)

will serve as the reference category. The exponential of the regression coefficients of each of the

indicator variables gives the relative risk of the underlying category to that of the reference

category. See [3] for a more detailed description of this coding method.

3. Outcome interpretation

By utilizing the SAS statistical computer software, re-coding data as indicators, and applying the

Cox model as described in previous sections, our study revealed some valuable and interesting

results. The modeling results are presented in the next two subsections.

3.1 Relative Risks

First, we interpret the analysis results directly from the PROC PHREG procedure of SAS, which

measures the relative risks.

Figure I: COX Model Output

1. Summary of the Number of Events and Censored Values

Total       Event    Censored    % Censored
66989         424       66565     99.37%

2. Testing Global Null Hypothesis: BETA=0

            Test                 Chi-Square       DF     Pr > ChiSq

            Likelihood Ratio       123.1884       11         <.0001
            Score                  140.2791       11         <.0001
            Wald                   132.6577       11         <.0001

3. Analysis of Maximum Likelihood Estimates

                Parameter   Standard                         Hazard
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   Variable      Estimate      Error Chi-Square Pr > ChiSq    Ratio

ISSUE AGE
60-65

   66-70   0.33275    0.11925     7.7860     0.00523   1.395
    71-75     0.99149    0.15228    42.3933     <.0001    2.695
   76-80    0.52654    0.42681     1.5219     0.2173    1.693
   81-85     1.21429    0.52264     5.3980     0.0202    3.368
   86+      -5.18688  214.88307     0.0006     0.9807    0.006
SMOKING STATUS

NS
SM       0.46771    0.16781     7.7680     0.0053    1.596

   UNK       0.20744    0.16492     1.5821     0.2085    1.231
GENDER

M
F      -0.35679    0.12144     8.6323     0.0033    0.700

PRODUCT TYPE
TERM
WHOLE LIFE -1.24342    0.25056    24.6270     <.0001    0.288

   U.L.       0.29987    0.17745     2.8556     0.0911    1.350
   OTHER      -0.69471    0.11161    38.7449     <.0001    0.499

1. Summary of the Number of Events and Censored Values

The study file has a total of 66,989 policies and 424 claims. Except for the policies with claims,

the rest (99%) are censored (lapsed, converted, or still in force on the study-ending date).

2. Testing the Global Null Hypothesis: BETA=0  (Model Fit)

The null hypothesis is that none of the risk factors has a statistically significant influence on the

hazard rate. Three statistical testing procedures, Likelihood, Score, and Wald, were applied. The

results showed that there is a less than 0.01% chance (values in the Pr > ChiSq column) that one

will make a faulty rejection of the null hypothesis. So, the data strongly suggests that the hazard

rate is dependent on the selected risk factors.

3. Analysis of the Maximum Likelihood Estimates

In the third block of Figure 1, the ‘Variable’ column displays the Zi’s that are included in the

Cox model. In this column, the rows with a variable name and a category value represent the

reference categories of the corresponding risk factor, and are not explicitly included in the model

as a Zi.  The ‘Parameter Estimate’ column contains the estimated coefficients βi. The ‘Pr >
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ChiSq’ column shows the p-value for rejecting the null hypothesis βi =0; the corresponding risk

factor category has the same hazard rate as the reference category. Finally, the ‘Hazard Ratio’

column provides the exponential of βi.

According to the explanations in Section 2, each of these numbers has a straightforward

meaning. For example, the numbers in the I.3. block can be translated as follows:

In this model, the risk factor Issue Age is broken down into 6 categories (levels). The first

category, ‘60-65’, is chosen to be the reference category.

Statement 1: For I.3. 66-70, the hazard ratio = 1.395, which implies that, when all the other

conditions are equal, policies issued between ages 66 and 70 are 39.5% (1.395-1) more likely to

have death claims than those issued between ages 60 and 65. The fact that Pr > ChiSq = 0.0052

implies that there is a 0.52% chance for this statement to be faulty, due to unexpected random

effects included in the study data.

Statement 2: For I.3. 86+, the hazard ratio = 0.006, which indicates that, when all the other

conditions are equal, policies issued to policyholders aged 86 or above are 99.4% (0.006-1) less

likely to have claims than those issued between 60 and 65.  However, there is a 98.07% chance

(Pr > ChiSq is 0.9807) for this statement to be wrong due to unexpected random effects included

in the study data.

We should consider the Statement 2 a faulty statement and reject it. By revisiting Table I in

Section 1, it is apparent that the cause of such a faulty statement is that only 4 policies were

issued to policyholders aged 86 or above; furthermore, none of them had had a claim by the end

of this study. With so few policies, one can hardly make a reasonable mortality projection. From

a modeling aspect, this suggests that the two Issue Age categories 81-85 and 86+ should be

combined as a single one.
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We can similarly interpret the p-values and the hazard ratios of the other risk factors from

Figure I. When all the other conditions are equal:

• Smokers are 59.6% more likely to have claims than Nonsmokers are (Hazard Ratio = 1.596

and the p-value <0.05). However, because their p-values are greater than 0.05, the hazard

rates of policyholders with an Unknown Smoking Status have no statistically significant

difference from those of Nonsmokes. Female policyholders are 30% less likely to file claims

than Male policyholders.

• Whole Life policies are 71.2% less likely to have claims than Term policies. Statistically,

Universal Life policies are as likely to have claims as Term policies (p-value > 0.05).

3.2 Estimated Mortality Experience

As discussed in Section 2, the conditional survival functions can be estimated from the Cox

model.  Therefore, the mortality in a given duration can be calculated based on formula (2.2).

Table II: Mortality Comparison

Issue Age Gender UWClass Duration Mortality Rates

Actual Model SOA 9095

60-70 F A 1 1.4525 1.9986 1.8480
60-70 F A 2 3.2262 3.1759 2.9292
60-70 F A 3 3.5348 3.5089 3.8449
60-70 F A 4 2.5290 4.6952 4.8072
71-80 F A 1 4.4484 4.3163 4.9874
71-80 F A 2 4.8023 6.8540 6.6535
71-80 F A 3 17.5023 7.5713 9.2040
71-80 F A 4 9.0158 10.1241 11.9136

81-100 F A 1 0.0000 8.2352 13.9126
81-100 F A 2 54.7945 13.0618 20.5672
81-100 F A 3 82.1918 14.4239 28.3184
81-100 F A 4 0.0000 19.2647 28.8600
60-70 M A 1 2.6133 2.5897 2.6486
60-70 M A 2 4.1549 4.1144 4.2605
60-70 M A 3 4.1273 4.5456 5.8663
60-70 M A 4 4.9601 6.0814 7.5835
71-80 M A 1 6.2779 5.5909 8.8338
71-80 M A 2 5.6752 8.8747 12.7019
71-80 M A 3 7.3148 9.8023 16.8462
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71-80 M A 4 16.7209 13.1024 20.9671
81-100 M A 1 0.0000 10.6608 21.4982
81-100 M A 2 0.0000 16.8968 34.5062
81-100 M A 3 0.0000 18.6551 49.4707
81-100 M A 4 0.0000 24.8979 65.4475

The last three columns of Table II present different ways of obtaining mortality rates. The

column labeled Actual gives mortality rates derived directly from the actual claims and

exposure. The column labeled Model consists of mortality rates estimated by the Cox model.

The SOA 9095 column displays the expected mortality rates based on the SOA 9095 mortality

experience tables, which, as industry averages, can be used as benchmarks for assessing TARe’s

own mortality.

As expected, the fluctuation of a product mortality experience depends heavily on the size and

the life cycle of that product. Therefore, the experience in any short time period may not

accurately represent the product’s lifetime performance. For example, in comparing the Actual

mortality to the SOA9095 mortality in Tables II, one can see that female policyholders between

Issue Ages 81 and 100 included in TARe’s study experienced significantly higher mortality than

the industry average. This result holds for the policies included in this study period. This is

mainly due to the fact that a very small number of policies were issued to this age group in the

study sample, and any claim will have a more significant effect on the mortality experience. On

the other hand, the Model mortality derived by the Cox model suggests that TARe will have

better mortality experience than the industry average, assuming the same distribution of policies

within that age group.

When no claims are recorded, the calculation of actual mortality rates provides no information

for estimating future mortality (See Males, Issue Ages 81-100, in Table II). However, the Cox
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model will still project estimation based on experience of other age groups. As more data

becomes available, the estimation becomes more accurate.

4. Discussion

When conducting a study that relies on large amount of data gathered from multiple sources, the

accuracy of the results is assured and/or constrained by:

A. The merit of the study design, and the analytical techniques used.

B. The integrity of data processing and management.

C. The quality of the source data.

A. As explained earlier, the Cox model is a proven and widely used analytical tool for analyzing

event-occurrence data. It has many advantages for analyzing life insurance data, such as:

§ Achieving the most efficient use of incomplete/censored data;

§ Formulating the relationship between risk (hazard rate) and risk factors;

§ Quantifying risk variations by risk factors;

§ Generating smoothed mortality/survival predictions.

The limitation of the Cox model is that only mortality tables by count can be generated through

the estimation process. In practice, insureds will have policies with different face amounts, so

their claims will weight differently on the overall mortality.

B. Pooling millions of records into one data system, with millions more flooding in every

quarter, presents a great challenge to an IT department and its analysts. To turn this massive

amount of data into useful information that can be used in taking business decisions is truly a

joint venture of data processing and data analysis. The success of this venture relies on

dedicated administrative support, strong IT operation, and knowledgeable business guidance.
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For this very reason, conducting high quality mortality studies requires coordinating multi-

disciplinary professionals in processing, managing, and analyzing data, as well as adapting

highly sophisticated analytical tools, such as SAS, and SPSS.

C. The fact that each organization has its own preferences in collecting, managing, and

transmitting data, necessitates its unification before any analysis can be performed. For

example, it takes tremendous efforts and resources to group the hundreds of underwriting

classes and tens of thousands of plan codes defined by various companies into a small

enough number of categories in order for analytical tools, such as SAS, and modeling

techniques, such as Cox, to yield meaningful outcomes. The data and mappings used for

purposes of this study have been reviewed for reasonableness; however, results may vary

based upon company methodology used for mapping data into the specified categories.  In

assessing business risks, strengthening industry-wide collaboration on data collection and

standardization is as important as mortality studies themselves.
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