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AIbMract: The theory of Teichroew, Robicheck, and Montaibano is concerned with 
assigning internal rates of retum to arbitrary financial projects. Their work was 

carried out in 8 discrete model. Our goal is to establish the main results in a more 

general setting, where cash flows are given by signed measures. 

This paper ¢ontaJns a summary of results. Detailed proofs will appear in a subsequent 

publication. 

Genera l  T r a n s a c t i o n s  

The most familiar description of a financial transaction is by the disc/eta model A 
transaction T is identified with a finite sequence 

T={co, cl . . . . .  CN} (I) 

where c~ denotes the payment at time L For many purposes it is convenient to 
consider the continuous mode/, in which a transaction is descnl~ed by a continuous 
function ct, which denotes the periodic rate of payment at time L A comprehensive 
approach, synthesizing the discrete and continuous models, and thereby allowing for 
mixed and more general cases was given in [4, §X] .The idea, borrowed from 

probability theory, is simply to describe the transaction by a function G(t) of bounded 
variation defined on (- = ,  oo) such that lira t -  -.G(t) = 0. G(t) denotes the total 
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amount received up to time t and will be called the tota/flow f u ~ .  We normalize by 

assuming that G is right continuous, so G(t) denotes the amount received up to and 

induing time t. 

In the discrete case (1), G is a step function, 

IO  k, for-o= < t < 0 

J~'.Ci,  for 0 < k_< t < k+ l  _< n 

'~i=U 

In the continuous case, 

t 
G(t) = f c s  ds 

. O 0  

There are many practical situations where this general point of view is useful. For 

example, in the typical life insurance policy, the benefits can be viewed as a 
continuous transaction while the premium payments are discrete. Taken together they 
form a mixed case which can be conveniently descn13ed by the more general model. 

It is well known that G induces a signed measure p on the Borel sets of the real line, 
where IJ[( a,b)] is G(b)-G(a). For a Borel set A, /~(A) denolesthe total amount of 

funds received during the time period represented by A. This gives us another point of 

view and for many purposes it is more convenient to use /~ in place of G. In this 

paper however, we will confine ourselves to the use of the total flow function. 

These ideas appear in a paper by R. Norberg [3]. In that work, all payments are 
nonnegative, which corresponds to an increasing G, or a positive measure. It is true 
of course that any function of bounded variation is the difference of two increasing 
functions, so for many purposes it is sufficient to consider only the increasing case. 

However, for the main application in this paper, it seems necessary to adopt the more 

284 



general viewpoint which allows for both pos'rtive and negative payments in the same 

transaction. 

Given such a G, let C(t) = G(t) - G(t-), the actual payment at time t. Note that in the 

continuous case, C(t) = 0 for all t. 

We review some definitions from [5 ]. An accumulabon func~n for our purposes will 

be a positive valued function of two variables, a(s,t) satisfying 

a(s,t) = a(s,r) a(r,t), for all s,t, and r. (2) 

It is an easy consequence of this properly that 

a(t,t) = 1, and s(s,t) :  a(t,s) "1, for all s,t. 

We think of a(s,t) as denoting the amount at time t resulting from an investment of 1 

at time ~. Equivalently, one can view a(s,t) -1 as the price at time s of a 1-unit, pure 

discount bond maturing at time t. This is the approach taken in [3], where it is shown 
that (2) follows from a "no arbitrage" hypothesis. 

Given a transaction with total flow function G, and an accumulation function a, the 
value o f~e  transec~nat #me t is defined by 

o o  

Val (t) = fa(s,t) dG(s) (3) 

This represents the single payment at time t which would be equivalent to all the 

payments of the transection, assuming growth of capital according to the given 
accumulation function. One of the main goals in [3] is to provide an axiomatic 
justification of forrmula (3). 

The retrospective value at time t ,  which we also call the be/ance functlon, is similarly 
defined by 
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t 
B(t) = fa (s , t )  de(s) 

.OO 

B(t) denotes the accumulated amount at time t, including any payment due at 

that time. 

TRM Theory 

We review the theory of Teichroew, Robichek and Montalbano (henceforth denoted by 

TRM) originally introduced in [8] and [91. For more details, see 16] (note however that 

the our notation has changed somewhat ), or for a very extensive discussion see [71. 

In addition, Kellison's text contains a brief summary [2, §5.9]. For definiteness, 

suppose we have an investment project, that is, a transaction as given in (1) for which 

Co < 0. (The conclusions below have corresponding dual statements in the case that 

T is a financing ixoject, one for which co >0.) For any deposit rate d and investment 
rate r, define inductively the balance function Br,d, on the set { 0,1 ..... N} as follows. 

Br,d(0) = cO 

= /Br,d(k)( l+d) + Ck+l, if Br,d(k) -> 0 

Br,d(k+l) [Br d(k)( l+r)  + Ck÷l, if Br d(k) < 0 

Following is a main result of the theory. It is readily established by induction on the 
duration n. 

THEOREM 1: For fixed d and a positive integer n _< N, Br,d(n) is a str/cffy decreasing 
function of r. Moreover, Br,d(n) becomes negative for sufficiently large values of r. 

The theorem can be generalized somewhat. Suppose that T is not an investment 
project. The conclusion is clearly no longer true as stated, since for sufficiently high 
values of d, Br,d (k), for k = 0,1,2 ..... n, will be nonnegative and independent of r. 

However, for those values of d which are small enough to allow for a negative 

value of Br.d (k), for some r and some k between 0 and n, the same result holds. 
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The first statement in the theorem is intuitively clear as it essentially says the following. 

Consider two individuals A and B. They begin with the same balance in their bank 

accounts and they make exactly the same deposits and withdrawals. They both 

receive exactly the same amount of interest on positive balances. However, A is 

charged a higher rate than B on overdrafts. It is evident thai at the end of any given 

time period. A will always have a balance which is less than or equal to that of B. 

Moreover, if any overdraft occured during that period,which is certain if they both 

began with a negative balance, then A will have a balance which is s/T/cth/ less than 

that of B. 

Theorem 1 allows us to define, for any investment pmjeot T, the quantity Io'(T), the 

TRM internal rate of return corresponding to the deposit rate d. Namely, Id(T) equals 
the unique zero of the function r-'Br.d.(N), or -1, if Br,o'(N) :; 0 for all r. 

We would like to derive Theorem 1 in the general setting which we described in the 
first section. For this purpose we will place some further restrictions on G. We 
assume the following: 

Transactions are of bounded duration. That is, there exist points a and b such that 

G(t) =0 for t < a and G(t)=G(b) for t > b  (4) 

There is a constant K > 0 such that for all t, 

limSuPh_0+ I G(t+h)-G(t)h I ~ K and limsuph-..o÷ I G(t'h~G(t')I <K (S) 

Condition (5) is satisfied in the discrete case where we can take K = 0, and in the 

continuous case where we can take K = sup{ ct: a < t < b}. 

The first problem is to  arrive at a suitable definition of an investment project. We do 

so as follows. A transaction with total flow function G is an investment project if there 

exists a point to such that 
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(~ G(to) <0. 

(ii) G is nonincreasing on (-  oo, to). 

In other words, up to some point there is a steady outflow of funds without anything 

coming in. Similarly, by reversing the inequality in (i) and replacing nontncreasing by 

nondecreasing in (i0, we obtain the definition of a financing Ixo~ct. 

The next problem is to arrive at a suitable definition of the balance function. It is now 
much more convenient to work with forces of interest rather than rates. Let 5 and p 

refer to the forces of interest for the deposit rate and the investment rate respectively. 
We seek an appropriate definition of B ~  (For convenience we use the same letter B 

as in the discrete model. Note that the function Br,d described above would now be 

denoted by BIn(l+r), In(l~l)-) In the continuous case, it is not diffcuit to give the 
appropriate definition. Namely, Bp, b is the solution to the differentia] equation, 

d f 6 B ~ d t )  + c t ,  if B~d t )  ;~ 0 

Bp~(l)=~.pB~dt) + c t ,  if Bp,~t) _< 0 

Bp.~(a) = O. 

where ct is a continuous function on the interval [ a, b] 

In the general case we are faced with the following difficulty. We want to describe a 

situation in which accumulation is at a force of interest b when balances are negative, 

and at s force of interest p when balances are positive. Therefore, the rate of 

accumulation deDends on the balances, but these in turn depend on the rate of 
accumulation. We resolve this circularity in the discrete case via the inductive 
definition. In the continuous case we resolve it via a differential equation, which can 
be viewed as a continuous version of an inductive definition. In the case of a general 
transaction we proceed as follows. 
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Fix 5 and p and a transaction with total flow function G. Let P and N be two 

Lebesgue measurable subsets of the real line such that v(PrlN) = 0, where v 

denotes Lebesgue measure. Define an accumulation function aP,N by 

aP,N ($,t) = e (bv[P n(s,t)l+pv[N n(s,t)]) 

ancl let B P,N denote the corresponding balance function. The resulting accumulation 
is at a force of interest 5 for points in P and at a force of interest p for points in N. 

There can be points in the intersection which may at first glance seem contradictory, 

but a moments reflection shows that it is essential to allow for this possibility. For 

example, suppose that in the discrete model a positive payment changes the balance 

from negative to positive. At that point of time, accumulation is at a force of interest 5 if 

one looks forward, but at a force of interest p if one looks backwards. 

Given such P and N, let 

P1 = { t: B P,N (t) • 0} U { t: B P,N (t) - Qt)) • 0 

N1 = { t: e P,N (t) < 0} U { t: BP,N(t) - C(t)} < 0 

We see that P1 consists of all times at which the balance is positive, or was positive 

just before the withdrawal at that time, and we similarly interpret N1 

In order to achieve the goal which we described above we want to choose P and N, 
so that P1 c p and N1 ~ N. While it is far from obvious that this can be done, it is 

possible with the assumlc~ions made above. The details are somewhat complicated 
and will not be given here. Moreover, although there may be many possible choices 

for such P and N, the resulting balance function is unique, and we can denote it 

unambiguously by B~,& We are then able to prove the following general version of 

Theorem 1. 

THEOREM 1': Suppose we have an investment project satisfying (4) and (5). Then, 
for fixed b and t, B~(t) is a strictly decreasing function of p which becomes negative 
for sufficiently large p. 
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Fixing ~ we can then define Ib as the unique zero of the function which assigns 
Bo,~(b) to p, or .0o if all values of Bp.5(b) are nonDositive. 

We are also able to demonstrate the relationship between I~ and the Arrow-Levhari 

internal rate of return defined in [1]. For the discrete case, this was announced in [6] 
and a detailed proof appears in [7, Theorem 5.5] We are able to give a definition of the 
Arrow-Levhari rate in our general setting, and show that it is equal to suP-o {Ib}. 
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