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Abstract

Pension funds are usually cither defined benefit or defined contribution funds. In Australia
in recent years, for a number of reasons, some pension funds have offered the "greater of™
these two benefits.

Such a benefit design can be valued using contingent claims valuation techniques since it is
equivalent to an option on the maximum of two random benefit amounts - one equal to a
multiple of salary and the other the accumulation of a percentage of salary at an earnings
rate.

This paper overviews some of the issues in applying contingent claims valuation techniques
to the valuation of this style of benefit including:

- incorporation of decrements,

- the dependence of the accumulation benefit on the two stochastic state variables, salary and
fund eamings rate and the resulting path- dependency,

- the numerical techniques for efficient calculation of benefit values including discrete lattice
models, finite difference techniques, simulation and approximations based on bivariate
log-normal assumption,

- the lack of traded assets to price salary risk and implications for valuation.

Numerical evaluation of benefit values and the assessment of computational efficiency of
alternative techniques is the next stage of this research.
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Introduction

Pension funds, or superannuation funds as they are referred (o in Australia, have developed
benefit designs which offer resignation, death and/or retirement benefits that are the greater
of two alternmative benefits. The two alternatives are typically the accumulation of

contributions with interest and a benefit based on a multiple of service and salary. The origin
and form of these benefits are discussed in more detail in Britt (1991).

Traditional deterministic actuarial valuation techniques do not handle these *greater of”
benefits. The valuation of these benefits requires the use of a stochastic model. The obvious
method to apply to this valuation problem is contingent claims valuation which has been
developed in the finance literature. Such an approach also can allow the calculation of a
market value for these pension liabilities provided traded assets are available to price the
relevant risks. Such a market valuation of the liability will be different to the usual actuarial
valuation which would usually contain margins in establishing contribution rates or solvency
levels for a pension fund.

Market values of pension benefits are often needed. This arises from the increasing
importance being placed on the valuation of the assets of such funds at market value. A
natural consequence of requiring a market value of assets is to value the liabilities at a market
value consistent with the basis used for the assets. Accounting standards for pension funds
are increasingly based on the use of market values for assets and, in Australia, require the
use of a market determined risk adjusted discount rate for the valuation of the fund liabilities
(AAS2S). The value of the liability so obtained can be interpreted as the equivalent of a
market value for the liabilities.

There is also a need for market values of liabilities in order to assess the net value of a
pension fund to the company sponsor. Some overseas and proposed Australian accounting
standards (EDS3 in Australia) require the above the line reporting of changes in the pet value
of a company pension arrangement. Such values are reported using values of the liabilities
determined using a risk adjusted discount rate to value the accrued benefits. The economic
value of the company, as reflected in its share price, should also reflect the market value of
the liabilities rather than the actuarial value.

The valuation of actuarial liabilities using option pricing techniques has gained acceptance.
The initial application of such techniques was to investment guarantees provided in maturity
benefits of life insurance products as first discussed in Boyle and Schwartz (1976). More
receatly option pricing techniques have been adopted or proposed for the valuation of a range
of actuarial liabilities. For example Wilkde (1989) discussed the use of these techniques in
the valuation of pension payments from U.K. pension schemes. The contingent claims
framework based on arbitrage free pricing has also been applied to the valuation of life
insurance policy cash flows. As an example Manistre (1990) uses no arbitrage interest rate
models as the basis for valuing the effect of interest sensitive withdrawals on the value of life
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insurance liabilities.

This paper considers the valuation of "greater of” beaefits in a multivariate contingent clzims
valuation framework. In conceptual terms the greater of benefits can be treated as equivalent
to an option on the maximurm of two risky assets along the lines of Johnson (1987) and Stulz
(1982). There are however some additional issues to be considered when applying such
techniques to this area. These are as follows:

- the incorporation of decremeats of resignation, mortality and retirement into the
calculations,

- the complication that the value of one of the benefits, namely the accumulation of
contributions at the fund earning rate, can not be written in a simple form, at least not when
the contribution rate is expressed as a percentage of salary, hence one of the risky assets is
a complex security whose value is a function of both state variables,

- the numerical techniques that are appropriate for computing numerical values as efficiently
as possible, including simulation, discrete lattice models and numerical solutions to partial
differential equations,

and

- the incomplete markets problem which arises if these pension benefits are non-redundant
claims in the absence of existing traded assets which exactly replicate the liability value.

The efficient numerical computation of these values is an important practical consideration.
Valvation Approach

Britt (1991) discussed the application of option pricing theory to the valuation of "greater of”
benefits and, following Wilkie (1989), suggested an adaptation of the Garman-Kohlhagen
(1983) formula for currency options to determine the value of these benefits. Such a formula
approach fits well with the standard actuarial approach to the valuation of pension benefits
which is based on a deterministic model and which is not generally suited to the valuation
of option style benefits such as these greater of benefits. Britt also used simulation to value
the benefits. Bell and Sherris (1991) illustrated how a simple numerical technique could
potentially be used to value these "greater of” benefits using the binomial equivalent of the

Margrabe (1978) approach.

Both these approaches used a device which allowed the values to be determined using the
value of one of these benefit payments as the numeraire along with a simplifying assumption
about the form of the benefits as a function of the state variables. This allowed the
calculation of the additional cost of these benefits in terms of the normal cost of one or the
other of the benefits. Neither the Britt formula nor the Bell and Sherris approach considered
the incorporation of decrements such as death and resignation benefits. The Britt simulation
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approach had the advantage of allowing for such decrements but the choice of the stochastic
simulation parameters was not based on economic or market based assumptions.

A general contingent claims approach to the problem offers the ability to incorporate
decrements into the process, to allow for the form of the greater of benefit more exactly and
also to develop a theoretical basis for the choice of parameters. The approach involves
developing a partial differential equation for the benefit values and solving this subject to the
appropriate boundary conditions. The partial differential equation parameters are sclected
using arbitrage free or equilibrium pricing assumptions. Techniques that can be used to solve
the partial differential equation include simulation and finite difference or lattice approx-
imations. In general, finite difference or lattice approaches are required if the boundary
conditions involve dynamic optimal decisions based on the current value of the contingent
claim. Such techniques are computationally intensive where the value of the benefit or the
boundary conditions are path-dependeat. Simulation is likely to be computationally more
efficient for such path-dependent problems but does not capture any optimal dynamic aspects
of the valuation.

Form of Benefit

This paper assumes that the benefit to be valued takes the following form. For a member
who joined a fund at age x, which will be taken as time 0, the benefit on exit from the fund
at time s when the life is aged x+s, for cause of exit death, resignation or retirement, will
be the greater of:

X(s) = a fixed multiple of final salary for each year of service or part thereof
and
Y(s) = the accumulation of contributions at the fund earning rate to time s

The contributions will usually be a percentage of salary which will mean that the
accumulation benefit wiil be a function of salary. In the case that the contribution is a fixed
amount or a percentage of the fund assets then this added complication would not arise.

Note that this is a simplification of this form of benefit found in practice. The greater of
benefit will often only apply on retirement rather than on earlier exit, the benefit on death
will usually be a fixed multiple of final salary rather than a greater of style benefit and salary
is usually defined as an average salary rather than the salary at the date of exit. With the
exception of this last complication the form of the benefit considered here can be readily
adapted to any practical situation.

If the basis of the benefit X were a multiple of average salary then the problem of

path-dependency arises since the value of the benefit will depend on the realised values of
salary used to compute the average salary. This problem is identical to that which arises in
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the valuation of so-called Asian or exotic options which have payoffs as functions of the
average value of an asset. The theoretical approach is not changed but the derivation of
closed form analytical solutions, which is often possible in the no path-dependency case, will
no longer be possible and valuation will require the use of a numerical technique or
simulation.

It will be assumed that the X benefit is based on final salary at the date of exit. The benefit
as a multiple of final salary is then:

X(s) = sxkx S()

where s is service in years
k is the salary multiple
S(s) is the salary at time s.

The benefit in the form of an accumulation of contributions is a function of salary and the
fund earning rate since the contribution rate is usually expressed as a percentage of salary.

In this case Y can be considered as the equivalent of the value of a notional security that has
a negative continuous dividend equal to the contribution rate times salary. The capital value
of this notional security grows at the fund carning rate. If the fund is invested in a diversified
portfolio, as is generally the case for such pension funds, then the growth in the capital value
of the notional security will be the same as the growth rate for the index value of a
diversified portfolio. There is therefore the need to value a security whose capital value
grows like a market index and whose dividend is a percentage of salary. Note that the form
of this benefit implies that it is a function of the history of the salary state variable and that
it is path- dependent. This path-dependency indicates that numerical techniques will be
required 1o accurately compute the value of the greater of benefit.

Theoretical Value of Benefits

Allowing for decrements

At first sight the allowance for benefit payments on death, resignation or retirement might
not be obvious. This situation is the equivalent of early exercise of an American style option
in option pricing. In the option case the early exercise is assumed to be based on a rational
decision based on the payoff from exercising the option and the then current price of the
option. Thus the early exercise of an American option is an optimal dynamic decision. In the
peasion fund case the death of a life and receipt of the greater of benefit is not assumed to
be dependent on the payoff of the opton. If it is assumed that the same applies for
withdrawal and early retirement then incorporation of decrements into the calculation tums
out to be relatively straightforward. To illustrate the procedure consider a simple benefit in
the form of a fixed death benefit payable on death in the pension fund.

The standard calculation of actuarial liability values is based on the assumption that interest
rates are non-stochastic. In this case the value of a death benefit on a life of curreat age x
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of fixed amount D payable on death would be given by the solution to the non-homogeneous
first order linear differential equation

Eer (O V-t @V)

= [I‘C) +4, xv:]v-‘”x*tp

where 1(t) is the force of interest or instantaneous interest rate at time t and %, is the force
of mortality or instantaneous death rate at age x+t.

The solution to this differential equation is
v(0) -jv, (8) vg(5) .. Dds
[]

where

vy(s) 'expf—r(u) du
]

and
vy(s) -expf—‘umdu
0
Notice that this value takes the form of the integral (or sum) of the expected payments at

each time t multiplied by discount functions which allow for both interest and mortality to
time t.

The value can also be expressed as
v(0) =[q(s) v, (D, 5)ds=E, (v, (D, 5)]
[}
where g(s)= v,(s)*y.., is the probability density of the random variable time till death s for

a life aged x (Bowers et al, 1986) and v,(D,s) is the present value of the benefit assumed paid
with certainty at time s allowing for interest only and ignoring mortality. E, is the expectation
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operator with respect to the random variable s = age at death.

In general, where the decrement rate is independent of the state variables and the value of
the benefit then the value can be written in this form. This is most likely to be the case for
pension benefits. The only exception would be for the withdrawal assumption and the early
retirement assumption where the decision to withdraw or retire could be assumed to be based
on a dynamic optimisation decision. Such behaviour could be modelled approximately by
expressing the withdrawal or retirement rate as a function of the state variables. If this was
to be done then the partial differeatial equation for the benefit value would incorporate the
decrements directly.

The implementation of the contingent claims approach used in this paper is based on the
traditional life contingencies approach for incorporating decrements which is to assume that
decrement rates vary only by age. The benefit value for each age at exit is then derived by
treating it as a European style option. The value of the benefit can then be derived by
calculating the expected value of the conditional expected benefit values with respect to the
time to exit random variable.

Allowing for stochastic interest rates

So far the interest rate has been assumed fixed and known. If we let the interest rate be a
random variable then an analytical formula for the value of the benefit can be determined by
using a term structure model. This is an area of considerable current research in both the
finance and actvarial literatures. Two relatively simple models that produce an analytical
formula are those of Vasicek (1977) and Cox, Ingerscll, and Ross (1985b). These are also
covered in Manistre (1990). See also Boyle (1978). The Vasicek model is derived from
arbitrage free considerations only whereas the Cox, Ingersoll and Ross model is based on an
underlying equilibrium model with restrictions on preferences and the stochastic assumptions
used to represent the economy. A brief summary of the Cox, Ingersoll and Ross results is
given in Appendix One.

The general arbitrage free valuation results of Harrison and Kreps (1979) and Harrison and
Pliska (1981) provide a framework for deriving the value of the greater of benefit. The value
of a fixed benefit payment of amount D at time s, denoted by V, will be assumed to be a
function of only the spot or instantaneous interest rate r and time t. There is only one state
variable, the interest rate, in this valuation problem.

If it is assumed that the spot interest rate follows the stochastic differential equation

dr = u(r,0dt + o(r,0HdZ

where dZ is a standardised Wiener process, then from the application of Ito’s Lemma the
value of D, V(z,t) follows the stochastic differential equation

dV = (V, + 0V, + %{o(@,)}Vdt + olr,)VAZ
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where subscripts denote partial differentials of V. In this paper subscripts will usually denote
partial differentials with respect to the variable(s) in the subscript. There are no cash flows
associated with the benefit D before it is paid and the boundary condition is V(r,t)=D for
t=s. The value required is V(1(0),0).

If M is an instantaneously riskiess money market account accumulating at rate r then

2
M(s) -expf:(u)du
[]

and M(0)/M(s) represeats the amount that should be invested to accumulate to a unit amount
at time s. This is not the same as V(r(0),0) with D=1, unless o(r,t) =0, since this is assumed
not observable at ime 0 and is to be derived.

If the market is arbitrage free then there exists an equivalent probability measure under which
the process V(r,t)/M(t) is a martingale. If this probability measure is unique then the market
is said to be complete and the value of the fixed payment D can be written uniquely as

E'[V(r,s)/M¢s)]
where expectations are taken with respect to the equivalent probability measure.

The change to the drift term of V(r,t) to ensure that V(r,t)/M(t) is a martingale involves
setting the expected return on V to the instantanecus riskless rate and the value of V is then
calculated as the discounted expected value of V(r,s) with respect to these altered dynamics
of V. The discounting is carried out using the ratio of money market account values
M(0)/M(s).

This procedure is the ’risk-neutral’ valuation approach used in opuon pricing. It can also be
considered as the certainty equivalent valuation approach discussed in finance texts.

If risk free government bonds are available with maturities corresponding to the dates of exit
and paymeat of benefit cash flows then it is not necessary to use a term structure model since
the price of interest rate risk and hence the discount rate for the benefit cash flows can be
derived directly from the traded bonds.

Greater of Benefit

The approach that is considered in this paper requires the value of the greater of benefit
payable for each age at exit. These values can be determined by treating the greater of
benefit for each age at exit as a European style option. This allows the calculation of the
expected value of the benefit using risk neutral dynamics which is then present valued using
risk free government bond rates.

The greater of benefit can be valued using an arbitrage free contingent claims approach on

the assumption that the value of the benefit is a function of two state variables. These are the
eamnings rate on the contributions in the fund and the growth rate in salary. The earnings rate
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on the fund will be taken as the earnings rate on a diversified portfolio that is representative
of the asset portfolio of a pension fund. The other complication is that the boundary condition
will include the path-dependent value of a hypothetical security dependent on these same two
state variables.

These two state variables are the only sources of uncertainty considered. Interest rate
uncertainty will no longer be incorporated for ease of exposition. The two sources of
uncertainty will in effect be assumed to dominate any interest rate uncertainty. As already
mentioned there is some justification for setting aside interest rate uncertainty if it is assumed
that marketable bonds are traded for the required maturities so that interest rate risk can be
priced in the discounting of the expected benefit payments. A market based spot rate for a
bond with the same maturity as the benefit payment would then be used instead of the ratio
of values of the money market account to discount expected benefit paymeats.

Assume that the salary S follows the stochastic differential equation

dS = u,Sdt + 0,54z,

and that F the value of an amount credited with the fund earnings rate follows the stochastic
differential equation

dF = ufFdt + oFdZ,

with dZdZ, =p4dt

where p,, is the instantaneous correlation coefficient between the standardised Weiner
processes dZ, and dZ,. It is assumed that dZ, and dZ, generate the only uncertainty allowed
in the model.

This implies that the values of S and F are bivariate log-normally distributed.

It is possible to write the stochastic differential equation for F as

dF = uFdt + ofF(pydZ, + V(1-{pn})dZ)

where dZ, and dZ" are independent Wiener processes. This result is useful for the numerical
evaluation of the greater of benefit and for simulation of the processes.

The value of the benefit will be a function of F,S and t and Ito’s lemma gives
dV = V,dS + VAF + Vdt + %{V, 0 + Va0l + 2V, 0,0, }dt

= {uSV, + uFV, + V. + %B(V,0]! + Vool + 2V, 0,0p,9}dt
+ 0,5dZ, + ofFdZ,
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Note that the state variables F and S are not traded assets. If we assume that the benefit is
a redundant contingent claim then this implies that traded securities exist that provide perfect
hedges against the uncertainty that arises from S and F. Denote the value of these assets by
A and C respectively with dynamics

da

il

u(S,ndt + o(§,9dZ,

dC = u(F,t)dt + o(F,0dZ,

Applying Ito’s lemma to A and C and allowing for any expected cash flows on the securities
gives the form of x and o in each of these expressions. Assuming that the rate of cash flow
on these assets is D(S,t) and D(F,t) respectively then

uS,) = pSA, + A+ %A"‘,z'gz + DES,b)

o§,) = A0S
uE,1) = uFC, + C + %CHF’ + DEF,H
oF,t) = Cof

It is also assumed that an instantaneously riskless bond is traded and the value of the bond
is denoted by B with dynamics

dB = rBdt

The benefit can be valued by deriving a partial differential equation for V using the
no-arbitrage valuation approach. This is solved subject to the appropriate boundary
conditions. For a fixed age at benefit payment s the boundary condition is that

V = max{X,Y}
where
X = ksS

and
Y(A,C) is the solution of the stochastic differential equation

dY = Y, dA + YC + Ydt + ySdt +
Ya{Yan{A0SY +Ycc{CoF} +2Y,c0uA,0SCoF}dt

where y is the contribution rate as a fraction of salary S. It is assumed that y is a fixed and
known rate set by the actuary to the fund.

The partial differential equation for V is derived as follows. Express V as a function of asset
values A and C rather than the underlying state variables.
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dV = V,dA + V4C + Vdt +
B{Va{AGSE +Vec[CoF) +2Vao0,A,0SCoFldt

Construct a portfolio of traded assets A, C and B with proportions m of A, n of C and
(1-m-n) of B. The hedge portfolio is required to replicate V and the return on the portfolio
follows the stochastic differential equation

dV = n(dA/A)V + m(@dC/C)V + (1-n-m)rVdt

Select m and n so that

n = V,A/V

m = V.C/V

and equate the two expressions and divide by dt to get the partial differential equation for V
V. + %{V.iu{A08) +Vec{CoF) +2V,00,A,0,SCoF)

=1V-1V,A-1V.C

In this partial differential equation the mean returns on the traded assets A and C do not
appear. The no-arbitrage requirement results in the risk free rate r being substituted for the
mean returns on both the hedge assets.

A numerical technique is required to solve this partial differential equation. The use of these
numerical techniques is discussed in Hull and White (1990). There is an additional
consideration in this problem not normally found in the contingent claims in financial
markets. This is that the benefit Y is function of the history of the state variable S so that the
boundary condition for age at exit s is not a simple function of the then current values of the
state variables.

A more direct alternative approach is to use the contingent claim general arbitrage free
valuation results. The procedure is to transform the drift terms on the replicating asset
dynamics to the risk free rate. These transformed dynamics are used to calculate the expected
value of the benefit E{max{X,Y}] for each age at death and this expected value is present
valued using the market determined risk free spot rate for bonds maturing on the date of the
benefit payment. These spot rates are assumed available from market data on traded bonds
as mentioned earlier. The expected value of these benefit payments with respect to the age
at death random variable is then calculated to obtain the value of the benefit.

It is important to recognise that the drift terms on the replicating assets A and C are set to
the risk free rate and not those on the state variables S and F. The benefit payments are
defined in terms of the state variables and in practice the parameters of these state variables
would be estimated from available data. The transformed parameters for the state variables
are determined from the relationship between the drift terms on the assets A and C and those
for S and F.

In practice the cost of the benefit is expressed as a percentage of the salary. To do this it is
also necessary to calculate the present value of 1% of the salary. Since it is assumed in the
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contingent claims framework that markets are complete this implies that the asset A provides
a complete hedge for salary uncertainty and the future level of salary can be related to the
asset value A. The dynamics of A are used to value a stream of payments of 1% of the
salary S.

Numerical Techniques

The valuation of the benefit in practice will require the use of a numerical technique either
to numerically soive the partial differential equation for the benefit value or to evaluate the
expected value of the benefit using the contingent claims valuation technique. The contingent
claims approach is implemented using a discrete time lattice representation of the underlying
state variables. Some of the standard numerical techniques used to solve the partial
differential equation are equivalent to using the lattice approach.

An important practical consideration is the selection of an efficient computational technique
since values are required for a range of current ages and for each current age a value is
required for each age at death in order to calculate the expected value of the benefit allowing
for decrements. In order to numerically evaluate the benefit vaiue it will be necessary to
calculate the expected value for a set range of ages at death and the usual practice in actuarial
calculations would be to do this for integral ages up to and including the final age for
retirement.

The technique used should satisfy the following requirements:

- rapid convergence to the solution of the differential equation as the discrete time interval
tends to zero,

- values which converge to the unique continuous time complete markets value,

- simple and efficient numerical computation of values.

On these grounds Hull and White (1990) demonstrate that the explicit finite difference
method with a transformation of the state variable process to ensure time and state
independent volatility meets most of these criteria for the single state variable case. The
problem with this method is that the numerical solution does not necessarily converge. They
demonstrate the equivalence of this method to a trinomial lattice approach as well as a
binomial lattice approach. In the two state variable case the transformation suggested is one
which produces constant volatility parameters for both state variables and with the
transformed variables uncorrelated. The resulting lattice has nine branches from each node.

The literature on discrete time approximations for the continuous time dynamics include
Boyle (1990), Boyle, Evnine and Gibbs (1989) and Rajasingham (1990). As discussed in
Rajasingham it is not necessary for the multivariate lattice to complete markets in order to
ensure convergence to the continuous time value. The important consideration should be
efficiency and rapid convergence for practical applications of the technique. For exposition
purposes the complete markets approach is still the most appropriate. It is however an open
question as to which of the many possible lattice structures and associated choices of jumps
and jump probabilities in the multivariate problem have the most rapid convergence.

303



In the complete markets case with two state variables the lattice structure will require three
branches. Hence the lattice for S and F would be as follows:

Values for S,,4,F,.;

(3,5, 8,F) wp.p
/

[S.,FJ - [62-Su aZ!FJ w.p. q

\
(58, 8 &1  w.p. 1-p9

Each of the lattice branches can be written in terms of an increase at the risk free rate plus
a jump. He (1990) uses equal probabilities of 1/3 for each branch and selects the jumps to
have the required means, variances and correlations. This is done by expressing the jumps
as a function of a basis of uncorrelated discrete processes. The basis has the property that
the means are zero, the variances are unity and the processes are uncorrelated i.e they are
orthogonal martingales. In the two state variable case this is represented as

Jump sizes

State Variable

One Two

V(3/2) IV2  wp. 173
0 2V2  wp. 113
+(3/2) 1V2  w.p. 173

This ensures convergence to the continuous time complete markets value. For n time
intervals the number of nodes on the lattice will be (n+2)(n+1)/2.

The Boyle, Evnine and Gibbs (1989) approach does not use the complete markets
representation. Each state variable can go up or down resulting in four branches in the lattice
from each node. They assume the state variables are multivariate log-normally distributed and
select the jumps and probabilities by equating the moment generating functions for the
discrete time and continuous time distributions. The jump sizes are chosen using an extension
of the Cox, Ross and Rubinstein single state variable approach so that the jump size is
exp(+ov'h) for an up jump and exp(-ov’h) for a down jump where h is the interval size. The
probabilities are no longer equal. The lattice is structured so that it recombines at nodes
allowing for more efficient numerical calculations. The number of nodes on the lattice for
n time intervals is (n+1)%.

If the multivariate lognormal distribution assumption is not used then the lattice structure is
constructed by selecting jump parameters determined from the equivalent martingale basis.
For four branches from each node on the lattice the equivalent orthogonal martingale basis
with equal probabilities is as follows.
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Jump sizes

State Variable

One Two

1 1 w.p. 1/4
1 -1 wp. 14
-1 1 w.p. 1/4
-1 -1 w.p. 1/4

As already indicated it is not necessary to use the complete markets lattice for computational
purposes and increasing the number of branches has the potential to reduce the number of
calculations required to obtain a given accuracy since the number of steps for calculation in
the discrete approximation can be reduced. Increasing the number of branches can aid
numerical calculation but the issue of convergence to the complete markets value needs
consideration. This has been handled currently by assuming multivariate lognormal
continuous time distributions for the state variables or by generating jumps with equal
probabilities from an orthogonal martingale basis. The best technique is yet to be determined
and Boyle (1990) indicates this is an area of current research.

In the "greater of” benefits case the lattice will not recombine since the benefit value is
path-dependent. This leads to a very large number of nodes and computational difficulties
unless a coarse grid is used.

Use of Simulati
Simulation was used by Britt (1991) to estimate the value of the greater of benefit. This
technique involves a sampling of the total possible paths for the continuous time multivariate
state variables. Monte Carlo techniques should be used to speed the computation. The
conditions for the use of the simulation technique apply in the greater of benefits case since
it can be assumed that there are no optimal dynamic decisions involved in the pension benefit
payment. Decrement rates can be modelled as state dependent and readily incorporated in the
simulation approach.

Although it is an open question as to whether simulation using Monte Carlo techniques is
likely to be a more efficient calculation method for the benefit values than the numerical
techniques based on discrete approximations or lattice models it appears probable that, with
the path-dependency of this valuation problem, this will be the case. One approach would be
to implement a modified version of the option on the maximum formula suggested by Britt
(1990) as an estimate of the required expected value and to use the control variate technique
suggested by Boyle (1977).

It is interesting to note that the simulation technique has not been discussed much in the
multivariate contingent claims literature. It is a technique which is used in practice in the
valuation of mortgage backed securities where prepayment rates are modelled as state
dependent.
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Conclusion

This paper discusses the conceptual issues in applying arbitrage free contingent claims
valuation techniques to the valuation of “greater of™ benefits in pension funds. It suggests a
technique for incorporating decrements that is related to the stochastic approach to life
contingencies found in actuarial texts. This allowance for decrements is based on the
assumption that the decrements are independent of the state variables. Decrements can be
directly incorporated into the partial differential equation for the benefit value and can be
allowed to be state dependent. The assumption that these benefits are redundant claims whose
value depends on state variables which are priced in traded asset markets allows an arbitrage
free valuation approach. In practice this is not likely to be the case and a market price of risk
for the state variables will need to be incorporated and estimated.

Path-dependency is a feature of the benefit value since the accumulation of contributions as
a percentage of salary at the fund earning rate will result in the value being a function of the
path of the salary state varable. This results in computational advantages in using a
simulation approach to solve the partial differential equation for the benefit value. Numerical
techniques which use finite differences or lattices can not take advantage of the more efficient

techniques usually used to implement them in practice because of this path-dependency.

Efficient computation of these values is a significant practical issue since the number of
calculations in valuing these benefits for fund members is equivalent to that required in the
evaluation of a very large number of options. The factors involved in determining the most
efficient computational technique have been discussed. This remains an issue for further
research.
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Appendix Ope

For the Cox, Ingersoll and Ross model, the spot rate r is assumed to follow the partial
differential equation

dr = ki - n)dt + ov'rdZ

where Z is a standardised Weiner process and the vaniance of the spot rate is proportional
to the level of interest rates. The condition 2ku/¢® = 1 is required to ensure non-negative
interest rates. r has a conditional non-ceatral chi-squared distribution.

Application of Ito's lemma gives

dV = (V, + k(u-n)V, + %{or}V )dt + VTV AZ

and in general the values of paymeats dependeat on the short interest rate r are (locally)
perfectly correlated and their dynamics can be written as

dV = u(r,hVdt + o, VdZ

For there to be no arbitrage the instantaneous expected returns on payments at different dates
will take the form

#(r,Y =1 + m(r,t) x ofr,t)

where r is the instantaneous risk free rate and m(r,t) is the risk premium factor which is the
instantaneous market price of interest rate risk.

Cox, Ingersoll and Ross assume that m(r,t)=mv'r/o and of(r,) =0V'rV,/V so that
IV + mrV, = (V, + k(u-n)V, + L{cx}V,)
which is a partial differential equation for the value of any payment whose value depends
only on the instantancous interest rate r and t. With boundary condition V(r,s) =D this partial
differential equation has a closed form solution given by
V(r,s) = D.A(s).exp{-B(s)1}
where A(s) = [{2,exp(&:9)}/{®,(exp(,5)-1) + $,]]®
B(s) = [{exp(®:5)-1}/{$,(exp(®:5)-1) + ¢.}]
@ =[k+mP +2641* S, =[k+m+ &]2 & = ko’
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