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ABSTRACT

The problem of estimation of a tabular survival model from complete
samples is considered from a Bayesian approach. If a life test
involves a large cohort group, then data is typically given as a
grouped data set. The survival function S(t) is usually estimated
by the moment estimator. We approximate the Jjoint prior
distribution of the unknown unconditional failure probabilities by
a Dirichlet distribution, and then use a linear relationship
between S(t) and the conditional survival probabilities to obtain
a Bayes estimator of S(t).

INTRODUCTION

There are two basic study designs used in a clinical trial or
by the actuary in a life insurance situation (london, 1988):

I: COMPLEIE SAMPLE

A study unit of size n comes under observation at a well-
defined time t=0, and are observed over time until all have died.

II: CENSORED OR INCOMPLETE SAMPLE

A sampling unit is allowed to come under observation at time
t>0, and not all units will die at the end of the study.

One of the goals of the clinical trial is to estimate the survival
function

S(t) = P(a sampling unit survives till time t).
Maximum likelihood estimator of S(t) is given in London(1988).

In this paper, we consider Bayesian estimation of S(t) from a
grouped (tabular) complete sample in a Bayesian framework.
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NOTATIONS AND STATEMENT OF PROBLENM

Let n be the initial size of the cohort under study. Divide the
time axis [0,«) into an indefinite number of equal intervals:
(0,1, (2,2), ..., (&,t+1],...,(k~1,k] such that each observed time
to death falls in one of k intervals (where k is a sufficiently
large positive integer).

Let

d, = # of deaths in the (t+l)st interval [t,t+l), 0<t<k-l

ny = # of survivors at time t

Then
k=1
n=Yd
~d
and

®,, =& ~-d, 01 k-1

The joint pdf of the random variables d,, t=0,1,...,k-1 is:

&1
fdodyr by )1858,8, ) = ‘[:l—ga: (1)
ad,

(]

where

®, = P(death between time t and t+l)

P(death between time t and t+llunit alive at t) P(unit alive at
time t)

= qu S(t), t=0,1,...,k~1 (2)

In Bayesian framework, the vector (6,6,..8,,) itself is random with
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prior distribution g(8,8,..0,,) . We assume that the prior joint pas

of (8,0,...6,,) is the natural conjugate

Dirichlet distribution D(z,a,..z,,)

&-1
I'(E “1)3.1 -1
8(8,8,,.48,.) = —T——108,,3 8,=0 (3)

A-1 ~

HIXG,)M
g

The following results are needed:

(1) The first two moments of the Dirichlet distribution are
(Johnson, 1979):

'l
E8) = — , (4)
&
Var®) = 2dmya) , (s)
¢°3(ao¢l)
and
Cow®,0) = sy (6)
aoz(aoal)
where
el
A= E «,
~0
(2) The posterior jpdf of (8,6,...8,,) given (d;,d;,...,dj ,3is easily

shown to be also Dirichlet:
Dayedya ~d,....a, \+d, ) -

We will now use the above results to obtain:
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(i) exact Bayes estimates of the survival function S(t),

and
(ii) adaptive Bayes estimates of qy.

We will assume the following loss function:

k-1
Led) = gte,-é.)’ . (7)

It follows from (1) and (2) above and a result in Lehmann (1983)
that the Bayes estimate of 6, is

- a,d,
8, = EO,|d,..d) = v (8}
with posterior risk

(a,+dYA+n-a ,-d)

Var(d =
a{ J'JV‘Jt-I) (A’ﬂ)z“*l"l)

(9)

BAYES ESTIMATE OF S8(t)

We know that
-1
S = Wp, (10)
=0

where
p,=1-4q = conditional survival probability.

The above relationship can be used to obtain a plug-in estimate of
S(t) using estimates of p,. It is easy to see, howéver, that the
estimate of S5(t) obtained by plugging in Bayes estimate of py, is
not a Bayes estimate

We use the following relationship
8, = S(nq, = SGXi-p) = S@®-S(1+1) (11)

to obtain a Bayes estimate of S(t), as follows:
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8, = S(O)-S(1) = S(1) = S(0)-8, = 1-8,

and therefore

S(1) = EISQ) |dy-.dy.,) = El1-8yidy..d, ] = 1-B,

52) = 8,~S(1) = SQ@) = E0,~S(D|dy--dy. ) = 8,-5,(1)

8, = SEk-1)-S(k) = SGk-1)= S tk-1) = 8, ,,

ADAPTIVE BAYES ESTIMATE OF qy

Since 8, - S(q, , an adaptive Bayes estimate of q, is:

== -
S(n

Adaptive Bayes estimates of other parameters or functions of
interest can be similarly obtained.

EXANPLES

We will now present a few examples of our method for the purpose of
illustration of our procedure.

EXAMPLE 1:

Following Monte Carlo simulation experiment was used to generate
data sets for some of these examples:

INPUT REQUIRED: n, K, Gp,...,ajy. 2

STEP 1: Generate (0,,...86; ,) from the Dirichlet distribution
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D(a,...&, ;) given by (3) using the following result:

If Xy, X3,.--, X1, Are independent Gamma rv's with shape parameters
@y, @gpeer, @1 ,2 ,respectively, and common scale parameter 1, then

(Yl' Yz, “sey Yl_z)is D(l,ll.....l..l) .

The IMSL subroutine RNGAM was used to generate an independent Gamma

random vector (8,6,.6,) .

STEP 2: Generate (d;,d3,...,d) asfirom the conditional multinomial
distribution M(r8,6,,..8, ) .

The IMSL subroutine RNMTN was used for this step.

In this example, X = S5, n = 20, and the joint pdf of
(81,...81) is taken to be a Dirichlet distribution with parameters
(1,1,...,1).

The value of (8,,...8¢), generatad from this Dirichlet pdf, is
(0.4455, 0.0154, 0.4516, 0.0398, 0.0477).

The value of the random vector (X2,...,Xg) generated from the
conditional jpdf (1) is

(10,1,7,2,0).

The results of our caleculations are shown in Table 1.

EXAMPLE 2: In this example (London, 1988) a sample of 20
:.m:li\_nduals exist at time t=0, and all fail within S weeks, with 2
failing in the first week, 3 in the second, 8 in the third, € in
the fourth, and 1 in the last wveek:

dy= 2, d= 3, d3= 8, dg= 6, dg= 1.

We will assume a Dirichlet(1,1,1,1,1) prior.

The MLE and Bayes estimates of 6 and 5(t) are given in Table 2:
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TABLE 1: Bayes estimate of (ql,...ﬂs) and 8(t) for Example 1

TRUE
0
8(t)

given by
(11)

0.4455

0.5545

0.0154

0.5391

0.4516

0.0875

0.0398

0.0477

0.0477

0

8(t)

BAYES
ESTI-
MATES

8(t)

Table 2: MLE and Bayes estimates of 6 and 8(t) for

Example 2

MLE
(from
London,
1988)

8(t)

BAYES
ESTI-
MATES

8(t)
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