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ABSTRACT 

The problem of estimation of a tabular survival model from complete 
samples ks considered from a Bayesian approach. If a life test 
involves a large cohort group, then data is typically given as a 
grouped data set. The survival function S(t) is usually estimated 
by the moment estimator. We approximate the joint prior 
distribution of the unknown unconditional failure probabilities by 
a Dirichlet distribution, and then use a linear relationship 
between S(t) and the conditional survival probabilities to obtain 
a Bayes estimator of S(t). 

Z21'T~DDOCTZOJ 

There are two basic study designs used in a clinical trial or 
by the actuary in a life insurance situation (london, 1988): 

I: COMPLETE SAMPLE 

A study unit of size n comes under observation at a well- 
defined time t=O, and are observed over time until all have died. 

II: CENSORED OR INCOMPLETE SAMI~E 

A sampling unit is allowed to come under observation at time 
t>0, and not all units will die at the end of the study. 

One of the goals of the clinical trial is to estimate the survival 
function 

S(t) - P(a sampling unit survives till time t). 

Maximum likelihood estimator of S(t) is given in London(1988). 
In this paper, we consider Bayesian estimation of S(t) from a 
grouped (tabular) complete sample in a Bayesian framework. 
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NOTATIONB AND 8TATEMZRT OF PROBLEM 

Let n be the initial size o£ the cohort Under study. Divide the 
time axis [0,m) into an indefinite number of equal intervals: 
(0,i], (1,2] ..... (t,t+l] ..... (k-l,k] such that each observed time 
to death falls in one of k intervals (where k is a sufficiently 
large positive integer). 

Let 

d u = # of deaths in the (t+l)st interval [t,t+l), OSt~k-i 

n u = # of survivors at time t 

Then 

~L 

and 

m,.~ - a, - d r t-O,l...Jc-l. 

The joint pdf of the random variables du, t=0,1, .... k-1 is: 

nl k-i ~a,.~.,le~%...,%.,). --ue,i_, 

f~ 

(Z) 

where 

0, = P(death between time t and t+l) 

= P(death between time t and t+llunit alive at t) P(unit alive at 
time t) 

= quS(t), t=0,1 ..... k-1 (2) 

and 

k-1 

~6,- I 
t~ 

In Bayesian framework, the vector (8~O,...,Sk.L) itself is random with 
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prior distribution ~8~ep....O~.l) . We assume that the prior joint pdf 

of (0e0n,~01_ n) is the natural conjugate 

Dirichlet distribution ~a+%,....%_,) 

ue,, ~e,. 0 (3) ~ea, e,..~%.~ ,_, ,-o ,-o 
-~) 

The following results are needed: 

(i) T h e  first two moments of the Dirichlet distribution are 
(Johnson, 1979) : 

a I Bce~ • -- , (4) 
a@ 

v~+). - -  , ( 5 ) 
%~=0"*) 

e n d  

" ~  (6) 

where 

I-I 

~0 

(2) The posterior jpdf of (e~0,....,8+.l) given (dl,d2,...,dl.2$s easily 

shown to be also Dirichlet: 

JXo.o -4,. , ,  t -d,+ ,,, , . ,  -,+,.+) . 

We will now use the above results to obtain: 

337 



(i) exact Bayes estimates of the survival function S(t), 

and 

(ii) adaptive Bayes estimates of qu" 

We will assume the following loss function: 

k-t 
ue.~) - ~ (e,-~) 2 • 

It follows from (1) and (2) 

that the Bayes estimate of 

(7) 

above and a result in Lehmann (1983) 

0, is 

6. - z(e,I~ m) = a,.~, (8) 
A÷R 

with posterior risk 

v~, W~J..,) - (''+~ ""-" ,-a) ( 9 ) 

B~I&Y]ZS E 8 T ~ I ~ T 2  OF S ( t )  

We k21ow that 

r-| 

s(0 - Hp, (10) 
a-0 

where 

p,- I - q, : conditional survival probability. 

The above relationship can be used to obtain a plug-in estimate of 
S(t) using estimates of Pu. It is easy to see, however, that the 
estimate of S(t) obtained by plugging in Bayes estimate of Pu is 
not a Bayes estimate 

We use the following relationship 

O, : S(,)q, : s(:Xl-p) : $(:)-S(z.D (11) 

to obtain a Bayes estimate of S(t), as follows: 
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e o - s ( o ) - $ ( D  - S ( I ) .  s ( o ) - e  o . l - e  o 

and therefore 

~I) - ~S(1)14r.~,.,] - . E I l - e o l ~ . . - ~ , _ , ]  - I-~ 

~ D Q 

g B Q 

KDAI~g~ BJ&~IES ESTZMIkTB OF qu 

Since 0,- ~q, , an adaptive Bayes estimate of qu is: 

~t 
~ -T--- ° 

Adaptive Bayes estimates of other parameters or functions of 
interest can be similarly obtained. 

EXAMPLES 

We will now present a few examples of our method for the purpose of 
illustration of our procedure. 

EXAMPLE 1 : 

Following Monte Carlo simulation experiment was used to generate 
data sets for some of these examples: 

INPUT REQUIRED: n, k, ~!,...,al.2 

STEP i: Generate (81,...,81.2) from the Dirichlet distribution 
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~a~..=,_~) given by (3) using the following result: 

If X 1, X2,..., Xi.2are independent Gamma rv's with shape parameters 
~1, =2, .... ~l.2,respectively, and common scale parameter i, then 

(Y1, Y2 ..... YI.2) is D(a~r---."i-l) - 

The IMSL subroutine RNGAMwaS used to generate an independent Gains 

random vector (e~8~..Si.s) . 

STEP 2: Generate (dl,d2,...,dl.1~rom the conditional multinomial 

distribution M(~e~e~.....si_ ~) . 

The TMRL subroutine RNMTN was used for this step. 

In this example, k = S, n = 20, and the joint pd! of 
(81,... hi) is taken to be a Dirichlet distribution with parameters 
(I,I,...,I|. 

The value of (81,... ~6), generated from this Dirichlet pdf, is 

(0.4455, 0.0154, 0.4516, 0.0391, 0.0477). 

The value of the random vector (x2,...,x 6} generated from the 
conditional jpdf (I) is 

(10,1,7,2,0). 

The results of our calculations are shown in Table I. 

EXAMPLE 2: In this example (London, 1988) a sample of 20 
individuals exist at time t=0, and all fail within 5 weeks, with 2 
failing in the first week, 3 in the second, 8 in the third, 6 in 
the fourth, and 1 in the last week: 

dl= 2, d2= 3, d3= a, d4 = 6, d$= I. 

We will assume a Dirichlet(l,l,l,l,l) prior. 

The MLE and Bayes estimates of 8 and S(t) are given in Table 2: 
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T U L E  1 :  Bayes  e s t : l J a t e  o f  ( 8 ~ , .  

~ O Z  

0 

S ( t )  
g i v e n  b y  
(21) 

v l r :  

e 

8 ( t )  

BIY'Ef l  
ESTZ-  
I ~ T E 8  

8 ( t )  

0 . 4 4 5 5  

0 . 5 5 4 5  

O . S  

O . S  

0 . 4 4  

O.SI;  

0 . 0 1 5 4  

0 . 5 3 9 1  

0 . 0 S  

0 . 4 5  

0 . 0 8  

0 . 4 8  

. ~ f )  a n d  s ( t )  

0 . 4 5 1 6  

0 . 0 8 7 5  

0 . 3 S  

0 . 1 0  

f o r  E x m n p l e  i 

0 . 0 3 9 8  

0 . 0 4 7 7  

0 . 1 0  

0 

0 . 3 2  

0 . 1 6  

0 . 1 2  

0 . 0 4  

0 . 0 4 7 7  

0 

0 . 0 4  

0 

T ¢ b l e  2 :  ~ a n d  B a y e s  e s t i m a t e s  o f  0 and  8 ( t )  C o t  E z a a p l e  2 

( f = o m  ! 
£K)DdOn, 
1988 )  

8 ( t )  

B~YE8 
ESTZ-  
Y~TE8 

8 ( t )  

0 . 1  

0 . 9  

0 . 1 2  

0 . 8 8  

0 . 1 5  

0 . 7 5  

0 . 1 6  

0 . ? 2  

0 . 4  

0 . 3 5  

0 . 3 6  

0 . 3 6  

0 . 3  

0 . 0 5  

0 . 2 8  

0 . 0 8  

0 . 0 5  

0 

0 . 0 8  

0 
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