ACTUARIAL RESEARCH CLEARING HOUSE

 1993 VOL. 1
BAYEBIAM EBTIMATION OF TABULAR SURVIVAL HODELS FROM COXELETE BNMPLEB

A.K.Singh, M.A.Ananda, R.Dalpatadu

Departmment of Mathematics
University of Nevada, Las Vegas

Abstract

RBsyRncy The problem of estimation of a tabular survival model from complete samples is considered from a Bayesian approach. If a life test involves a large cohort group, then data is typically given as a grouped data set. The survival function $S(t)$ is usually estimated by the moment estimator. We approximate the joint prior distribution of the unknown unconditional failure probabilities by a Dirichlet distribution, and then use a linear relationship between $S(t)$ and the conditional survival probabilities to obtain a Bayes estimator of $S(t)$.

IHMPODOCTIO:

There are two basic study designs used in a clinical trial or by the actuary in a life insurance situation (london, 1988):

I: COMPLETE SAMPTE

A study unit of size n comes under observation at a welldefined time $t=0$, and are observed over time until all have died.

II: CEENSORED OR INCOMPLETE SAMPLE
A sampling unit is allowed to come under observation at time $t>0$, and not all units will die at the end of the study.

One of the goals of the clinical trial is to estimate the survival function
$S(t)=P(a$ sampling unit survives till time $t)$.
Maximum likelihood estimator of $S(t)$ is given in London(1988).
In this paper, we consider Bayesian estimation of $S(t)$ from a grouped (tabular) complete sample in a Bayesian framework.

HOTATIONB NND BTATEHENT OF PROBLEM

Let n be the initial size of the cohort under study. Divide the time axis $[0, \infty)$ into an indefinite number of equal intervals: $(0,1],(1,2), \ldots,(t, t+1), \ldots,(k-1, k)$ such that each observed time to death falls in one of k intervals (where k is a sufficiently large positive integer).

Let
$d_{u}=$ \# of deaths in the $(t+1) s t$ interval $(t, t+1), 0 \leq t \leq k-1$
$\mathbf{n}_{\mathbf{u}}=$ \# of survivors at time t
Then
$n=\sum_{n=0}^{n-1} d_{t}$
and

$$
\pi_{r, 1}=n_{I}=d_{r} r=0,1, \ldots k-1 .
$$

The joint pdf of the random variables $d_{u}, t=0,1, \ldots, k-1$ is:
where

```
0, = P(death between time t and t+1)
    = P(death between time t and t+1; unit alive at t) P(unit alive at
            time t)
    = quq}S(t),t=0,1,\ldots,k-
and
\(\sum_{t=0}^{t-1} \theta_{i}=1\).

In Bayesian framework, the vector \(\left(\theta_{0}, \theta_{1}, \ldots, \theta_{t-1}\right)\) itself is random with
prior distribution \(s\left(\theta_{0} \theta_{1}, \ldots, \theta_{1-1}\right)\). We assume that the prior joint pdf of \(\left(\theta_{\theta} \theta_{1}, \ldots \theta_{-1}\right)\) is the natural conjugate

Dirichlet distribution \(D\left(\mu_{0} \alpha_{1}, \ldots, \varepsilon_{k-1}\right)\)

The following results are needed:
(1) The first two moments of the Dirichlet distribution are (Johnson, 1979):
\[
\begin{equation*}
E\left(\theta_{1}\right)=\frac{a_{1}}{e_{0}}, \tag{4}
\end{equation*}
\]
\(\operatorname{Var}\left(\theta_{j}\right)=\frac{\varepsilon\left(a_{0}-\varepsilon_{0}\right)}{a_{0}^{2}\left(a_{0}+1\right)}\),
and
\[
\begin{equation*}
\operatorname{Cov}\left(\theta_{i} \theta_{j}\right)=-\frac{\varepsilon_{\mu} \alpha_{j}}{\alpha_{0}^{2}\left(\alpha_{0}-1\right)} \tag{6}
\end{equation*}
\]
where
\[
A=\sum_{n=0}^{n-1} a_{t} .
\]
(2) The posterior jpdf of \(\left(\theta_{0}, \theta_{1}, \ldots, \theta_{t-1}\right)\) given \(\left(d_{1}, d_{2}, \ldots, d_{1}, 2^{\dagger s}\right.\) easily shown to be also Dirichlet:
\[
D\left(a_{0}+d_{0} a_{1}-d_{1}, \ldots, a_{k-1}+d_{k-1}\right) .
\]

We will now use the above results to obtain:
(i) exact Bayes estimates of the survival function \(S(t)\), and
(ii) adaptive Bayes estimates of \(q_{u}\).

We will assume the following loss function:
\[
\begin{equation*}
L(\theta, \theta)=\sum_{n=0}^{k-1}(\theta,-\theta)^{2} \tag{7}
\end{equation*}
\]

It follows from (1) and (2) above and a result in Lehmann (1983) that the Bayes estimate of 0 , is
\[
\begin{equation*}
\hat{\theta}_{t}=E\left(\theta_{1} \mid d_{0} \ldots d\right)=\frac{a_{1}+d_{1}}{A+n} \tag{8}
\end{equation*}
\]
with posterior risk
\[
\begin{equation*}
\operatorname{Var}\left(\theta_{1} \mid \alpha_{2}-d_{k-1}\right)=\frac{\left(\varepsilon_{1}+d\right)\left(A+n-a_{1}-d_{2}\right)}{(A+n)^{2}(A+n+1)} . \tag{9}
\end{equation*}
\]

\section*{BAYES E8TIMATE OF \(\mathrm{S}(\mathrm{t})\)}

We know that
\[
\begin{equation*}
S(i)=\prod_{t-\infty}^{r-1} p_{i} \tag{10}
\end{equation*}
\]
where
\[
p_{1}=1-q_{1}=\text { conditional survival probability. }
\]

The above relationship can be used to obtain a plug-in estimate of \(S(t)\) using estimates of \(p_{u}\). It is easy to see, however, that the estimate of \(S(t)\) obtained by plugging in Bayes estimate of pu is not a Bayes estimate

We use the following relationship
\[
\begin{equation*}
\theta_{f}=S(t) Q_{t}=S(t)\left(1-p_{p}\right)=S(t)-S(t+1) \tag{11}
\end{equation*}
\]
to obtain a Bayes estimate of \(S(t)\), as follows:
\[
\begin{aligned}
& \theta_{0}=S(0)-S(1)-S(1)=S(0)-\theta_{0}=1-\theta_{0} \\
& \text { and therefore }
\end{aligned}
\]
\[
\begin{aligned}
& \dot{S}(1)=E\left[S(1) \mid \alpha_{0}-d_{k-1}\right]=\sum\left(1-\theta_{0} \mid \alpha_{0}-\alpha_{k-1}\right]=1-\hat{\theta}_{\alpha} \\
& S(2)=\theta_{1}-S(1)-\dot{S}(2)=E\left[\theta_{1}-S(1) \mid \alpha_{0}-\alpha_{k-1}\right)=\dot{\theta}_{1}-\dot{S}_{2}(1)
\end{aligned}
\]
\[
\begin{aligned}
& \text {.. } \\
& -\cdots
\end{aligned}
\]
\[
\theta_{k-1}=S(k-1)-S(k)=S(k-1)-\dot{S}_{\Omega}(k-1)=\dot{\theta}_{Q-i m}
\]

\section*{adAptive gayes ebtimate of qu}

Since \(\quad \theta_{1}=S()_{q}\), , an adaptive Bayes estimate of \(q_{u}\) is:
\[
\dot{q}_{1}=\frac{\theta_{i}}{\hat{S(r)}} .
\]

Adaptive Bayes estimates of other parameters or functions of interest can be similarly obtained.

\section*{eramples}

We will now present a few examples of our method for the purpose of illustration of our procedure.

EXAMPLE 1:
Following Monte Carlo simulation experiment was used to generate data sets for some of these examples:

INPUT REQUIRED: \(n, k, \alpha_{1}, \ldots, \alpha_{1.2}\)
\(\operatorname{STEP}\) 1: Generate \(\left(\theta_{1}, \ldots, \theta_{1.2}\right)\) from the Dirichiet distribution
\(D\left(\alpha_{0} \ldots \alpha_{k-1}\right)\) given by (3) using the following result:

If \(X_{1}, X_{2}, \ldots, X_{1}, 2^{\text {are }}\) independent Gamma ry's with shape parameters \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{1,2}\), respectively, and common scale parameter 1 , then
\[
\left(Y_{1}, Y_{2}, \ldots, Y_{1,2}\right) \text { is } D\left(\alpha_{0} \alpha_{1}, \ldots, \alpha_{k-1}\right)
\]

The IMBL subroutine RNGNM was used to generate an independent Gamma random vector \(\left(\theta_{0} \theta_{1} \ldots, \theta_{\mathrm{E}-1}\right)\).
sTEP 2: Generate \(\left(d_{1}, d_{2}, \ldots, d_{1}, 2 H r o m\right.\) the conditional multinomial distribution \(M\left(n_{1} \theta_{0}, \theta_{1}, \ldots, \theta_{k-1}\right)\).

The IMsL subroutine RNMTN was used for this step.

In this example, \(k=5, m=20\), and the joint pdf of \(\left(\theta_{1}, \ldots \theta_{1}\right)\) is taken to be a Dirichlet distribution with parameters \((1,1, \ldots, 1)\).

The value of \(\left(\theta_{1}, \ldots, \theta_{6}\right)\), generated from this Dirichlet pdf, ig
\((0.4455,0.0154,0.4516,0.0398,0.0477)\).
The value of the random vector ( \(x_{2}, \ldots, x_{6}\) ) generated from the conditional jpdf (1) is
\((10,1,7,2,0)\).
The results of our calculations are shown in Table 1.

EXAMPLE 2: In this example (London, 1988) a sample of 20 individuals exist at time \(t=0\), and all fail within 5 weeks, with 2 failing in the first weak, 3 in the second, \(s\) in the third, 6 in the fourth, and 1 in the last week:
\(d_{1}=2, d_{2}=3, d_{3}=8, d_{4}=6, d_{5}=1\).
円e will assume a Dirichlet(1,1,1,1,1) prior.
The MLE and Bayes estimates of \(\theta\) and \(S(t)\) are given in rable 2 :

TMBLs 1: Bayes estinate of \(\left(\theta_{1} \ldots \theta_{6}\right)\) and \(8(t)\) for Example 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
TRUE \\
\(\theta\) \\
\(8(t)\) \\
given by \\
(11)
\end{tabular} & \[
\begin{aligned}
& 0.4455 \\
& 0.5545
\end{aligned}
\] & \[
\begin{aligned}
& 0.0154 \\
& 0.5391
\end{aligned}
\] & \[
\begin{aligned}
& 0.4516 \\
& 0.0875
\end{aligned}
\] & \[
\begin{aligned}
& 0.0398 \\
& 0.0477
\end{aligned}
\] & \[
\begin{aligned}
& 0.0477 \\
& 0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MLE \\
\(\theta\) \\
8 ( \(t\) )
\end{tabular} & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.10
\end{aligned}
\] & \[
\begin{aligned}
& 0.10 \\
& 0
\end{aligned}
\] & 0 \\
\hline \begin{tabular}{l}
Bayes ESTI- \\
gates \\
\(\theta\) \\
\(8(t)\)
\end{tabular} & \[
\begin{aligned}
& 0.44 \\
& 0.56
\end{aligned}
\] & \[
\begin{aligned}
& 0.08 \\
& 0.48
\end{aligned}
\] & \[
\begin{aligned}
& 0.32 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.12 \\
& 0.04
\end{aligned}
\] & \[
\begin{aligned}
& 0.04 \\
& 0 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2: MLE and Beyes estimates of \(\theta\) and \(8(t)\) for Example 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MIE \\
(Eron London, 1988) \\
\(\theta\) \\
8(t)
\end{tabular} & \[
\begin{aligned}
& 0.1 \\
& 0.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.15 \\
& 0.75
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 0.35
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.05
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
BAYE8 \\
ESTI- \\
MATES \\
\(\theta\) \\
g(t)
\end{tabular} & \[
\begin{aligned}
& 0.12 \\
& 0.88
\end{aligned}
\] & \[
\begin{aligned}
& 0.16 \\
& 0.72
\end{aligned}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.36
\end{aligned}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.08
\end{aligned}
\] & \[
\begin{aligned}
& 0.08 \\
& 0
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{REFERERCES:}

Dick London (1988). Survival Models and Their Estimation, ACTEX Publications, Winsted and New Britain, Connecticut, Pp. 77-94.
N.L. Johnson (1979). Distributions in Statistics: Continuous Multivariate Distributions, John Wiley, New York, p. 233.
E.J. Lehmann (1983). Theory of Point Estimation, John Wiley, New rork, p. 293.```

