ACTUARIAL RESEARCH CLEARING HOUSE 1993 VOL. 1

BAYESIAN ESTIMATION OF TABULAR SURVIVAL MODELS FROM COMPLETE SAMPLES

A.K.Singh, M.A.Ananda, R.Dalpatadu

Departmment of Mathematics University of Nevada, Las Vegas

ABSTRACT

The problem of estimation of a tabular survival model from complete samples is considered from a Bayesian approach. If a life test involves a large cohort group, then data is typically given as a grouped data set. The survival function S(t) is usually estimated by the moment estimator. We approximate the joint prior distribution of the unknown unconditional failure probabilities by a Dirichlet distribution, and then use a linear relationship between S(t) and the conditional survival probabilities to obtain a Bayes estimator of S(t).

INTRODUCTION

There are two basic study designs used in a clinical trial or by the actuary in a life insurance situation (london, 1988):

I: COMPLETE SAMPLE

A study unit of size n comes under observation at a welldefined time t=0, and are observed over time until all have died.

II: CENSORED OR INCOMPLETE SAMPLE

A sampling unit is allowed to come under observation at time t>0, and not all units will die at the end of the study.

One of the goals of the clinical trial is to estimate the survival function

S(t) = P(a sampling unit survives till time t).

Maximum likelihood estimator of S(t) is given in London(1988). In this paper, we consider Bayesian estimation of S(t) from a grouped (tabular) complete sample in a Bayesian framework.

335

NOTATIONS AND STATEMENT OF PROBLEM

Let n be the initial size of the cohort under study. Divide the time axis $[0,\infty)$ into an indefinite number of equal intervals: $(0,1], (1,2], \ldots, (t,t+1], \ldots, (k-1,k]$ such that each observed time to death falls in one of k intervals (where k is a sufficiently large positive integer).

Let

 $d_u = #$ of deaths in the (t+1)st interval [t,t+1), $0 \le t \le k-1$ $n_u = #$ of survivors at time t Then

F.1

$$n = \sum_{r=0}^{n-1} d_r$$

and

$$R_{t+1} = R_t - d_p t = 0, 1, \dots, k-1.$$

The joint pdf of the random variables d_u , t=0,1,...,k-1 is:

$$f(d_0,d_1,\dots,d_{k-1}|\theta_0,\theta_1,\dots,\theta_{k-1}) = \frac{n!}{\sum_{i=1}^{k-1} \prod_{i=0}^{k-1} \theta_i} \prod_{i=0}^{k-1} \theta_i$$
(1)

where

- θ , = P(death between time t and t+1)
- = P(death between time t and t+1!unit alive at t) P(unit alive at time t)

$$= q_u S(t), t=0,1,\ldots,k-1$$
 (2)

and

 $\sum_{r=0}^{k-1} \theta_r = 1 \quad .$

In Bayesian framework, the vector $(\theta_{p}, \theta_{1}, \dots, \theta_{k-1})$ itself is random with

prior distribution $g(\theta_{p}, \theta_{1}, ..., \theta_{k-1})$. We assume that the prior joint pdf of $(\theta_{p}, \theta_{1}, ..., \theta_{k-1})$ is the natural conjugate

Dirichlet distribution $D(\alpha_0, \alpha_1, ..., \alpha_{k-1})$

$$g(\theta_{0},\theta_{1},\dots,\theta_{k-1}) = \frac{\prod_{r=0}^{k-1} \alpha_{r}}{\prod_{r=0}^{k-1} \prod_{r=0}^{k-1} \theta_{r}}, \sum_{r=0}^{k-1} \theta_{r} = 0$$
(3)

The following results are needed:

(1) The first two moments of the Dirichlet distribution are (Johnson, 1979):

$$E(\theta_{i}) = \frac{\alpha_{i}}{\alpha_{0}} , \qquad (4)$$

$$Var(\theta_{i}) = \frac{\epsilon_{i}(\alpha_{0}-\alpha_{i})}{\alpha_{0}^{2}(\alpha_{0}+1)} , \qquad (5)$$

and

$$Cov(\theta_{p}\theta_{j}) = -\frac{\alpha_{j}\alpha_{j}}{\alpha_{0}^{2}(\alpha_{0}+1)}$$
(6)

where

$$A = \sum_{r=0}^{k-1} \alpha_r .$$

(2) The posterior jpdf of $(\theta_{\theta}, \theta_1, ..., \theta_{k-1})$ given $(d_1, d_2, ..., d_{1,2})$ easily shown to be also Dirichlet:

 $D(a_0 + d_0 + a_1 + d_1 + \dots + a_{k-1} + d_{k-1})$.

We will now use the above results to obtain:

(i) exact Bayes estimates of the survival function S(t), and

(ii) adaptive Bayes estimates of qu.

We will assume the following loss function:

$$L(\hat{\boldsymbol{\theta}},\hat{\boldsymbol{\theta}}) = \sum_{r=0}^{k-1} (\hat{\boldsymbol{\theta}}_r - \hat{\boldsymbol{\theta}}_r)^2 \quad . \tag{7}$$

It follows from (1) and (2) above and a result in Lehmann (1983) that the Bayes estimate of θ , is

$$\hat{\theta}_{ab} = \mathcal{E}(\theta_{i}|d_{0},...,d_{i}) = \frac{\alpha_{i} + d_{i}}{A + n}$$
(8)

with posterior risk

$$Var(\hat{\theta}_{i}|d_{m}-d_{k-1}) = \frac{(a_{i}+d_{i}(A+n-a_{i}-d_{i})}{(A+n)^{2}(A+n+1)} .$$
(9)

BAYES ESTIMATE OF S(t)

We know that

$$S(t) = \prod_{i=0}^{t-1} p_i$$
 (10)

where

 $p_i = 1 - q_i$ = conditional survival probability.

The above relationship can be used to obtain a plug-in estimate of S(t) using estimates of p_u . It is easy to see, however, that the estimate of S(t) obtained by plugging in Bayes estimate of p_u is not a Bayes estimate

We use the following relationship

$$\Theta_{t} = S(t)q_{t} = S(t)(1-p_{t}) = S(t)-S(t+1)$$
(11)

to obtain a Bayes estimate of S(t), as follows:

 $\theta_0 = S(0) - S(1) - S(1) = S(0) - \theta_0 = 1 - \theta_0$

and therefore

 $\hat{S}(1) = E[S(1)|d_0,...,d_{k-1}] = E[1-\theta_0|d_0,...,d_{k-1}] = 1-\hat{\theta}_{0,0}$

 $S(2) = \theta_1 - S(1) - \hat{S}(2) = E[\theta_1 - S(1)|d_0, \dots, d_{k-1}] = \hat{\theta}_{10} - \hat{S}_0(1)$

•••

 $\theta_{k-1} = S(k-1) - S(k) = S(k-1) = \hat{S}_{g}(k-1) = \hat{\theta}_{(k-1)g}$

ADAPTIVE BAYES ESTIMATE OF qu

Since $\theta_i = S(t)q_i$, an adaptive Bayes estimate of q_{ij} is:

$$\hat{q}_t = \frac{\hat{\theta}_t}{\hat{S}(t)}$$
.

Adaptive Bayes estimates of other parameters or functions of interest can be similarly obtained.

EXAMPLES

We will now present a few examples of our method for the purpose of illustration of our procedure.

EXAMPLE 1:

Following Monte Carlo simulation experiment was used to generate data sets for some of these examples:

INPUT REQUIRED: n, k, $\alpha_1, \ldots, \alpha_{1,2}$

STEP 1: Generate $(\theta_1, \ldots, \theta_{1,2})$ from the Dirichlet distribution

 $D(\alpha_{n},\ldots,\alpha_{k-1})$ given by (3) using the following result:

If $X_1, X_2, \ldots, X_{1,2}$ are independent Gamma rv's with shape parameters $\alpha_1, \alpha_2, \ldots, \alpha_{1,2}$, respectively, and common scale parameter 1, then

 $(Y_1, Y_2, \dots, Y_{1,2})$ is $D(\alpha_0, \alpha_1, \dots, \alpha_{k-1})$.

The IMSL subroutine RNGAM was used to generate an independent Gamma random vector $(\theta_{0}, \theta_{1}, ..., \theta_{k-1})$.

STEP 2: Generate $(d_1, d_2, \dots, d_{1,2}$ from the conditional multinomial distribution $M(\pi, \theta_{n}, \theta_{1,\dots}, \theta_{n-1})$.

The IMSL subroutine RNMTN was used for this step.

In this example, k = 5, n = 20, and the joint pdf of $(\theta_1, \ldots, \theta_1)$ is taken to be a Dirichlet distribution with parameters $(1, 1, \ldots, 1)$.

The value of $(\theta_1, \ldots, \theta_6)$, generated from this Dirichlet pdf, is

(0.4455, 0.0154, 0.4516, 0.0398, 0.0477).

The value of the random vector (x_2, \ldots, x_6) generated from the conditional jpdf (1) is

(10,1,7,2,0).

The results of our calculations are shown in Table 1.

EXAMPLE 2: In this example (London, 1988) a sample of 20 individuals exist at time t=0, and all fail within 5 weeks, with 2 failing in the first week, 3 in the second, 8 in the third, 6 in the fourth, and 1 in the last week:

 $d_1 = 2$, $d_2 = 3$, $d_3 = 8$, $d_4 = 6$, $d_5 = 1$.

We will assume a Dirichlet(1,1,1,1,1) prior.

The MLE and Bayes estimates of θ and S(t) are given in Table 2:

TRUE					
8	0.4455	0.0154	0.4516	0.0398	0.0477
S(t) given by (11)	0.5545	0.5391	0-0875	Q.0477	o
MLE					
0	0.5	0.05	0.35	0.10	0
8(t)	0.5	0.45	0.10	0	0
BAYES Esti- Nates					
θ	0.44	0.08	0.32	0.12	0.04
8(t)	0.56	0.48	0.16	0.04	0

TABLE 1: Bayes estimate of $(\theta_1, \dots, \theta_6)$ and S(t) for Example 1

Table 2: MLE and Bayes estimates of θ and S(t) for Example 2

MLE (from London, 1988) 8 8 5(t)	0.1 0.9	0.15 0.75	0.4 0.35	0.3 0.05	0.05 0
BAYES Esti- Mates					
9	0.12	0.16	0.36	0.28	0.08
8(t)	0.88	0.72	0.36	0.08	0

REFERENCES:

Dick London (1988). Survival Models and Their Estimation, ACTEX Publications, Winsted and New Britain, Connecticut, pp. 77-94.

N.L. Johnson (1979). Distributions in Statistics: Continuous Multivariate Distributions, John Wiley, New York, p. 233.

E.J. Lehmann (1983). Theory of Point Estimation, John Wiley, New York, p. 293.