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1. INTRODUCTION

This paper was prompted by a group insurance problem that came up
in practice. The actuary was asked to price stop loss insurance by employee
for two benefits combined.

Available information included a claims probability distribution for each
benefit and the correlation coefficient between the benefits.

Let X be the aggregate claims on benefit 1 with a proibability distri-
bution Pj(z) for z;,z2,...r,. For beuefit 1 the mean claims are given by
Ej(z) = ZzP;(z) and the standard deviation is 5D (xz).

Let Y be the aggregate claims on benefit 2 with a probability distribution
Py(Y) for y1,y2,...Ym- For benefit 2 the mean claims are given by E;(Y)
and the standard deviation is SDy(y).

Let P(r,y) be the probability that benefit 1 claims amount to X and
benefit 2 claims amount to y. For consistency the following relations must

hold.
Pi(z) = £, P(z,y)

Py(y) = L, P(z,y)

Disgrammatically P(x,y) is a matrix with column totals equal to the vector
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Py(z) and row totals equal to the vector Pay).
For a particular matrix P{r.y) the correlation coeflicient can be com-

puted from

(r,y) = E.(1).Ealy)
SDl(Ii SD.(y)

where E(z,y) = Z,ZyzyP(r,y) and E(x), E2(y), SDi(x),SDa(y) are de-
termined from the individual probability distributions.
Let A(z,y) be a matrix constructed by letting A(z,y) = Pi(z).P(y)-

Checking for consistency
S Az,y) =Y (). Paly) = Pi(x) Y Paly) = Pi(x)
¥y I v
> Alzy) =) Pilx).Paly) = Pay) ) Pi(x) = Pa(y)

Computing the correlation coeflicient we get

E(zy) = }:Zrquy ZZIyPI(I).Pg(y)
=}:rP, Lmy E\(z).Ea(y)

’ . pa = 0
The matrix A is appropriate if benefits 1 and 2 are uncorrelated.

Let B(z,y) be a matrix constructed by letting
B(z,y) = min[Py(z) - Y By).[P2(y) ~ »_ B(z,2)]
i<z <y

See the appendix for a numerical example. As the values of B(z,y) are
concentrated close to the main diagonal pg will tend to be close to 1.

Let C(z,y) be a matrix constructed from C(r,y) = (1 — w). A(z,y) +

wB(z,y)
Ecleyl =YY zyClr.y)
v T

= Z Z .’l‘y[(l - “')-4(Ivy) + ll’B(l’,y)]
y I

= (1 -~ u)Ea(zy) + wEp(xy)

_ Edry] - B\l Ealy]
~ SDy(x )SDz(y)

(1 —w)pa+ wps

i

w.pp
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If pc is to be the desired correlation construct C from A and B with
w = pc/pB-

From the probability matrix C(z,y) the aggregate claims distribution
for the two benefits combined can be determined, and stop loss premiums
computed.

The matrix C is not unique. Other matrices which satisfy the condi-
tions of the problem can be constructed, each leading to a different stop loss
premium. It would be of interest to do sensitivity testing of the premium.

One approach would be to construct matrices in a random fashion. A
random number generator could be used to fill in one row at a time subject

to the constraints on row and column totals. This is yet to be explored.

APPENDIX

Given

Pi(z)=.1,.2,3,4forz=0,123
and

Pyy)=.2,3,3,2fory=0,1,2,3
A(z,y) is given by

0 .02 .04 .06 .08
1 .03 .06 .09 12
2 .03 .06 .09 A2
3 .02 .04 .06 .08

B(z,y) is given by

y/x 0 1 2 3
0 1 A 0 0
1 1 .2 0
2 0 0 1 2
3 0 0 0 2
pa=0
pp =~ .9
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