ACTUARIAL RESEARCH CLEARING HOUSE

 1991 VOL. 1
AGGREGATE CLAIMS DISTRIBUTIONS FOR TWO CORRELATED BENEFITS

John A. Mereu
The University of Western Ontario
Department of Statistical and Actuarial Sciences
London, Canada, N6A 5B9

1. INTRODUCTION

This paper was prompted by a group insurance problem that came up in practice. The actuary was asked to price stop loss insurance by employee for two benefits combined.

Available information included a claims probability distribution for each benefit and the correlation coefficient between the benefits.

Let X be the aggregate claims on benefit 1 with a proibability distribution $P_{1}(x)$ for $x_{1}, x_{2}, \ldots x_{n}$. For benefit 1 the mean claims are given by $E_{1}(x)=\Sigma x P_{1}(x)$ and the standard deviation is $S D_{1}(x)$.

Let Y be the aggregate claims on benefit 2 with a probability distribution $P_{2}(Y)$ for $y_{1}, y_{2}, \ldots y_{m}$. For benefit 2 the mean claims are given by $E_{2}(Y)$ and the standard deviation is $S D_{2}(y)$.

Let $P(x, y)$ be the probability that benefit 1 claims amount to X and benefit 2 claims amount to y. For consistency the following relations must hold.

$$
\begin{aligned}
& P_{1}(x)=\Sigma_{y} P(x, y) \\
& P_{2}(y)=\Sigma_{r} P(x, y)
\end{aligned}
$$

Diggrammatically $P(x, y)$ is a matrix with column totals equal to the vector
$P_{1}(x)$ and row totals equal to the vector $P_{2}(y)$.
For a particular matrix $P(x, y)$ the correlation coefficient can be computed from

$$
\rho=\frac{E(x, y)-E \cdot(x) \cdot E_{2}(y)}{S D_{1}(x) \cdot S D_{2}(y)}
$$

where $E(x, y)=\Sigma_{x} \Sigma_{y} x y P(x, y)$ and $E_{1}(x), E_{2}(y), S D_{1}(x), S D_{2}(y)$ are determined from the individual probability distributions.

Let $A(x, y)$ be a matrix constructed by letting $A(x, y)=P_{1}(x) \cdot P_{2}(y)$.

Checking for consistency

$$
\begin{aligned}
& \sum_{y} A(x, y)=\sum_{x} I_{1}(x) \cdot P_{2}(y)=P_{1}(x) \sum_{y} P_{2}(y)=P_{1}(x) \\
& \sum_{x} A(x, y)=\sum_{x} P_{1}(x) \cdot P_{2}(y)=P_{2}(y) \sum_{x} P_{1}(x)=P_{2}(y)
\end{aligned}
$$

Computing the correlation coefficient we get

$$
\begin{aligned}
E(x y) & =\sum_{x} \sum_{y} x y A(x, y)=\sum_{x} \sum_{y} x y P_{1}(x) \cdot P_{2}(y) \\
& =\sum_{x} x P_{1}(x) \sum_{y} P_{2}(y)=E_{1}(x) \cdot E_{2}(y) \\
\therefore \rho_{a} & =0
\end{aligned}
$$

The matrix A is appropriate if benefits 1 and 2 are uncorrelated.
Let $B(x, y)$ be a matrix constructed by letting

$$
\left.B(x, y)=\min \left[P_{1}(x)-\sum_{z<x} B(y)\right], \mid P_{2}(y)-\sum_{z<y} B(x, z)\right]
$$

See the appendix for a numerical cxample. As the values of $B(x, y)$ are concentrated close to the main diagonal ρ_{B} will tend to be close to 1 .

Let $C(x, y)$ be a matrix constructed from $C(x, y)=(1-w) . A(x, y)+$ $w B(x, y)$

$$
\begin{aligned}
\left.E_{c} \mid x y\right] & =\sum_{y} \sum_{x} x y C(x, y) \\
= & \sum_{y} \sum_{x} x y[(1-w) \cdot A(x, y)+w B(x, y)] \\
= & \left(1-w^{\prime}\right) E_{A}(x y)+w E_{B}(x y) \\
& \rho_{C}=\frac{\left.E_{c}[x y]-E_{1}|x| \cdot E_{2} \mid y\right]}{S} \frac{D_{1}(x) \cdot \overline{S D_{2}(y)}}{}=(1-w) \rho_{A}+w \rho_{B} \\
& =w \cdot \rho_{B}
\end{aligned}
$$

If ρ_{C} is to be the desired correlation construct C from A and B with $w=\rho_{C} / \rho_{B}$.

From the probability matrix $C(x, y)$ the aggregate claims distribution for the two benefits combined can be determined, and stop loss premiums computed.

The matrix C is not unique. Other matrices which satisfy the conditions of the problem can be constructed, each leading to a different stop loss premium. It would be of interest to do sensitivity testing of the premium.

One approach would be to construct matrices in a random fashion. A random number generator could be used to fill in one row at a time subject to the constraints on row and column totals. This is yet to be explored.

APPENDIX

Given

$$
P_{1}(x)=.1, .2, .3, .4 \text { for } x=0,1,2,3
$$

and

$$
P_{2}(y)=.2, .3, .3, .2 \text { for } y=0,1,2,3
$$

$A(x, y)$ is given by

y / x	0	1	2	3
0	.02	.04	.06	.08
1	.03	.06	.09	.12
2	.03	.06	.09	.12
3	.02	.04	.06	.08

$B(x, y)$ is given by

y / x	0	1	2	3
0	.1	.1	0	0
1	0	.1	.2	0
2	0	0	.1	.2
3	0	0	0	.2
		$\rho_{A}=0$		

