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E S T I M A T I N G  D E N S I T I E S  O F  F U N C T I O N S  O F  O B S E R V A T I O N S  

ABSTRACT 

Density esthetes, such as histograms and more sophisticated versions, are important in 

applied and theoretical statistics. In applied stati~ics, a density estimate provides the data analyst 

with a graphical overview of the shape of the distribution. This overview allows the data analyst to 

arrive immediately at a qualitative impression of the location, scale and various aspects of the 

extremes of the distribution. In theoretical statistics, the shape of the density allows the researcher to 

link the data to families of curves, perhaps indexed parametrically. By estimating a density 

nonparameu'ically, certain aspects of the data can be viewed without the limitation of a prwr/ 

imposing limitations of a class of parametric curves. 

In this paper, we introduce density estimation for functions of observations. To motivate the 

study, one type of function that is used is the interpoint distance between observations arising in 

spatial statistics from the fields of biometry and regional science. A second type of function consider 

are the sums of observations as might occur in claims models in insurance. The nonparametric 

density estimates are inmxluced and cert~n computational issues are discussed. A cen~al limit 

theorem for the estimator is provided. What is interesting about this asymptotic result is that, under 

certain mild conditions, the density estimate enjoys a rate of convergence similar to parametric 

estimates. This rate of convergence is much f~ter than the usual rate of convergence in 

nonparametric density estimation. 
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1. INTRODUCTION AND BACKGROUND 

1.1 Introduction 

In this paper, problems from two different areas, spatial statistics and insurance, are discussed. 

Specifically, in the spatial statistics area, we consider estimating the density of the interpoint distance 

between pairs of objects. For example, in biometry, the objects might be distane~ between trees. In the 

regional science,, the objects might be distances between population centroids. In the insurance area, we 

consider estimating the density of a sum of insurance claims. The distribution of sums of observations are 

called convolutions and their applications has received a great deal of attention in the insurance, as well as 

reliability, treas. 

The common theme of these applications is that we are interesting in estimating the density of a 

function of observations. In the spatial statistics application, the function is some distance function 

between pairs of vector-valued observations. In the insurance application, the function is a fixed stun of 

univariate observations. 

It is always possible to assume that the distribution of the basic observations comes from a 

parametric family of distn'butions. If  this is the case, it is straight-forward to calculate the distribution of 

functions of observationS, either analytically or using numerical integration. In this paper we consider 

instead nonparamerric estimation. Either the data analyst may not have a convenient panunetric family 

available or may wish to corroborate results from a parametric analysis with an analysis that does not use 

the assumption that the observations come from a specific parametric family. To this end, in the 

following subsection a brief background on nonparametric estimation is provided. 

1.2 Background on Nonpararaetric Estimation 

In 1948, Hoeffding introduced a class of statistics, called U-starist~, which have turned out to be 

one of the cornerstones of classical nonparametric statistics. A related work that appeared about the same 

time is due to Haimos (1946). A U-statistic is defined to be a sample average of a function of one or 

more observations. Hoeffding called this function a kernel. The U prefix stands for the fact that each 

statistic is an tmb/ased estimator of a parameter of inter~t. Over the intervening ,tO-plus years, this class 

has received a substantial amount of attention for at least two important reasons. First, it hns been 

demonstrated that many important statistics can be demonstrated to be members of this class; for example, 

see Randles and Wolfe (1979). Second, an even greater number of statistics axe closely related to this 

class of statistics such as the Von Mises (1947) V-statiztics; for example, see Serfling (1980). By studying 

this broad ¢f ¢lnss of statistics, properties for many impoff.ant statistics can be established as special cases. 
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Lately, a number of researchers have studied not just the average but the entire distribution 

function of an evaluation of the kernel. Specifically, let X t, X 2 . . . .  , X n be a random sample and consider 

a kernel g that depends on m;e I variables. For convenience, the function g is assumed to be real-valued 

and symmetric in its arguments. The associated kernel distribution function (KDF) is defined by 

H(t) = P(g(x~ ..... x~) < 0, (1.1) 

where t E R. Using the random sample X t . . . . .  Xn, the KDF can be estimated by the associated empirical 

kernel distribution function ('EKDF), 

I~(t) = ( m ~ )-I ~c I(g(Xil . . . . .  Xim) < t). (1.2) 

Here I(.) is the indicator function of a set, {il,...,im} is an ordered subset of {l,...,n} and I; c means sum 

over all ( a ) such subsets. For a fixed t, I'~(0 in (I .2) is a U-stati~ic with a bounded kernel and has 

sevexal well.known properties, cf., Sen (1980, Chapter 3) and Serfling (1981, Chapter 5). For a fixed n, 

H~ is a stochastic process called an empirical kernel process (also called a U-statistic empirical process by 

Shor~ck and WeIlner, 1986, Chapter 23.4). This process was first discussed by $ilverman (1976) in the 

context of exchangeable random variables. Silver'man established weak convergence of I'I n , when suitably 

normalized, to a Gaussian process. Independently, Sen (1983) discussed I-I n from the viewpoint of U- 

statistic theory, established weak convergence to a Ganssian process, and established strong uniform 

consistency. Convergence using yet stronger metrics was established by Silverman (1983) and strong 

approximations for the empirical kernel process are also available, see CsSrg6, Horvath and Settling 

(1983) and extensions by Dehling, Denker and Philipp (1987). This process has been used in the study of 

interpoint distances, a problem in spatial statistics. For further discussion of this aspect, see Silverman 

and Brown (1978), Weber (1983), Jammalamadaka and lanson (1986) and Section 2 below. 

Much of ",,he statistical motivation for examining the properties of an EKDF is similar to the 

motivation for studying the usual empirical distribution function. Many interesting statistics can be 

expressed as functionais of an EKDF. In this case, properties of the EKDF can be used to analyze the 

statistic of interest. This method of analysis can be attributed to $erfling's (1984) introduction of 

8enerali~e.d L-statistics. A generalized L-statlstic is a linear combination of evaluation~ of a kernel g, 

there being (mn ) evaluations of the form g(Xil, ..., Xim). Additional statistical motivation for exploring 

properties of EKDF's was provided by Sen (1983) who gave a special case of a generalized M-statistic. 
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(However, this terminology was used by Serfling, 1984.) Extensions to spread fun~onals  were given by 

lanssea, Serfling and Veraverbeke (1984) and to simple linear regression by Frees (1991). On a separate 

note, Akritas (1986) developed a "V-empirical process," like the empirical kernel process but using V- 

statistics in lieu of U-statistics, primarily for statistical inference in random censoring models. 

1.3 Densities of Functions of Observations 

A function closely related to the KDF is the ken-eel density function, defined to be h(t) == H'(t), 

when it exists. In this paper we investigate the estimation of h(I). The motivation is the same as 

Hoeffding's: to establish a broad class of  statistics that handle several important examples as special eases 

and that are closely related to other important examples. The nonparamctric estimator i~troduced here is 

the kernel estimate 

w~ l-g(Xii  . . . .  ,Xiffi) ) 

<l:),> 
Here, {ba} is the so-called "bandwidth', or window width, and w(.) is a kernel function of  the type 

populaz-ized by Rosenblau (1971). It is regz~.~able that the adjective "kernel" is used in two such diszinct 

fashions. The first usage is in connection with U-statistic theory as a function of observations and the 

second usage is in connection with density estimation as a weight indicating the closeness of  an 

observation to a fixed point. However, the usage of the word seems to be permanently imbedded in each 

literature and we will attempt to clarify each usage as it appears in the paper. 

The form of  the density function in (1.3) is complex in appearance but is really quite 

straightforward to compute. For many applications, one only needs to compute the ( ~ ) evaluations of 

the kernel and then apply any standard kernel density rouZine to these evaluations, as if  they were data. 

For applications in which it is impractical to compute all ( n ) evaluations, sub.samples or random I l l  

resamples may be used; see S~ction 2.4 below. One of the most important properties of  the density 

estimator is it's fast rate of convergence. In the case of m =  1, t~ is the usual kernel density function has 

a rate of  convergence which depends on the smoothn-'ss of the density and is strictly slower than n ]f2. 

See Silverman (1986) for an introduction or lzenman (1991) for a recent review of nonparnmetric density 

estimation that corresponds to the ease m -  1. Asymptotic properties of h a in the ease m > 1 are sadicalty 

different. It turns out, because of the additional averaging in (1.3), that the sampling bias in using ha(t) to 
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estimate h(t) is of  a lower order of  magnitude than the usual ease (corresponding to m = 1). This reduction 

of bias allows us to eatablish rates of convergence similar to unbiased estimators. For example, it turns 

out, under mild conditions, that the simple histogram estimator approximates the kernel density well up to 

terms of  order n I~. This is a much closer order of  approximatlon than the usual kernel densi~ estimator 

in the case m = 1. By "simple histogram estimator" we mean the choice w(x) = I(- 1 < x < 1)/2 which 

yields h,(t) = (Ha(t+b n) - Hn(t-b,))/('2 bn) in (1.3). 

In Section 2, applications of the kernel estimate are illustrated using an example from spatial 

s~tisties and from insurance. In Section 3, asymptotic properties of the kernel estimate in (1.3) are 

studied. Readers interested in the general suuistieal methodology may wish to skip directly to  Section 3. 

Here, it is noted that this problem also arises in estimating a component of  the asymptotic variance in rank 

regression. We close in Section 4 with some concluding remarks. The proofs of all properties can be 

found in the Appendix. 

2. MOTIVATING EXAMPLES AND RESAMPLE ESTIMATORS 

2.1 Redwood Locations 

Diggle (1983) provides the location of 62 redwood seedLings in a unit square. The data ate 

originally from Su'auss (1975). A graph of the dam, which appears in Figure I, shows that the dam do 

not appear to be randomly dispersed throughout the square. To m~asure the degree of spatial randomness, 

Diggle proposes looking at the distribution function of disumces between points. In the notation of this 

paper, let g(xl, x2) = I xl - x2 I be the Euclidean distance between the two-dimensional points x I and 

x 2. There are 1,891 ( = ( 6~ ) ) interpoint distances. Thus, from equation (l.3), the nonparametric 

density estimator is 

h~.(t) = 1 ~ . j ( ( ~ / b " )  w ( ~  . . . .  ) (2.1) 
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whexe Ei< j means sum over all observations such that i <j .  In Figure 2, a histogram of  these distances 

are given with the ~rue.l density estimate superimposed. Here, as for all the examples in this paper, the 

kernel used is the quadratic kernel due to Epaneehnikov (see, for example, Silvermaa, 1986, P. 42). Is 

this the panJ~-u that one would expect of a spatially random process? As a reference distribution, Barfle~ 

(1964) has shown, for observations distributed uniformly on the unix square, that 

(2t) Or - 4 t + ~) O<t<: l  
~(t) = 

(20  ( -2 - t 2 + 4(t2-1) ~ + 2 s in ' l ( 2 t  z - 1) ) 1 < t < v / 2 .  

A graph of this reference dismbution appears ia Figure 3. Comparing Figures 2 aad 3, it is easy to see 

that the empirical interpoint density is larger than the reference density for small values of  intex'point 

distances. This point was noted by Strauss and Diggle who artribuxe it to the underlying clustering method 

associated with the generation of seedlings. Now, as is the typical case in density estimation, the above 

graphs make it slraighfforward to detect differences. In contrast, Diggle advocates graphing the 

distribution functions. Here, the empirical interpoint distribution function is HIn(1) 

( ~ )-1 Ei<j I( I Xi " Xj I g t)- While providing the same information, it is more difficult to detect 

differences when considering distribution functions that tend to accumulate effects. 
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Figure I. Sc.~Rerplot o f  the Locations of  62 Redwood Seedlings. 
Data has been rescaJed to a unit square. 
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2.2 Distances Between Population Cemroids 

In the regional sciences, researchers are concerned with quantifying the separation between 

population regions. One way of measuring this separation is by measuring the distance between 

population centroids. For example, in Figure 4 is a histogram of the distances between state population 

centroids. Since there are 51 "states" in the U.S. (including the District of Columbia), there are ( ~I ) = 

2,550 di.~ances. Although the data is observational, researchers are interested in the deviation from the 

uniform distribution. Further, the distance variable is an important factor in quantif-ymg population 

movements. For example, a classical "gravity" model of migration from the o th to the d ~ state might be 

expressed as 

Mod -- c ( )/ Cod 
,'0 E. 

Here, P is ~at¢ population, I is state income, E is state (un)employment, D is di.vtance between population 

centroids, a, b, c and f a r e  parameters to be estimated, and eod is the multiplicative error term. Gravity 

models are discussed in the survey by Greenwood (1975) and the monograph by Haynes and 

Fotheringham (1984). A more recent discussion of the relationship between migration rates and migration 

distance is in Long, Tucker, and Urton (1988). This model can be easily converted to the linear model 

via the logarithmic transform. Thus, the gravity model theory suggests using logarithms of the distance 

between population cenlroids in a regression model. For data analysts who use the Box-Tidwell (1962) 

approach of symmetrizing regressors, the skewed distxibution in Figure 4 also sugge.~ a logarithmic 

transformation. 
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Figure 4. Illstogram of 2,550 distances between population ¢entrolds. The kernel deasily estimator is 
superimposed on the raw histogram. 
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2.3 Convolutions of Insurance Claims 

The application which originally motivated this study was the estimation of convolution 

distribution f~nctions and densities. These are of interest in insurance (Panjer, 1980 and Hogg and 

Kingman, 1984) and reliability (Bagchi et al, 1986) applications. To illustrate, we assume that the insurer 

has available X! . . . . .  Xn, a random sample of insurance claims from a parlicular llne of business. As an 

example, we consider here the 1989 Total Charges for 33 patients at a Wisconsin Hospital. Each patient 

was female, aged 30-49 and admired to the hospital for circulatory disorders. The data appears in the 

Appendix in Table 1 and is summarized in the hi~ogram in Figure 5. From an insurer's standpoint (or a 

risk manager associated with the hospital), what is of  interest is the distribution of the sum of  claims, 

X I + X 2 +  ... + X m. Interpret 'm'  to be the expected number of  claims in a specified financial period, for 

example, a month or qua_qer. Of course, this analysis assumes that there are no time trends in the 

particular line o f  business being analyzed. To define an estimator of the density of  the convolution, use 

g(x I . . . . .  Xm) = x t + . . . + x  m. From (1.1), the m-fold convolution o f f  is F(*m)(t) = P ( X I + . . . + X  m < t). 

Here, use F to denote the distribution f~nction and f = F '  to be the corresponding density, when it exists. 

An estimate of  the convolution density, f('m)(t) = (a/at) F('m)(t), from (1.3) is 

f(a'm)(t) = ( ( m n ) bn )-l Zc w( (t - CXil + ... + Xim)) / b n ), 

with this choice of g. 

(2.2) 
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Figure 5. 1989 Charges for 33 patients at a Wisconsin llospital. Each patient was female, aged 30-49 and admired for 
circulatory disorders. 
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To illustrate the effect of  an additional expected claim on the distribution of claims, in Figures 6 

through 9 are histograms of  the sum of claims for m = 2 , 3 , 4 ,  and 5, respectively. For reference, for the 

original 33 claims, the average claim is E = 2955 with standard deviation s x = 1481. As m increases, we 

see that the bimodal nature of  the empirical density flattens out and that the curve becomes more 

symmetric. By allowing the risk manager to choose his or her best approximation of the expected number 

of  claims, the histograms allow the data analyst to provide a graphical summary of the distribution of  the 

sum of claims. 
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2.4 Remmple Deasity Estimators 

In principle, to compute file density estimate when n.~33 and m=5,  there are ( :3] ) = 237,336 

evaluations of  • kernel required. This many evaluations, combined with the usual kernel density 

estimation routine, would require a prohibitive amount of calculations for all but the most powerful of 

computing environments currently av~;lable However. by choosing subsets, a much smaller numbe~: of 

evaluations can be used to compute an effective evaluation of an average. This idea is originally due to 

Blom (1976) in the U-statistics literature; see Frees 0989) for a recent review. As in Frees (1989), in this 

paper we use the technique of  so-called "nmdom resampl~." 

To define the resampling estimator, let R=R(n) be a positive integer depe~ling on n such th~ 

R ~  u n--oo. Based on the observed sample, we draw R independent (conditional on the sample, {Xl, 

. . . .  Xa) ) real.izatio~, as follows. For r - 1  . . . . .  R, make m draws without replacement from {X| . . . . .  X~} 

to get {X~I . . . . .  X.~f}. Define the resample estimator as 

-- R .., I b. " 
(2.3) 

It is ~ t  to emphL~.e the fact that the resample estimator is only one of sever~ ways of  evaluating 

the a ~ .  It is eomputationally simple and has intuitive appeal due to the recent increased popularity of 

using simulation ~chniques for resampling statistics. "l'be Figures 7 through 9 were cv~_a!_~_ using the 

resampling estimator in (2.3) with R -  2,000 r~ampl~s. 
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3. PROPERTIES OF TIES KERNEL ESTIMATE 

We begin this section with a lemma that shows how to bound the deviation of the estima~ from 

the true kernel density in terms of the bias and the bandwidth (b~,}. This establishes some basic results on 

rates of convergence, including the pointwise convergence of the estimator. Further, it demonstrates the 

usual trade-off in density estimation involving the choice of the window width b a. For the case m > 1, we 

then show that nl/20ln(t) - h(t)) is asymptotically normal, the main result of this section. 

To state the lemma, we use the maximal deviation of H a from H, 

Ma " suPt [ Hn(t) " H(t) I 

and the bias tin'm, 

Bn[t)  ffi E hn(t)  - h(t ) .  

We use following mild assumptions on the kernel w(.). 

(3.1) 

(3.2) 

A.~wnp~on KI. Assume lira [ y I -¢" w(y) = 0, lira sup I Y i -" [ w(y) I is bounded, }" w(y) dy •l, 

and t~t | I dwty) I is finite. 

In the case w(.) is differentiable, then ~ [ dw(y) I ffi ~ I w'(y) I dy. Wkh these minima] 

assumptions, we now have the following 

Lemma. Assume KI. Then, 

ha(t) - h(t) = O(Ma/b n) "+- Bn(t) almost surely. (3.3) 

Remarks: An interesting aspect of/..emma I is that the maxima] deviation of the density from its estimate 

can be bounded in terms of the maximal deviation of the kernel distribution function from the EKI)F. 

From SLlverman (1976) or Sen (1983), we have that M n ffi Op(n'l:2). From Dehling, Denker and Philipp 

(1987, Corollary 2), this latter bound can be written as 

M~ ffi O(n "I~ (log log n)|~). (3.4) 

In (3.4), the big oh notation means almost surely after possibly enlarging the underlying probability space. 

Thus, as an immediate corollary of Lemma l. if b n ~ 0 such that Bn(t) ~ O, then hn(t ) is a consistent 
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estimator ofh(t). One may use weak consistency or strong consistency in the sense of (3.4). Analogous 

to density estimation, rates of convergence of the bias term Bn(t) may be framed in terms of the 

smoothness of h(.). For example, from (3.2), a change of variables, and a Taylor-series expansion, we 

have 

- b. "! [ w((t*u)/b~) h(u) du - h(t) 

= j w(y) h(t-ybn)dy - h(t) 

= ~ w(y) E~= I (-y b~)J/j! hfJ)(t) + ~: O(b~r)) dy = O(b_r). (3.5) 

Here, we have assumed ~ f w ( y )  dy = 0, j = l  . . . . .  r- l ,  I ] y r w ( y )  ] dy < oo and that t h e r  th 

derivative of h is bounded in a aeighborhood of t. The choice of r=2 is important. This corresponds to 

the siRmtion where we wish 1o use a nonnegative kernel so that w(.) may be interpreted as a probability 

density f tm~on .  From the Lemma and (3.5), using b n = O(n "1/(2r+2)) yields ~ ( t )  - h(t) ffi Op(n'r/(2r+2)), 

thus establishing a rate of  convergence. Further, if the r tt derivative o f h  is uniformly bounded, then the 

bound in (3.5) is uniform in t. That is, wdth the I.emma, we have 

supt } hn(t) - h(t) ] " Op(n'r/(2"r+2)) • (3.6) 

The rate of convergence in (3.6) is the same as the usual density estimate and, for the case m = l ,  is in 

some sense optimal. However, in the case m > 1, this ram can be improved as follows. 

Define the distribution f~nction Hl(x,t ) = P(g(x, X 2 ..... Xm) < t) and suppose that the 

corresponding density, h|(x,t) - (Mat) Ht(x,t), exists. 

Theorem. Assume KI, m > I, n b a ..* m, 

n l~ B,(t) -.* B, 

thath I exists, and, forG>0, E [ hl(X,~ ) I 2+6 < ~. Then, 

(3.7) 

n z~ (h=(t) - h(t)) "*'D N~, a2), (3.8) 
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Remarks on the Assumptions: The condition in (3.7) is mild and is satisfied, for example, with (3.5) and 

using b ,  = o(n "l/2r) so that B=O. AJthough easily satisfied in a number  of  cases, the requirement that h l 

exist is imporlant. As an example where it is not satisfied, consider the kernel g(xt ,  x2) = max(x l ,  x2). 

With this choice, we have Hl(x , t  ) ffi I (x< t )F ( t )wh ich  is not differentiable at tffix. Suppose, for  the 

moment ,  that the assumption is not necessary and that (3.8) holds.  Now, with this choice of  g,  it is easy 

to check that h(t) = 2f(t)P(t). Thus ,  if (3.8) were to hold, then hn( t ) / (2  Fn(t) ) would be a nonparame.tric 

root-n estimator of  the probability density function in the sense that hn(t)/(2 Fa(t ) ) - f(t) ffi Op(n'l/2). It is 

well-known that this is faster than the optimal nonparametric rate, see Stone (1980). This 4eanonstrates 

the necessity of the assumption. 

IlLustration of the Theorem - Convolution Density Eswn~or: As an illustration of the theorem, consider 

the convolution density estimator introduced in Subsection 2.3. With g(x I ..... Xm) = x I +... +Xm, we have 

H l ( X , t )  = P ( x + X 2 + . . . + X  m ~ t) ffi F('~'I)(t-x). Thus, assuming differen'tiability, we have h l (x , t  ) = 

t'('m'l)(t-x). Assume that there are sufficient conditions on the density so that (3.7) holds. A sufficient 

condition so that E I hl(X,O I 2+~ < o= holds is the requirement that f(=m'lXt) is bounded in ' t ' .  Thus ,  

with K1, we have 

n ~ (~'=)(t) - f('=)(t)) -*v NO3, @ 

where ~ '= ) ( t )  is given in (2.2) and u~ = m -~ ( E (f<'='~)(t-X)):  - ( f "~ ( t ) )2 ) .  

Remarks on Confidence Intervals: An impormm application o f  a limit result, such as in the theorem 

above, is th~a a confidence interval for the parameter can be easily generated. In practice, the only thing 

that is required is knowledge of, or  a consistent estimate of ,  the asYml~otic variance pm'ameu~ 0 .2 in (3.8). 

To develop a consistent ¢sttznator of o'-, we advocate the use of  the jack~zfe ~ochnJque, pioneered in the 

U-statistic area by Sen (1960). To this end, define 

h,~(t) - 
1 ~--~o) w( t -g (Xi 'Xi :  . . . .  'Xi=) 

( -1 
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where {i 2 ..... ira} is an ordered subset of {I .... , i-l, i+l ..... n} and r-e(i) means sum over all such 

I~lxm~ttor of o" as subsets. Define the jackknife " 

s ,  = - (l,~(t) - h~(t)) 2 . 

D. i-1 

It is straight'forward to check the consistency of this estimator using standard techniques such as in Sen 

(1981, pages 80-81) and the triangular array arguments of this paper. 

Prol~.~es of the Resanwling Esamator." To illustrate the large sample properties of the resampling 

e~3ma~or, we present the following 

Corollary. Assume the conditions of the Theorem and R / (n / b~ ) --,, ~ hold. Then, 

n l~ 0aR(t) - h(t)) "'D N(E, 02). 

Thus, the res,~mpling eslimator enjoys the same first order asymptotic properties as the density estimate. 

The only requirement is that the ressmple size, R, grow fast enough relative to the sample size, n, and the 

bandwidth, b n. Rates for other modes of convergence can be checked using, for example, methods in 

Frees ( 1 9 8 9 ) .  

To consider other aspects of the properties of the kernel density estinuttor, we now consider 

another speei~ case. 

Example - Scale Parameter in Rank Regression: As another example, assume that the observations are 

univariate with distribution function F and use m---2 and g(xl,x2) -- I x2 - xl ] - From (1.I), we have 

Hit) - E (F(X+t) - F('X-t)) and thus h(t) = I (flu÷t) + flu-t)) flu) du. Here, we use f = F'  and 

assume that the interchange of differentiation and integration is valid. In particular, kernel estimates of 

h(0)/2 - ~ f2(u) du were introduced by' Schuster (1969). Properties of these estimates were investigated 

by Sehweder (1975), who established asymptotic normality and Cheng and Settling (1981), who 

considered certain score variations. See Hertmansperger (1984, p. 249) for an introduction. 

R o n a r ~  on the Selection o f  the Kernel and Bandwidth: Much of the traditional literature in density 

estimation developed to provide guidelines for selection of the kernel and bandwidth have been driven by 
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the goal of balancing the trade-off between minimizing bias and variance. The trade-off is that smaller 

values of  the bandwidth decrease the bias but increase: the variance: (see, for example, Silverman, 1986, 

Section 3.3.1). In contrast, in the case when m >  1, from (3.8), the asymptotic mean square error for the 

kernel density estimate is B 2 + 02. Interestingly, the kernel and bandwidth appear only in the bias term 

B, not in the asymptotic variance nor in the rate of  convergence. Further, in problems where the 

smoothness of  h is known, it is easy to choose a kernel sufficiently smooth so that Bn(t ) is small enough so 

that B=O. For example, if we use a nonnegative kernel such as the normal curve or the: Epannchnikov 

kernel, we can nsc r=2. In this case, to minimize the asymptotic mean square error from the Theorem, 

we only need to choose the bandwidth such that b n is small enough so that b n = o(n "I/4) but large enough 

so that n bn'*oo. 

A complete solution to the problem of selection is not currently available:, although there has been 

some: promising work done on some special cases. Sheather and Hettmansperger (1985) have investigated 

the selection of the kernel and bandwidth for the example of scale: parameter estimation in rank regrassion. 

A generalization of this parameter is the integrated squared density derivative, an estimation problem that 

has been recently investigated by several authors, To see the connection with the current paper, under 

strong enough smoothness conditions, the mth derivative of  h(t) evaluated at 0 is h(m)(0) 

= f (i(m)(u) + ( 'I) = f(m)(u)) f(u) du. Taking m to be even, we have 

h(m)(0)/2 = I f(m)(u) f(u) du = (-1) m/2 I (f0n/2)(u)) 2du. The last equality was pointed out by Hall and 

Matron (1987) who considered (-1) m/2 h(m)(0)/2, among other estimators. Recent works such as Bickel 

and Ritov (1988), Jones and Sheather (1991) and Park and Matron (1992) have also considered the 

estimation of the integrated square density derivative, [ (f(m)(u))2 du, since this is a key parameter in 

selecting the bandwidth for the usual kernel density estimate: (m= 1). 

V.Statistic Type Alternative Estimator: In classical nonparsmetric statistics, an alternative to a U-statistic 

is the corresponding V-statistic. From a finite sample perspective:, U-statistics enjoy the unbinsedaess 

properly while V-statistics are nonparametric maximum likelihood estimates. From a large: sample 

perspective, the two versions are close to one another and have similar large sample properties. For more 

details, see, for example, Settling (1980, Chapters 5 and 6). For this estimator, the V-statistic alternative: 

is 

. . .  w( t-gcxi, . . . .  ,xi=) ) 
D m bit i;.I im-I 
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=b--Tf . . .  f ... t b. : 

where {Fn} is the usual empirical distribution function. The choice between the two alternatives will 

probably depe:xl upon the application at hand. For example, in the special case of the integrated squared 

density derivative, lone.s and Sheather (1991) argue for the V-statistic version (in the lauguage of this 

paper). For the spatial statistics problems, it can be argued that the U-statistic version is more intuitively 

appealing. 

4. SUMMARY AND CONCLUDING REMARKS 

The purpose of  this paper is to introduce a nonparamntric kernel density of a function of 

observations. A series of  examples has been provided to motivate the usefulness of  the estimator. Basic 

properties of  the estimate have been established, including consistency and asymptotic normality. An 

impor'amt aspect of the asymptotics is the fast rate of convergence due to the additional averaging of  a 

function of more than one observations. 

As with the usual kernel density estimator of an observation, there are many possible alternative 

ways of estimating densities of functions of observations. See $ilverman (1986) or Izenman (1991) for a 

discussion of these alternatives. This paper has focussed on the kernel method due to its intuitive appeal 

and widespread popularity. 

Other extensions of the estimator similar to those found studied in the usual kernel estimator may 

be useful in applications. Perhaps a finite sample, or second order, study of the bias and variance would 

provide insights into the problem of selecting a kernel and bandwidth, a problem discussed in Section 3. 

Also in Section 3, we alluded to using the approach of this paper to study derivatives of densities of  

functions of observations. Other extensions could include the study of adaptive kernel estimates or 

functional central limit theorems. We cite these as areas for potential future study. 
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APPENDIX A. DATA 

TABLE 1. 1989 TOTAL HOSPITAL CHARGES 
FOR 33 FEMALES AGED 30-49 HOSPITALIZED FOR CIRCULATORY DISORDERS 

FROM A WISCONSIN HOSPITAL 

2.337 2179 2348 4765 
2088 2872 1924 2294 
2182 2138 1765 2467 
3609 2141 1850 3191 
3020 2473 1898 7787 
6169 1802 2011 2270 
3425 3558 2315 1642 
5878 2101 2242 5746 
3041 
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APPENDIX B. PROOFS OF SECTION 3 PROPERTIES 

An important device ia the analysis is to wrtte b~(t) as a fuactioaal of the EKDF H a m~l to use 

established properties of H a . For example, from (l.3) we have 

ha(t) = ha'! I w((t-u)/bn) dHn(u)" (A.I) 

PROOF OF I,.EMMA: From (A.1), Assumption KI and using integration by parts and a change of variables, we 

have 

h~(t) = ba d j (l - Ha(t-y ba)) dw(y). (A.2) 

Tak iag  expectations and applying Fubini's Th~arem yields, 

E ha(t) = bo "! ] (1 - H(t-y ba) ) dw(,y). (A.3) 

By adding tad subc.r~ting E ha(t), (A.3), and the triangle inequality , we have 

I ha(t) " h(t) l ~; ba "1 [ I (Ha(t'Y ha)- H(t-y ha)) dw(y) I + Bn(t) 

S ba "t Mtt J' I awry) ] + B~(O. 

Thus, Assumption K1 is sufficient for the result. • 

Define the projections, Wtn(x,t) = ba "1 E w.( (t-g(x, X 2 ..... Xm))/b a ) - 

ba -1 E w( (t-g(X 1 ..... Xm))/b a ), and fta(t) =' n q r~= 1 Wtn(Xi,t). In the following result, the tmixmxe I~(t) is 

decomposed into the parameter of mteaest, the proJeCtion, the bias and the remainder testa. The proof of 

Theor*m 1 is a straightforward application of Theorem A. 1 tad a triangular anay central limit theorem and thus 

is omitted. 

T h e o r t m k . l  AssmmeKl, m > t ,  nbrt . - , ,o%thathlexists ,  and. f o r * > 0 ,  E t h l (X , t ) [2*6  < o=. 

Deftae the remainder term. Rn(t), by 

h~(t) = E hn(t) + ha(t) + RnCt) 

= hit) + ~ ( t )  + Bn(t) - ~ ( t ) .  

The.a, Ra(t ) = Op('oa'lr2- n-i). 

(A.4) 
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PROOF OF TIIF.OR.I~ A. 1: 

Define the degez~'at¢ kernel 

g.,,(x] . . . . .  x=) = b~ "l w( (t-g(x I . . . . .  x,,O)/t,~ ) - b ;  ] E w( (t-g(X I . . . . .  X,O)r°,, )" m'l E T - l  Wto(~,t). 

From (A.4).  we  have 

I%0) = ( -~ )q I:o K~(Xi~ . . . . .  X%). 

Let 01 . . . . .  J~0 be --other mbset of { 1 . 2  . . . . .  n). Now. 

Var(R.e(t)) = (( m = ))-2 Ec0) Ec~) E K~,(Xil . . . . .  Xim) K~CXjt . . . . .  Xjm). 

Now, when the mbsets {i 1 . . . . .  ira} m~l {Jl . . . . .  Jm} lave 0 and 1 dements in commou, the product 

E Kt('Xil . . . . .  Xi=) KB(Xjl . . . . .  Xjm) is O, by i m l e p c ~ d e ~  and the degcmvnmy ofK~. Whea there is more 

than 1 elemmmt in cotmmm, then by Cbebyshev's theorem, the product is bounded by 

v a t  K~ ~ bo -2 l~ w( 0-,(x~ . . . . .  X~))/b~ )2 + E ( w 1 , 0 q . 0 )  z = O(bo-b. 

The proportion of evaluations having c elememts m cotmnon is ( ¢m)( e ~ ) / (  =),a c=0 ,  1 . . . . .  m. See, for 

example, S e r f ~ g  (1980, p. 183). T am ,  using c = 0  and c ,=l ,  

(n-m)+m[n-m) 

which is sufficient for the result. 

PROOF OF COROLI~ ' :  By the Theorem, one ooly needs to show tha~ n E 0~R(t) - ~( t ) )  2 .-# 0. T~$ is 

i m m e d ~  u . ~ g  the ¢ouditiotal independence of (gt'X~z . . . . .  X~,")}. 
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