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Abstract: Consider a portfolio of insurance policies where the mean frequency of claims for 

each policy may vary. This heterogeneity in the portfolio may be modeled with a risk 

distribution function F(A) that mixes the mean frequency A. Using the observed claim 

frequencies of this portfolio, we present a continuous nonparametric estimator of the risk 

distribution ~A)  that reproduces some of the empirical moments and converges uniformly. 

The estimator that we investigate is a mixture of iognormal distributions whose parameters 

are calculated by considering the determinants of certain moment matrices. 

Ke~/words Risk distribution, moment matrices, rnixtures of distributions, uniform 

consistency. 

Abbreeiated Title: Lognormal Estimator 
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1. |ntroduction 

Suppose tha t  the number of claims N for a policy can be modeled with the Poisson 

probabil i ty density function (pdf) 

p(n{~,) = e -x A~ (1.1) 

where l>O is the mean frequency and n=O,1,2 .... In a heterogeneous population the mean 

frequency is dis tr ibuted according to some unknown distribution FI,~ 1. We wi]] assume 

throughout the discussion tha t  the risk distribution F(~) is continuous and tha t  F(0)=0 .  

Moreover, we will assume tha t  the risk distribution is uniquely determined by its moments.  

Suppose we observe the frequencies N i for iffi l  ..... T where T is the number of policies in 

some insuzanee portfolio and NI,N ~ .... are independent and identically distr ibuted random 

variables with a common pdf equal to 

~n) = I p(nl~) aF(~) 1i-2) 
(0,oc~ 

where p(nl2, ) is given in (1.1). The moments ink=E(2, k) for ; :=1,2 .... of F(~) can be 

est imated ~ t h  the empirical  moments  

~ = ~ n(n-l)..(n-k-l)i~(n) (11.3) 
ei=O 

where 

T 
il .4) 
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is an empirical pdf. Note tha t  ~h k is an unbiased and almost  surely consistent est imator  of 

r%. The nonparametr ic  est imator  of F(A) that  we will investigate will have the form 

where 

;(~) = ~ , j  ~j(~) (1.5) 
j=!  

L~(~) = fi(2~)-1/2 (~)-' exp(--(log.(V/~))~/2~ 2) dy. (i.0) 

Note that  we are not suggesting that  the underlying true distr ibution is a mixture but we are  

simply using a mix tu re  as an estimator. Later we will show tha t  the estimator ~'(A) 

reproduces the empirical  moments  th k for k =  1 , . . . , 2p -1 .  We will also show that  decreasing 

makes F(~) look like a s tep function and so cf may be viewed as a smoothing parameter.  

Let us review the current  li terature on estimators for F() 0. Hossack, Pollard and gehnwir th  

(1983) gave an asympto t ica l ly  consistent est imator of F(),) under the assumption tha t  i t  

belongs to a G a m m a  class of distributions. Wil lmot  (1987) also gave a consistent es t imator  

when F(A) belongs to an  Inverse-Gaussian class of distr ibutions.  Obviously, these es t imators  

will be asymptot ical ly  biased if the true distr ibution is not in these parametric classes. 

Lindsay (1989) constructed a discrete estimator tha t  reproduces some of the empir ical  

moments and is consis tent  when F(,X) is uniquely determined by i ts  moments  and F ( 0 ) = 0 .  

Our continuous es t imator  25(A) will be a generalization of Lindsay's  result. 
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2. A Moment Problem 

Consider the empirical momen t s  "m--{~h~ : /~={},1,...} where ~h k is defined in (1.3). 

Assume T is large enough so that ~(0)~:I. Note that there always exists no_>l such that 

~b(n)=0 for all n>_n 0. This  means  that  rhk=0 for all n:>n 0 and so there does not exist a 

distribution function F(A) such that  ~b(0)=0 and ,hk=j 'oAkdlb(A ) for all k=0,1 .... But 

Lindsay (1989) proves tha t  there exists a discrete distribution ~'(A) with p_>l atoms such 

tha t  F ( 0 ) = 0  and f a k = / o A k d F ( A  ) for all k=O,1,...2p-1. In this section we will present 

various definitions and we will summarize Lindsay's result. Using this foundation, we will 

then present our estimator and discuss its asymptotic properties. 

Using the sequence ~ ,  define Ms={1} ,  MJ(~ )={ rh l}  and for k = l , 2  .... define the moment  

mat r ix  

Mk(~) = 

1 ,h 1 -.. Th k 

rh I fa 2 ... ,hk+ I 

th k fak+ ] ... rh~  

(2.1) 

and the shifted moment  ma t r ix  as 

M ~ ( ~ )  = 

I 
~t ~a2 "" mk+l / 

th2 ~s  "" ink+2 I " 
i : 

rhk.~1 r~+2  ..- fn2~,+t 

(2.2) 
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Using Mt(~) and M~(~) for  k=0,1 .... we define p(~) as follows 

p ( ~ )  = 1 + s u p ( k :  de t (M, (  "m))>O a n d  d e t ( M : ( f n ) ) > O  V i = O  . . . . .  k t .  (2 .3)  

For the ensuing discussion we will assume that p<p(~). Now consider the following 

polynomial of degree p, 

P ~ t ; ~ )  = d e t  

i ~a L . . -  ~hp_ I 1 

~at r~ 2 . - .  ¢hp " I 

! ! i i 
(2.4) 

Let rj(~) for j=l ..... p denote the toots of P{t ; ~_). Next calculate r(.~)--(rl ..... rp) 2" u 

follows 

"r 1 

T2 

l"p I 1111 1 I - . .  1 1 

r~ r 2 . . .  rp r~ 1 

: " ! i ~f-, ~-~ ... ~,-~ ~_~ 

(~.5) 

wheneve r  the  inverse  m a t r i x  exists .  W e  n o w  give L i u d s s y ' s  result .  
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LemlDa 1.1f p<_p(,~) then there exists a unique distribution F(A) with p distinct a toms of 

ma.~ ~ ' ) (m)>0 at r j ( m ) > 0  for J = l  ..... p whose moments a~e equal to )h k for k = l  ..... 29--1.[3 

Lindsay's result is related to the $tieltjes moment problem, tha t  is discussed in Shohat a~ad 

Tamark in  (1943). The proof for the following lemma is based on the results presented there. 

l ~ m m a  2. a) A distribution F(A) with a moment sequence m-----{m, : ~----0A... ) has 

distinct a toms of mass r : ) 0  at r~>0 for J----1 ..... p if and only if de t (Mi (m) )>0 ,  

d e t ( M ; ( m ) ) > 0  V i = 0  ..... p - 1  and det(M,( _m))=0, det(M~(_m))=0 ) ' i = p , p + l  .... 

b) If F(A) is continuous a~d F(0)--O then de t (M~(m)) )0 ,  d e t ( M / ' ( m ) ) ) 0  Y~=O,1...n 

3. The Mixed Lo~normal Es t ima to r  

In this  section, we will show how to calculate the parameters #, p, r~ ..... ~r~ and ~2 ..... ~qp 

I s for our mixed lognormal estimator.  De/L~e m ----{mk : k----0,1,...) where 

• { / , }  m~ ---- , h k x ~  p --k2o "~ . (3.1) 

Note tha t  m~--)h},  det(Mi(m*))--det(Mi(m) ) and det (M, ' (m*))- -det (M~(r~))  as a - - 0 .  

Therefore, if p < p ( ~ )  then there exists a 0 > 0  such that  p<p(m*) for al l  # < a  0. In the 

ensuing discussion we will always assume that  a < a  0. 
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The parameters 3j = rj(m. * )>0  for j =  1 ..... p are equal to the distinct positive roots of the 

poiynomlal /~t ; m*). Finally, the parameters 0 < z ' j < l  for j = l , . . . , p  are equal to .~=T(.m*). 

Le: us prove that calculating the parameters in this manner yields an estimator .P(,X) that 

reproduces the empirical moments. Define r3={rh ~ : 1:=0,1,...) where 

f ~o ,X ~ d 

According to Lemma 1, the distribution with mass of x# at the poinks ~# ha* moments equal 

# 

to ,~I for ~= 1 ..... 2 p -  1. Therefore ~ ,  = ~ , ,  S~,~,p{k~a ~ / 2 ) = ~ p { k ~  2 / 2 )  x * " P~k = tlrtk" 

J = l  

Now. let us show that o" is a smoothing parameter by proving that F(A) d--.V(A) as o ' - -0 .  

First, note that P(t; m*)- -P( t ;  ~ )  as a - - 0 .  This implies that ~ j=r j (_m*) - - r j ( t~ )  a.s * - - 0  

because r j ( ~ )  is a root of the continuous polynomial P(~; ~) .  In tu2n this implies that 

~=~(_m*) - - ! ( r~ )  as a - - 0  because !(r~) is a continuous function in ~.  Therefore 

a 

t h , - - - - ' ~ r , ~ e x p { k 2 a 2 / 2 } - - ~ r , ( m _ ) ( r , ( ~ ) ~  ' as a - - O  for k= l ,2  .... In other words, all the 
J : l  J = l  

moments of F(A) converge to the moments P(A). According to a theorem by Freebee and 

Shohat that is given in Serfling (1980), p. 17, this is a sufficient condition for convergence in 

distribution. We now summarize our results. 

Theorem 3a) If k = l  ..... 2p--1 then ~ k = ~  and 

b) if a - - 0  then F(A)2-F(A). 
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Let us apply the result to some motor vehicle data  given in Johnson and Hey (1971). In this 

da ta  w e  fred that T--421,240 and that 

Using (1.3) we find that 

~(0) = .879337 }(1) = .110495 

~(2) = .009341 }(3) = .000753 

)(4)  = .000066 }(5) = .000007. 

"h~ ---- .131735 ,h., = .024132 

,h a = .006522 ,h4 = .002424 

Th s = .000840 rh 6 = .000000. 

(3.3) 

(3.4) 

Using t h ~  data  we constructed two graphs. Figure i shows a plot of the pdf of the rmxed 

lognormal est imator  and the l:~df of the inverse-gaussian est imator  given in "~'illmot (1987). 

The smoothing parameter for the mixed |ognorma2 est imator  was u = . 4 5  and we found that  

increasing it slightly yielded an estimator that  w ~  Mmost ident ic£  to the inverse-gaussi~n 

estimator.  Figure 2 compares the pdf of the mixecl lognormal estimator when the smoothing 

pLr~neter  ~ is equal to .15 and .45. The parameter values for the plot with ~--=.15 were 

p = 2 ,  3 t= .3704 ,  ~'2=.1048 and ,r]----.0958, rr~----.9042. These graphs and all the necessary 

cMculations were made with the statistical computing language called GAUSS. 
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Figure 1. A comparison of the mixed lognormal and inverse-gaussian estimators. 
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Figure 2. A comparison of the mixed lognormal estimator when ~ : . 1 5  and <T=.45. 
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4. Asymptotic Results 

Usin 8 Kolrnogorov's strong law of large numbers we know that  rh k ~-~' rn~ as T--*oo for 

k----l,2 .... Therefore det (M~(~))  ,.s. det(M~(m)) and d e t ( ~ ( ~ ) )  ~:-~" det(M~(.m)) as T - - v c  

because the determinants are continuous functions of the moments. Lemma 2 states  tha t  if 

F(0)-----0 and F(A) is continuous then de t (Mk(m))>0  and de t (M~(m))>0  for all k----0,1 .... 

Tl~erefore, p(m: )a-2,'p(m)=cc as T- -co .  We summarize the result as follows. 

Lemma 4. If T ~ c  then p ( ~ )  *'.A ~ .  

We will now give some asymptot ic  results for our mixed lognorrnal est imator  ~'(~). To prove 

these results we will use certain approximation theorems found in Settling (1980). We will 

assume throughout that  p----p(~). 

Theorem 5. a) If k=1 ,2  .... and T - - ~  then ~ I....~. m~. 

b) Let g(A) be a bounded and continuous fanction for all ~>0 ,  

I" I" then g(~) d/'(a) ~'  ~a) ~'(~) ~ r - - ~ .  
0 0 

¢) If T- -oc ,  then s u p l , Z ' ( l ) - F ( l ) l  "2." 0. 

d) Let r>0 .  then EIF(,k)--F(.~)F'--O and E(F(A)) ' - - (F( .k))  ~ ~ T- -~c .  
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Proof: a) Using Lamina 4 we find that for a fgxed k= 1,2 .... there exists T k such that for ~11 

T> T~ we must have k < 2 p - 1 .  Therfore, by Theorem 3 ~ = r h  k. Finally, by 

Kolmogorov's strong law of large numbers ~ ~," m k as T--e¢. 

b) This result follows immediately after applying a theorem by Frechet a~d Shohat 

that is given in Settling (1980). p. 17. 

e) This follows immediately after applying Polya's theorem in Settling (1980), p. 18. 

d) This follows immediately from standard theorems in Sedling (1980). pp. 11-15. [21 
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