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Abstract: Consider a portfolio of insurance policies where the mean frequency of claims for
each policy may vary. This heterogeneity in the portfolio may be modeled with a risk
distribution function F(A) that mixes the mean frequency A. Using the observed claim
frequencies of this portfolio, we present a continuous nonparametric estimator of the risk
distribution F(A) that reproduces some of the empirical moments and converges uniformly.
The estimator that we investigate is a mixture of lognormal distributions whose parameters

are calculated by considering the determinants of certain moment matrices.
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1. Introduction
Suppose that the number of claims N for a policy can be modeled with the Poisson
probability density function (pdf)

p(rjA) = e A0 (1.1)

Tl

where A>0 is the mean frequency and 2=0,1,2,... In a heterogeneous population the mean
frequency is distributed according to some unkoown distribution F(A). We will assume
throughout the discussion that the risk distribution F()) is continuous and that F(0)=0.
Moreover, we will assume that the risk distribution is uniquely determined by its moments.

Suppose we observe the frequencies N; for i=1,....T where T is the number of policies in
some insurance portfolio and N, ,N,.... are independent and identically distributed random
variables with a common pdf equal to

A = | stnln) ary) 1.2)

(0,00;

where p(n|A) is given in (1.1). The moments m,=E(A*) for k=12... of F(A) can be

estimated with the empirical moments

m, = n(n—1)--(n—k+1) p(n) (1.3)
a=0

where

T
B(r) = 71.2 I{N,=n) (1.4)
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is an empirical pdf. Note that i, is an unbiased and almost surely consistent estimator of

m,. The nonparametric estimator of F(A) that we will investigate will have the form

FOy=3 #; ;) (1.5)
j=t
where
A
L) = [ @07 (o)™ exp(— 1083/ 8" [207) . (1:6)
o

Note that we are not suggesting that the underlying true distribution is a mixture but we are
simply using a mixture as an estimator. Later we will show that the estimator F())
reproduces the empirical moments m, for k=1,...,2p—1. We will also show that decreasing o
makes F(}) look like a step function and so o may be viewed as a smoothing parameter.

Let us review the current literature on estimators for F(A). Hossack, Pollard and Zehawirth
(1983) gave an asymptotically consistent estimator of F()) under the assumption that it
belongs to 2 Gamma class of distributions. Willmot (1987) also gave a consistent estimator
when F{A) belongs to an Inverse-Gaussian class of distributions. Obviously, these estimators
will be asymptotically biased if the true distribution is not in these parametric classes.
Lindsay (1989) constructed a discrete estimator that reproduces some of the empirical
moments and is consistent when F(A) is uniquely determined by its moments and F(0)=0.

Our continuous estimator # () will be a generalization of Lindsay’s result.
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2. A Moment Problem

Consider the empirical moments f={rm, :

k=0,1,...} where m, is defined in (1.3).

Assume T is large enough so that p(0)7#1. Note that there always exists n,>1 such that

p(n)=0 for all n>n,. This means that 1, =0 for all n>n, and so there does not exist a

distribution function F()) such that F(0)=0 and ﬁn,,:j':"/\"dﬁ'(,\) for all k=9,1,.., But

Lindsay (1989) proves that there exists a discrete distribution F(A} with p>1 atoms such

that F(0)=0 and ﬁl,‘=f:°/\"d}“‘()\) for all k=0,1,...2p—1. In this section we will present

various definitions and we will summarize Lindsay’s result. Using this foundation, we will

then present our estimator and discuss its asymptotic properties.

Using the sequence iz, define My={1}, MJ()={m,} and for k=1,2,... define the moment

matrix as

1 my
M= "™
my My,
and the shifted moment matrix as
oy
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Me41

My
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(2.1)
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Using M,(h) and M} () for k=0,1,... we define p(1) as follows

o) =1+ sup{k : det(M,(1))>0 and det{M!(i3))>0 Vi=0,...,k}.

(2.3)

For the ensuing discussion we will assume that p<p(). Now consider the following

polynomial of degree p,

P(t; m) = det

(2.4)

m2p—l

Let r;() for j=1,...,p denote the roots of Pt ; 7). Next calculate :(éx):(rl,...,r,)r as

follows

T 1

Ty n
»-1

T 1

-1
1 1
r mn
: ; (2:5)
’4—1 My

whenever the inverse matrix exists. We now give Lindsay’s result.
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Lempa 1.1f p<p{m) then there exists a unique distribution F()«) with p distinct atoms of

mass 7;(m)>0 at r;(/7)>0 for j=1....,p whose moments are equal to m, for k=1,..2p—10

Lindsay’s result is related to the Stieltjes moment problem, that is discussed in Shobat and
Tamarkin (1943). The proof for the following lemma is based on the results presented there.
Lemma 2. a) A distribution F(A) with a moment sequence m={m, : k=0,1....} has p

distinct atoms of mass 7,>0 at r;>0 for y=1....,p if and only if det(M;(m)}>0,

det(M'(m))>0 ¥i=0,...,p—1 and det(M;(m))=0, det(M(m))=0 Vi=p,p+1....
b) If F(A) is continuous and F{0)=0 then det(M,(m))>0. det{M(m})>0 V:=0,1,.0

3. The Mixed Lognormal Estimator

In this section, we will show how to calculate the parameters o, p, *,,...,7, and 3,,...,8,

for our mixed lognormal estimator. Define m*={m} : k=0,1,...} where
mt = r‘rxkx:xp{—thr?/Z}‘ (3.1)
Note that m} —rn,, det(M,(m*)i—det(M;(/)) and det(M(m*))—det(M (h)) as o—0.

Therefore, if p<p(m) then there exists ¢4>0 such that p<p(m*) for all 0 <o, In the

ensuing discussion we will always assume that <oy
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The parameters BI: r,(rg‘)>0 for j=1,...,p are equal to the distinct positive roots of the
poiynomial P(t ; m*). Finally, the parameters 0 <, <1 for j=1,...,p are equal to x=1(m*).
Let us prove that calculating tbe parameters in this manner yields an estimator F(A) that

reproduces the empirical moments. Define m={m, : k=0,1,...} where
had -
my, = [ MedE(xy . (3.2)
]

According to Lemma 1, the distribution with mass of 7, at the points §; has moments equal

)

I
to m} for k=1....,2p—1. Therefore ﬁlk=ZrlEiexp{k’az/2}=exp{kzdz/2}xm:=1hk.
=1
Now. let us show that ¢ is a smoothing parameter by proving that F (z\)i F(3) as 0.

First, note that P(t; m*}— P(t; 72} as ¢ —0. This implies that § =r;(m*)—7,(7) as 0 —0

because r, () is a root of the continuous polynomial P(t; ). In turn this implies that

5

=7(m*)—1(m) as oc—0 because r(m) is a continuous function in . Therefore

LY

[
= n,Bﬁexp{k202/2}—Zr’(rjz)(r](12n))* as 0 —0 for k=1,2,... In other words, all the
=1 j=1
moments of F()) converge to the moments F(}). According to a theorem by Frechet and

Shohat that is given in Serfling (1980). p. 17, this is a sufficient condition for convergence in

distribution. We now summarize our results.

Theorem 3a) If k=1,....2p—1 then m,=m, and
b) if o0 then E(A)LFP(A). s}
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Let us apply the result to some motor vehicle data given in Johnson and Hey (1971). In this

data we find that T=421,240 and that

p(0) = .879337 p(1) = .110495
5(2) = 009341  $(3) = 000753 (3.3)
p(4) = .000066 ?(5) = .000007.

Using (1.3) we find that

m, = .131735 m, = 024132

I
w
[l

006522 f, = 002424 (3.4)

fag = 000840 g = .000000.

Using this data we constructed two graphs. Figure 1 shows a plot of the pdf of the mixed
lognormal estimator and the pdf of the inverse-gaussian estimator given in Willmot (1987).
The smoothing parameter for the mixed lognormal estimator was c=.45 and we found that
increasing it slightly yielded an estimator that was almost identical to the inverse-gaussian
estimator. Figure 2 compares the pdf of the mixed lognormal estimator when the smoothing
parameter ¢ is equal to .15 and .45. The parameter values for the plot with ¢=.15 were
p=2, 3,=.3704, §,=.1048 and =, ==.0958, 7,=.9042. These graphs and all the necessary

calculations were made with the statistical computing language called GAUSS.
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Figure 1. A comparison of the mixed lognormal and inverse-gaussian estimators.
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Figure 2. A comparison of the mixed lognormal estimator when ¢ =.15 and o =.45.
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4. Asymptotic Results

Using Kolmogorov's strong law of large numbers we know that m, “* m, as T'—eoco for
k=1,2.... Thetrefore det(M,(m)) “2 det(M,(m)) and det(Mi(m)) <3 det(Mi(m)) as T—oo
because the determinants are continuous functions of the moments. Lermnma 2 states that if
F(0)=0 and F()) is continuous then det{M,(m))>0 and det(M;(m))>0 for all ¥=0,1,...

Therefore, p(1h)=> p(m)=oc as T--0c0. We summarize the result as foliows.
Lemma 4. If T—oc then p(n) == co. ]

We will now give some asymptotic results for our mixed lognormal estimator F(}). To prove
these results we will use certain approximation theorems found in Serfling (1980). We will

assume throughout that p=p(m).

Theorem 5. a) If k=1.2.... and T—oo then 1, &' m,.
b} Let g(1) be a bounded and continuous function for all A>0,
oo _ oc
thenj g dF () = J o)) dF()) as T~—cx.
0 0

¢) If T—oc, then sup|F(A)~ F(X)] & 0.
>0

d) Let r>0. then E|F{A)— F(A)|"—0 and E(F(A)) —(F(A\)) as T—oc.
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Proof: a) Using Lemma 4 we find that for a fixed £=1.2,... there exists T, such that for all
T> T, we must have k<2p—1. Therfore, by Theorem 3 m,=,. Finally, by
Kolmogorov’s strong law of large numbers 1, “= m, as T—oo.
b) This result follows immediately after applying a theorem by Frechet and Shohat
that is given in Serfling (1980), p. 17.
<) This follows immediately after applying Polya’s theorem in Serfling (1980}, p. 18.

d) This follows immediately from standard theorems in Serfling (1980). pp. 11-15. D

References

Hossack. I.B., Pollard, J.H. and Zehnwirth, B. (1983). Introductory statistics with

applications in general insurance. Cambridge University Press, New York.

Johpson, P.D. and Hey, G.B. (1971). Statistical Studies in Motor Insurance. Journal of the
Institute of Actuaries, Vol. 97. The Alden Press, Oxford, Great Britain.

Lindsay, B.G. (1989). Moment Matrices: Applications in Mixtures. The Annals of Statistics,
Vol. 17, No. 2, pp. 722-740.

Serfling, R.J. (1980). Approzimation Theorems of Mathematical Statistics. Wiley, New York.

Shohat, J.A. and Tamarkin, J.D. (1943). The Problem of Moments. Mathematical Surveys.

Number 1. American Mathematical Society, New York.

Willmot G.E. (1987). The Poisson-laverse Gaussian Distribution as an Alternative to the

Negative Binomial. Scendinavtan Actuarial Journal pp. 113-127.

70



