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Abstract 

In order to persuade its customer with a maturing Guaranteed Investment Contract 

to roll it over for another term, an insurance company may have to provide him with an 

incentive in the form of a call option. If the exercise price of this option is close to the 

forward price of the underlying zero coupon bond, there is a very simple formula for 

determining the amount of annual interest that should be charged throughout the term of 

the new contract to pay for the option. The formula is: Multiply by 0.4 the standard 

deviation of the interest rate of the underlying zero coupon bond at the exercise date as 

estimated at the contract commitment date. 
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I. Introduction 

In a recent paper [M], John Mereu discussed the quantification of interest rate risk. 

At the end of [M], he wrote: "The presence of inertia in the exercise of ... options makes the 

application of option pricing theory in an insurance setting difficult." The purpose of the 

present paper is to supplement John's paper by examining a special case in which there 

iS no inertia in option exercise because the insurance company promises the customer to 

exercise the option for him. 

Consider an insurance company which issues Guaranteed Investment Contracts 

(GIC). Suppose that a certain contract will mature in a few weeks from now. The 

company contacts the owner of the contract and asks him to roll over the contract for 

another term. The company proposes that, if the customer commits himself now to 

reinvest the proceeds from his current GIC in a new GIC, the interest rate for the new GIC 

will be the maximum of today's interest rate and the interest rate on the day when the 

current GIC matures. Thus the customer is given some kind of an option (or an interest 

rate floor), which will be exercised automatically by the insurance company. What is the 

value of this option? In this paper we shall present a simple formula for valuing the 

option. 

A similar situation occurs when the company tries to attract business from its 

competitors. Even if a customer agrees to transfer his money from another company, it 

may take several weeks for the money to arrive. To get the business, the company may 

need to guarantee that the new customer's GIC be credited at the maximum of today's 

interest rate and the interest rate on the day when the money is received. Again, an 

option is given to the customer. 

Before we proceed further, let us review some financial terminology. A forward 

contract is an agreement between two parties at time "¢ for delivery of an asset at a later 
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time t at a price specified at time "~. Payment for the asset takes place at time t and no 

intermediate payments are made. The price specified at the initial time "~ is called derive@" 

price or contract price; however, if the price is such that the forward contract has zero 

value at time "¢, it is called forward price. The party that agrees to buy the underlying asset 

at time t for the contract price is said to assume a long position. The other party agreeing 

to sell the asset at time t for the contract price is said to assume a short position. 

A call option on an asset gives its holder the right to buy the underlying asset by a 

certain date for a certain pdce. A put option gives its holder the right to sell the underlying 

asset by a certain date for a certain price. The date specified in the contract is known as 

the exercise date or maturity date. The price in the contract is known as the exercise 

price. A European option can only be exercised on the maturity date itself, while an 

American option can be exercised at any time up to the maturity date. The terms 

"European" and "American" do not refer to the location of the option or the exchange. 

Note that an option gives its holder the right to do something, but he is not obliged to 

exercise this right. On the other hand, the holder of a forward contract is obligated to buy 

or sell the underlying asset. 

II. Formulat ion of the Problem 

Let today's force of interest for an n-year GIC or zero-coupon bond be denoted as 

S o. Assume that the customer's old GIC will mature for $A at time t, t > 0, or the customer's 

money, $A, will ardve at time t (t is around 20 days or 20/365 year). Let the force of 

interest for an n-year GIC or zero-coupon bond at time t be denoted by S t, which is a 

random variable as viewed from time 0. The customer is guaranteed by the insurance 

company to receive, at time t + n, the amount 

[ernaximurn($o, I n n maximum('o' $1) 
A ~') = A e 
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t t+n 

i i 

$A $A exp[n maximum(8 o, 8~)] 

As the customer is given an option, the insurance company should know how much this 

option is worth. In this paper we attempt to provide a simple answer to this question. 

At time t, the market value of the customer's account is 

n miLximum(8 o, St) 
Ae 

n8 t 
e 

n maximum(t~ o - 8~, 0) 
- A e  

= maximum[Aen(8o- 8~), A]. (2.1) 

Consider a forward contract for the purchase, at time t, of A dollars of n-year zero-coupon 

bonds at the force of interst 8o; i.e., one undertakes to pay A at time t and will receive 
n ~o 

Ae 

at time t + n. 

0 
I 

t t+n 

I i 

$A $A exp(n 80) 

At time t, the market value of the long position in this forward contract is 

A e n~° n(~o - st] 
A , , A e  - A .  

n8¢ 
e 

(2.2) 

Rewriting (2.1) as 

A + maximum[Ae n(8° - 5~) _ A, 0], (2.3) 

we can interpret the option given by the insurance company to the customer as a 
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European call option for assuming a long position in this forward contract; the exercise 

price of this call option is 0 and the exercise date is t which is also the maturity date of the 

forward contract. On the other hand, by rewriting (2.1) as 

A + [Ae n(8° - 8,) _ A] + maximum[0, A - Ae n(s° - s,)], (2.4) 

the customer can be viewed as holding a long position in the forward contract and a 

European put option on the forward contract, while the insurance company is assuming a 

short position in the forward contract. 

Now, our problem becomes the evaluation of the call option. Furthermore, since the 

insurance company does not receive any money until time t, we should determine the 

value of the option at time t as seen from time 0, i.e., determine the forward price o! 

the call option. Having determined the forward pdce of the option, we then convert it 

into a force of interest over the term of the GIC. It turns out that there is a very simple 

approximation formula for this force of interest: it is the standard deviation of the force- 

of-interest random variable ~ as viewed from time 0 divided by the square root of 2~. 

III. Black's Formula 

The option-pricing theory of F. Black and M. Scholes [BS] has been described as 

the most important single advance in the theory of financial economics in the 1970's. Our 

strategy for obtaining a solution to the problem is to modify the Black-Scholes formula so 

that it can be used to determine the forward price of a European call option on a non- 

dividend-paying security. 

Let S('~) denote the price at time '~ of a security which pays no dividends, '~ > 0; 

assume that it is a geometric Brownian motion, i.e., it satisfies the stochastic differential 

equation 

2 1 9  



d.S_S pdt + adW, (3.1) 
S = 

where I~ and ~ are constants and W(.) is a Wiener process. This means that the security 

price is assumed to be distributed Iognormally over any time period. Let r denote the 

riskfree force of interest, which is assumed to be constant. Black and Scholes [BS] show 

that the value of the European call option on the secudty at time ~ with exercise price X 

and exercise date t ( t  < t) is given by 

c(t, t; X) = S(~)N(dl) - Xe'<(t-t)N(dz), 

(' e-Z=~2dz, 
N(y) = 2 ~ J  

where 

(3.2) 

S(t) o2(t - 
iOgexe"r(t-'~) ÷ T 

• (3.3) 
dl o J t -  

and 

d 2 = d I - t(~/~-~. (3.4) 

For ~ ~; t, let Fs('¢, t) denote the forward price of the forward contract on the security 

committed at time ¢ for transaction at time t. Assume that the security can be stored at no 

cost; with no dividends to be paid, the cost-of-carry relation 

Fs(t, t) = S(t)e '~- ' )  (3.5) 

holds. Substituting (3.5) into (3.2) and (3.3) yields 

c(¢, t; X) = e "r(t-~)[Fs(t, t)N(d 1) - XN(d2)] (3.6) 

and 
Fs(¢, t) o=(t _ ¢) 

I°ge X + 2 
d 1 = ~ , (3.7) 

respect ively.  
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We remark that Black [B, p. 176] has derived (3.6) by assuming that, for a fixed 

transaction date t, the fractional change in the foward price Fs(., t) over any time interval is 

distributed log-normally, with a known variance rate ~32. Formula (3.6) can also be found 

in [H, p. 147], [Mr, §10.3] and [W]; also see [J]. 

Now, let us consider a forward contract on the call option to be committed at time z 

for transaction at time t, ~ < t. Let Fc(¢, t; X) denote its forward pdce. Note that the 

transaction date of the forward contract on the call option, the exercise date of the call 

option and the transaction date of the forward contract on the secudty are identical (and 

equal to t). Applying the cost-of-carry relation 

Fc(t, t; X) = c(t, t; X)e r(t-~), (3.8) 

we have the formula for the forward price of the call option: 

Fc('~, t; X) = Fs('¢, t)N(dl) - XN(d2). (3.9) 

Note that the riskfree force of interest r does not appear in (3.9), (3.7) and (3.4). 

Furthermore, if Fs(~, t) = X, then we have d 1 = --d 2 and (3.9) becomes 

Fc(t, t; Fs(~, t)) = Fs(~, t)[N(dl) - N(d2)] 

• Fs(~, t)[2N(dl) - 1] 

= Fs(,C,t)[2N(o~/t/2) - 1]. (3.10) 

[We remark that, by put-callparity, expression (3.10) also gives the forward price of the put 

option with exercise date t and exercise price Fs('¢, t).] As the forward price Fs(t, t) should 

be known at time '¢, to apply (3.10) all we need to know is the standard deviation a. 

Formula (3.10) is simpler than the classical Black-Scholes formula (3.2). 
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IV .  A S o l u t i o n  

Let us return to our problem. We would like to use (3.9) or (3.10) to determine the 

value of the call option given by the insurance company to its customer. For x ~ y, let 

P(x, y) denote the price at time x of a zero coupon bond that pays 1 at time y. 

x y 

I s 

$P(x, y) $1 

Note that P(y, y) = 1. In terms of the notation introduced in Section II, P(0, n) = exp(-nS0) 

and P(t,  t + n) = exp(-nSt). 

To apply the results in the last section, consider the security as a zero coupon bond 

that pays 1 at time t + n; then for 0 ~ t ~; t 

S('¢) = P ( t ,  t + n) 

and 

Fs('¢, t) == P('¢, t + n)/P(t, t) 

(t and n are fixed). Define the forward force of interest f('¢) by the equation 

P(~, t + n)/P(t, t) = e ~th). (4.1) 

If the riskfree force of interest r is constant and f(t) is a Brownian motion satisfying the 

stochastic differential equation 

df('¢) = md'~ + sdW(~), 0 < "¢ < t, (4.2) 

where m and s are constants, we can apply (3.9), (3.7) and (3.4) with ~ = O, o = ns, 

X = P(O, n) and 

Fs(O, t) = P(O, t + n)/P(O, t) 
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to obtain the formula 

F¢(0, t; P(0, n)) = [P(0, t + n)/P(0, t)]N(dl) - P(0, n)N(d2). (4.3) 

Formula (4.3) gives a solution to the problem posed in Section I1. The value of the call 

option per dollar of investment received at time t is 

Fc(0, t; P(0, n))/P(0, n) = {P(0, t + n)/[P(0, t)P(0, n)]}N(dl) - N(d2). 

We now convert this call option value as a force of interest A over the term of the 

GIC, i.e., the interest rate spread that the insurance company needs in order to provide the 

option. Let 8 denote the maximum of S o and 8 r For each dollar the insurance company 

receives from the customer at time t, it has to pay him back $e ns at time t + n. The cost of 

the option at time t is Fc/P(0, n); therefore the company has only 1 - Fc/P(0, n) to invest. 

(We assume that there is no other cost for the insurance company.) Thus we have the 

equation 

from which we get 

{1 - [Fc/P(0, n)]}e n(~+A) = le "s, 

A = - I°g'I1 
Fc(0, t; P(0, n))l 

P(O, n) J 

= - I°g={ 1 
P(0, t + n) "] 

P(0, t)P(0, n) N(dl) + N(d2) 
(4.4) 

Formula (3.10) is simpler than (3.9). Rewriting (3.10) in terms of zero coupon bond 

prices, we have, with '¢ = 0 and a = ns, 

Fc(0, t; P(0, t + n)/P(0, t))/[P(0, t + n)/P(0, t)] = 2N(ns~/t]2) - 1. (4.5) 

Suppose that P(0, n) is the same as (or very close to) the forward price P(0, t + n)/P(0, t) or 
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that the insurance company would guarantee the forward rate f(0), not 8o, as the interest 

rate floor, then we can apply (4.5). If t is small, the spot price P(0, n) should be close to the 

forward price P{0, t + n)/P(0, t). It follows from (4.5) that the option value, expressed as a 

force of interest, is given by the formula 

A = -(1In)log.[2 - 2N(ns'Jt/2)] 

= -(1/n)log.[2N (-ns~/t/2)]. 

(4.6) 

We have programmed (4.6) in APL. Listed on the next page are two APL functions and 

The CmplmNrml function approximates the complement of some numerical values of &, 

the normal distribution 

1 5e -z2/2 dz 1-N(x )  = ~ -  
X 

with absolute error less than 7.5 x 10 -a [AS, p. 932, 26.2.17]. The values of ~ are given 

for n = 1,3, 5, 10, 15, 25, s = 0.005, 0.01,0.015, 0.02, 0.025 andt = 151365, 20/365, 

25/365, 30/365. For example, for a 5-year GIC with t = 20/365, the five values of A 

corresponding to the five standard deviation assumptions are 0.04674749713%, 

0.09360407434%, 0.1405698622%, 0.18764497% and 0.2348295071%. 
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v Opt  1on 
[1]  !"t: ,,.. (15 20 25 30 ÷ 365) * 0 .5  
[2] 8 "- 0 .005  0 .01  0 .015 0 .02  0 .025 
[3] n " -  1 3 5 10 15 25 
[4] - (e 2 " CalolmHT1nl 0 .5  • n " . "  s , . ,  I t )  * n o . "  ( ( p s ) ,  01"I:)1:)1 

v 

vz ~CalP l~r 'ml  X j t 
[1] t ~ ÷ 1 * 0 .2316419 • X 
[2] Z ~ t " . 3 1 9 3 8 1 5 3 " t ' - . 3 5 6 5 6 3 7 8 2 * t - 1 . 7 8 1 4 7 7 9 3 7 * t ' - l . 8 2 1 2 5 5 9 7 8 * t - 1 . 3 3 0 2 7 4 4 2 9  
[3] Z ~ Z • ( * - 0 . 5 • X ' 2 )  * ( 0 2 ) * 0 . 5  

v 

0.0004044557119 
0.0008090738898 
0.001213855612 
0.001618800906 
0.002023909802 

0.0004046185373 
0.0008097274425 
0.001215327322 
0.001621418432 
0.002028001029 

0.0004047819604 
0.0008103818589 
0.001216800617 
0.001624038946 
0 . 0 0 2 0 3 2 0 9 7 5 5 5  

0.0004051909295 
0.0008120194729 
0.001220488576 
0.001630601073 
0.002042359787 

0.0004056002057 
0.000813659051 
0.001224182984 
0.001637178358 
0.002052651495 

0.000406419511 
0.0008169439149 
0.001231590897 
0.001650377975 
0.002073322541 

0.0004670396698 
0.0009342963167 
0.001401771034 
0.001869463866 
0.002337374856 

0.0004672570114 
0.0009351680163 
0.001403733759 
0.001872954635 
0.002342831037 

0.0004674749713 
0.0009360407434 
0.001405698622 
0.0018764497 
0.002348295071 

0.0004680203717 
0.0009382248502 
0.001410617912 
0.001885203913 
0.002361987196 

0.0004685662073 
0.0009404119411 
0.001415547082 
0.001893981393 
0.002375724589 

0.0004696590142 
0.0009447948785 
0.001425434753 
0.001911605535 
0.002403333896 

0.0005221804863 
0.001044632463 
0.00156735704 
0.002090354281 
0.002613624244 

0.0005224523468 
0.001045722331 
0.001569810855 
0.002094718468 
0.002620445722 

0.0005227248489 
0.001046813413 
0.001572267433 
0.002099088437 
0.002627277949 

0.0005234067066 
0.001049544218 
0.001578418746 
0.002110036371 
0.002644403156 

0.0005240891444 
0.001052279164 
0.001584583827 
0.002121016759 
0.002661591507 

0.0005254555897 
0.001057761262 
0.001596954904 
0.002143074012 
0.002696155734 

0.0005720342094 
0.001144394424 
0.001717081774 
0.00229009634 
0.002863438203 

0.0005723605913 
0.001145702481 
0.001720026744 
0.002295334103 
0.002871625284 

0.0005726876406 
0.001147011957 
0.00172297517 
0.002300579288 
0.002879826314 

0.0005735059784 
0.001150289644 
0.001730359123 
0.002313722406 
0.002900387448 

0.0005743250568 
0.001153572749 
0.00173776114 
0.002326908117 
0.002921031455 

0.0005759652628 
0.001160154979 
0.001752618873 
0.002353406125 
0.00296256542 
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We now present a formula even simpler than (4.6). 

w =  ns~t/2; 

in most practical situations, w is a small positive number. 

density function (2x)-1~exp(-z2/2). Then 
w 

2N(--w) = 1 -  2Iv(z)dz 
( i v  

0 

- 1- 2wv(O) - I -2wl~, 

Thus 

from which we obtain 

Iog,[2N(--w)] = -2wh/(2x), 

Put 

(4.7) 

Let v(z) denote the normal 

. ( 4 . 8 )  

Note that the numerator s~t is the (conditional) standard deviation of the force-of-interest 

random vadable 6 t as seen from time 0; the number s is an annualized standard 

deviation. Below is a table of values of A according to (4.8) for s = 0.005, 0.01,0.015, 

0.02, 0.025 and t ,- 15/365, 20/365, 25/365, 30/365. 

0.0004669266216 

0.0009338532433 

0.001400779865 

0.001867706487 

0.002334633108 

0.0005220398332 

0.001044079666 

0.0015661195 

0.002088159333 

0.002610199166 

0.0005718659852 

0.00114373197 

0.001715597955 

0.002287463941 

0.002859329926 

0.000404370316 

0.0008087406321 

0.001213110948 

0.001617481264 

0.00202185158 

On comparing these numbers with those on the previous page, we see that (4.8) is a 

good approximation formula. The term of the GIC, n, does not appear in (4.8). Retracing 

the steps above more carefully, we can in fact prove that 

A ~ S~tt/~/(2=). (4.9) 
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V. A More General  Framework 

We have used the Black-Scholes formula to derive the option-pricing formulas (4.4), 

(4.6) and (4.8). Are the assumptions valid? A criticism that comes to mind immediately is 

that the fiskfree force of interest r is assumed to be constant over time. Indeed, I wrote [C, 

p. 146]: "The risks considered in this paper are due to long-term interest rate fluctuations. 

It is not realistic to assume that the short-term (fiskless) interest rate will remain fixed while 

the long-term rates fluctuate." However, because we have formulated the problem in 

terms of forward prices, r does not appear in the final formulas. Thus one can hope that 

(4.8) (or something as simple) may be valid in a more general framework, in which the 

riskfree interest rate is stochastic. This turns out to be true. 

Merton [Me; H, p. 304, §12.2] has generalized the Black-Scholes formula to the case 

where the fiskfree rate is stochastic. We can start with Merton's generalization to come up 

with a formula similar to (4.8). Jamshidian [Ja], assuming that the fiskfree force of interest 

r(.) evolves according to the mean-reverting Gaussian process 

dr(~) = a[r 0 -  r(l:)]d'c + 8dW(~), (5.1) 

has derived a Black-Scholes type call option formula for zero coupon bonds, from which 

we can obtain the approximation formula 
Op 

A -  n 2, /~ (5.2) 

where Gp is the standard deviation of the logarithm of the n-year bond price random 

variable P(t, t + n) as seen from time 0, 
O2p = Vat[log= P(t, t + n) I r(0)]. 

It is proved in [Ja] that 

Cp = i3q[(1 - e-2=)/2a](1 - e-=n)/a. 

Now, if the speed of mean reversion a is close to zero, then 

(5.3) 
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(I - e-2=t)/2a - t 

and 

(1  - e " ~ ) / a  = n ;  

hence (5.2) becomes A . 8VUV(2~), which IS similar to (4.8). 

There are two problems with an interest rate model as defined by (5.1): interest rates 

may become negative and the initial yield curve cannot be prescribed exogenously. 

Jamshidian [J1, J2] and Hull and White [HW] have shown that (5.1) can be generalized in 

such a way that the initial yield curve can be taken as exogenously given. In a 

subsequent paper, we shall show that (5.2) holds in such a framework. 

One may be surprised that, in these option-pricing formulas, the direction of interest 

rate movements does not seem to matter. The constant m in the stochastic differential 

equation (4.2) does not appear in the formulas. One of my criticisms of the model 

presented in [CI] is that "the option-pricing formula is independent of" the underlying trend 

of the bond yield movements [CI, p. 147]. This same criticism seems to be applicable 

here. However, this is not the case. The forward price P(0, t + n)/P(0, t) is a market 

forecast of how interest rates may move. 

Vl. Executive Summary 

Formula (4.8) assesses the force of interest which should be charged (continuously) 

throughout the term of the GIC to pay for the option given to the customer. It is 

straightforward to use. At the time when the customer commits himself to roll over the 

maturing GIC for another term, the actuary looks forward and estimates the standard 

deviation of the force of interest of the new GIC. He then divides the standard deviation 

value by ~/(2~). The result is the interest rate spread needed to pay for the option. There 

is one caution: for (4.8) or (5.2) to be applicable, the exercise price and the forward price 
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of the underlying zero coupon bond have to be close; this should normally be the case, as 

the time between commitment date and exercise date is usually quite short. 

Some people might find it strange that the constant ~ appears in a formula that 

deals with interest rates and options. The following anecdote was told by the 

distinguished English mathematician and logician Augustus de Morgan (1806-1871) [DM, 

p. 285; Ca, p. 160]: 

More than thirty years ago I had a friend, now long gone, who was a mathematician, but not 

of the higher branches: he was, inter alia, thoroughly up in all that relates to mortality, life 

assurance, &c. One day, explaining to him how it should be ascertained what the chance is of 

the survivors of a large number of persons now alive lying between given limits of number at 

the end of a certain time, I came, of course upon the in~oduction of 7t, which I could on|y 

describe as the ratio of the circumference of a circle Co its diameter. "Oh, my dear friend! that 

must be a delusion; what can the circle have Co do with the numbers alive at the end of a given 

time7' - -  "I cannot demonstrate it to you; but it is demonsu'ated." - -  "Oh! stuff! I think you can 

prove anything with your differential calculus: figment, depend upon it." 

I wonder if some twentieth century actuade s might say: "What can the circle have to 

do with interest rate guarantees? I think you can prove anything with your stochastic 

calculus." 

De Morgan had also published an actuarial book [De]. At the end of its Preface, 

dated August 3, 1838, he wrote: 

I have endeavoured, as much as possible, to flee the chapters of this work which relate to 

insurance offices from mathematical details, and Co make them accessible to all educated 

persons. Whether they act by producing conviction, or opposition, a step is equally gained: 

nothing but indifference can prevent the public from becoming well acquainted with all that is 

essential for it to know on a subject, of which, though some of the details may be complicated, 

the f'wst principles an: singularly plain. 
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As I am not able to find the constant ~ in De Morgan's book [De], I think that I should 

also not have it in the option-pricing formulas. Since ",/(2~) = 2.5066, we can change 

(4.8) and (5.2) to 

and 

respe~ively. 

many cases. 

A - sqff2.5 

A - ap/(2.Sn), 

Indeed, in view of inequality (4.9), these would give better approximations in 
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