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Abstract. A model is presented which can be used when interest rates 
and future lifetimes are random, for certain annuities. Expressions for the 
mean values and the standard deviations of the present values of future 
payment  streams are obtained. These can be used in determining contin- 
gency reserves for possible adverse interest and mortali ty experience for 
collections of life annuity contracts. Several complete examples are con- 
sidered. Certain boundary crossing probabilities for the stochastic process 
component  of the model are obtained. 
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1 I n t r o d u c t i o n  

Actuaries and other people involved with interest rates and investment 
value variations have long been aware of their random nature.  During the 
last fifteen years many papers have been writ ten about stochastic interest 
rates and the randomness of asset and liability values. More recently papers 
have considered randomness in both mortali ty (morbidity) and interest 
earnings in life insurance and annuities. A significant article is Why Not 
Random Interest? by J. C. Hickman (1985). P. P. Boyle (1976) considered 
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this dual randomness, and E. W. Frees (1990) discussed the extension of 
the theory of life contingencies to a random interest environment. 

This paper presents a model which can be used when interest rates 
and future life times are random, for certain annuities. It was constructed 
so that  mean values and s tandard deviations of the present values of fu- 
ture payment  streams can be obtained, and keeps a fair level of reason- 
ableness in the model. References about stochastic interest ra tes  which 
contributed to our understanding were Boyle (1976), Panjer and Bellhouse 
(1980), Wilkie (1981), Giacotto (1986), and Dhaene (1989). Mathemati-  
cal models for randomness in several interest functions which also aided 
our thinking were Ziock (1973), (1975), Miller-Hickman (1974), Dufresne 
(1989), Pollard (1976), and Jet ton (1988). Asset and liability value vari- 
ability, and immunization theory has an extensive research history, see, e.g. 
Boyle (1978), Shiu (1987), Beekman-Shiu (1988), and references. 

The important  focus of Bowers, Gerber, Hickman, Jones and Nesbitt 
(1986) on using multiples of s tandard deviations of random loss functions 
in p remium calculations helped direct the plan of this paper. 

A motivation for this s tudy is finding a way to determine contingency 
reserves for possible adverse interest and mortality experience for collec- 
tions of life annuity contracts. Boermeester (1956), Fretwell and Hickman 
(1964), and Bowers (1967) addressed this problem for mortali ty random- 
ness. Fretwell and Hickman (1964), p. 56, give the following challenge: We 
will leave for later development the question of determining intervals for 
life annuity costs with associated approzimate probability statements where 
both time until death and the interest rate are random variables. 

The models of the paper include successively more amounts  of random- 
ness. Section 2 of this paper presents a model for annuities certain in which 
there are stochastic fluctuations about a fixed interest level, over the period 
of the annuity. In Section 3 the period of the annuity is the random future 
lifetime of the purchaser, and the randomness from Section 2 is maintained.  
Section 4 permits  the basic interest level to assume values in accord with 
a probability distribution. Formulas for the mean values and s tandard de- 
viations of the present values of future payment streams in Sections 2, 3, 
and 4 are derived. Several complete examples are considered, and tables of 
values are shown. The final section is devoted to certain boundary crossing 
probabilities for the stochastic process used in Section 2. 
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It is not suggested that Section 4's model is better than those contained 
in our cited references, but its structure does present one method of pro- 
viding for randomness in interest rates and future lifetimes. An important 
feature is that one can calculate the means and standard deviations, and 
hence can make scientific provision for variability in the present value of 
future annuity payments. 

2 R a n d o m  Dev ia t ions  from Interest  Only  
F ixed  Time Interval  

In this section, a constant force of interest 6 is perturbed by a stochastic 
process. This provides one method of generating interest scenarios over 
time. Associated with these interest functions are annuities certain for var- 
ious periods of time. We use the Ornstein-Uhlenbeck stochastic process 
as our means of modeling interest randomness about a fixed level. This 
process has the advantage that  its sample functions tend to revert to the 
initial position, a property which seems appropriate for many interest rate 
scenarios. The finite dimensional distributions are normal, and the process 
has the Markovian property. One weakness of our model is that  our random 
force of interest accumulation function may not be non-decreasing. How- 
ever, we will demonstrate in Section 5 that  the probability of negative force 
of interest accumulations is quite small. Admittedly, that only addresses 
part of the weakness. If market values of investments are utilized, it may 
happen that the random force of interest accumulation function may be 
decreasing, and indeed, may be negative for certain intervals of time. 

When we compute the means and standard deviations, we are using 
function space integrals, i.e. averages over collections of functions which 
reflect the randomness over time. As a reference, see pages 166-168 of 
Beekman-Shiu (1988). 

Let R(s)  = & + Y(s), 0 < s < n, be the variable forces of interest. 
Let X(t)  = [~ Y(s )ds ,  0 < t < n. Then the force of interest accumulation 
function is f~R(s )ds  = ~t + Z ( t ) , t  >_ O. We will assume that {Z( t ) ,0  < 
t < n} is an Ornstein-Uhlenbeck (O.U.) stochastic process. This process is 
both Gaussian and Markovian. In the notation of Beekman-Shiu (1988), 
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equations (3.3) and (3.4), its mean function 

m(~) = EIX( , ) ]  _= 0, 

its autocorre la t ion function 

c(~,t) = E [ X ( . )  - . . , ( . ) ] [ X ( t )  - ~ ( t ) ]  

= a , ~ - . ! , - , I / ( 2 , , ) ,  and 

x(t) = f0'a,-'c'-'ldZ(,), 
where  {Z(r ) ,O _< r < oo} is the Wiener stochastic process, and ~ and 
are positive constants.  We assume tha t  X(O) = O. The conditional mean  
and variance functions are 

E[X(t)  l X(s) = x] 
Var[X(t) l X(s) = z] 

= ze -~{t-'), and 

= A ( , , t )  

= ~ ' [1  - ~ - , . ( , - , I ] / ( 2 , , ) ,  

for t > s. 

We will denote  the unconditional variance/Y~/(2,c) by a s. An est imation 
procedure  for ~ is given in (3.23) of Beekman-Shiu (1988). As applied to 
cer ta in  U.S. Treasury bill re turns,  ~ - 0.17, and e -~ - 0.84. The sample 
variance could serve to est imate a 2. 

The  r a n d o m  present value of a future  payment  s t ream b( t ) ,  0 < t < n ,  

would be f i b ( t )exp{ - f JR(s )ds }d t .  W h e n  we  u s e  b(t) - 1, 0 < t < n ,  w e  

wri te  

, . , .  = 

fo" { ()} = e x p  - 6 t -  X t dt .  

The expected value of ~ lR  would be 

L/o" e=p{-~t - X(t)}dtdX E{~IR} = Io,.J 
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where the function space integral is over C0[0,n], the set of continuous 
functions on [0, n] which vanish at the t ime origin. By Fubini's Theorem, 
we can exchange orders of integration: 

= fo" e x p { - 6 t  - X(t))dX, t. 

See p. 99 of Beekman (1974) - note the typos: the 2nd and 3rd integrals 
should have the orders of integration dpd#(x)  and dl~(x)dp, respectively. 
By using Theorem 1, p. 96, and Example 1, p. 97 of Beekman (1974), and 
then the moment  generating function for a normal varlate (see, e.g., pages 
110-111 of Hogg and Craig (1978)), 

= [ " e - " f  e-X( ' }dXdt  E{~n lR}  ./o .re Co[O,~] 

= e -~' e -= e x p { - x ' / [ 2 A ( O , t ) ] } I 2 ~ r A ( O , t ) } - } d x d t  
o o  

= e-" exp[A(O,t)/21dt. 

Note that  if 8 2 ~ 0 (corresponding to no randomness in interest), this 
reduces to g~ls, as it should. The interchange of the limit and the integral 
is justified by Lebesgue's dominated convergence theorem. 

We will evaluate 

= fo" ~-" exp{,:,'[1 - e - '" ] /2}et  

when ~; = 0.17, • = 0.05, 0.06, 0.07, 0.08, a = 0.0200, 0.0100, 0.0050, 
0.0025, and n = 5, 10, 20, 30. These are displayed in Table 1. 

Table 4 of P. Boyle (1976) contains some values for comparison. We 
must  provide some ideas and notation from Boyle's paper,  before presenting 
the comparative values. The one year rate of return in year t is a random 
variable rt, and xt = 1 + ft. It is assumed that  the {xt} are independent  
r andom variables. The random discounting factor vt = ( l + r t )  -1. The value 
of unit  payments  per annum at the ends of the next n years is denoted and 
defined by 

a~l = ~1 + ~ 2  + " ' +  ( ~ 1 ~ ' " ~ , ) .  

New random variables ~,~ are defined by 

k=l  
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Table 1: E{~Ix } 

n = 5  n = 1 0  
~ \ a  0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 
0.05 4.424096 4.424012 4.423991 7.869655 7.869454 7.869404 

0.06 4.319804 4.319723 4.319703 7.520059 7.519869 7.519822 

6\a 0.0200 0.0100 0.0050 0.0200 0.0100 0.0050 
0.07 4.219160 4.218846 4.218768 7.192597 7.191878 7.191698 
0.08 4.121406 4.121101 4.121025 6.884296 6.883615 6.883445 

n = 2 0  n = 3 0  

6\a 0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 
0.05 12.642915 12.642537 12.642443 15.538045 15.537559 15.537437 
0.06 11.647221 11.646877 11.646792 13.912256 13.911828 13.911721 

6\a 0.0200 0.0100 0.0050 0.0200 0.0100 0.0050 
0.07 10.764566 10.763317 10.763005 12.538356 12.536842 12.536463 
0.08 9.977813 9.976673 9.976388 11.367823 11.366475 11.366138 

Thus, anl = zl + 42 + . . .  + £',. 

and 

The expected value and variance of a~l are 

ECS~,), 
m , = l  

N 

Var( .) + 2 E 
m=l  j < k  

In obtaining the values for Table 4, Boyle assumes that ~= is lognormally 
distributed with log ~-t having mean ~ and various a ~. It is also assumed 
that  {~=} are identically distributed. One consequence is that  

wt 

E(YI vk) = exPC-rn/~ + rna ' /2) ,  

and 
n 

t = l  
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In Table 4, for/z = 0.06, and e = 0.01, and n = 5,10,20, and 30, the mean  
values of 5nf are 4.192, 7.298, 11.306, and 13.506 respectively. 

We now wish to compute the second moment  of KnlR. By using Fubini 's 
Theorem,  a suitable split of the range of integration, Theorem 1, p. 96, 
Example 2, p. 97, and the definition of v(r) ,  0 < r < oo, p. 89 of Beekman 
(1974), 

E{(~.I.) =) 

= fCotO,.,[L"e-"-x(')dt]'dX 
= /Oo[O, . j fo"e -"-x ( ' )~ fo"e-"-x '"d tdX 

lo"fo°f  = e - 6 " - X ( s ) e - t t - x ( t } d X d s d t  
o[0,-] 

= ,, t v t  ~ 2A(0,.) 2Al"t) J d x d y d s d t  L e-'~tL e-"f2fl ex~z-x . . . .  "-2 Iv-"- ' ( ' - ' ) l " t  
_ _ [ ( 2 n ) 2 A ( O , s ) A ( s , t ) ] ~  

n s. e x p { - x  - y  2i]o,t) lv-='-'t'-')l= 

J, e -  . , -ooJ-oo [ (27r)2A(O, t )A( t , s ) ]½ 

For ease of notat ion,  let I be the first integral. By integration on y first, 
and using pp. 110-111 of Hogg and Craig (1978), we find tha t  

= [ e -6t t oo 2A(O,,), 
f _ , . f  =-.c,-.) + ,o  ,o  , - . o  [ 27 rA(O,s ) ] ' /=  d z d s d t  

[, e x p { - x ( l  + e-~(t-s)) n ~A(O~#)Z2 } 
= f o-"a<">/'F 

Jo Jo J - =  [27rA(0,,s)lU2 

= / " e - 6 t f t e - 6 , + A ( , , t ) / 2 e x p { ~ [ 1  
dO dO 

+ e - " ( t - ' ) ] 2 } d s d t .  

Let J be the second integral. In a similar manner ,  

J e - ~ t  e-6s 
• I t  oo 

=2 A(i~ l 
2A{0,t) x e - " ( ' - t )  + ~ J d x d s d t  

[21rA(0,t)]{ 
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~0 = [2~A(0,01; 

]o._,,[._,.+.,<,,.)1, .A(O,,),. = .~t expl  T I ' t  + e-'('-OJi}dsdt" 
Therefore,  

Var{~lR } = I + J - { e-%A(°"l/~dt} 2. 

Note  that  i f /3 2 ---* 0, or n -4 0, Var {anlR} -* 0, as it should. One can 
demons t ra te  tha t  I = J ,  and that fact was used in creating Table 2. 

Table 2: [Var{aniR}]~ 

n = 5  n = 1 0  

6 \ e  0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 

0.05 0.024173 0.012086 0.006043 0.046536 0.023267 0.011633 
0.06 0.023482 0.011740 0.005870 0.044105 0.022052 0.011026 

~ \ a  0.0200 0.0100 0.0050 0.0200 0.0100 0.0050 

0.07 0.045635 0.022815 0.011407 0.083686 0.041837 0.020918 

0.08 0.044347 0.022171 0 .011085 '0 .079449  0.039719 0.019859 

n = 20 n = 30 
5 \ a  0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 

0.05 0.070094 0.035045 0.017522 0.078813 0.039404 0.019700 

0.06 0.064025 0.032011 0.016005 0.070386 0.035190 0.017592 

6\a! 0.0200 0.0100 0.0050 0.0200 0.0100 0.0050 
0.07 0.117407 0.058694 0.029345 0.126690 0.063333 0.031663 
0.08!  0.108009 0.053995 0.026996] 0.114783 0.057380 0.028685 

3 R a n d o m  D e v i a t i o n s  f r o m  I n t e r e s t  6 ,  a n d  

R a n d o m  M o r t a l i t y  

In this section we replace the fixed period of the annuity by a random period 
modeling the future lifetime of the annuitant .  The interest randomness is 
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preserved. Formulas for the mean values and standard deviations of the 
present values of future streams are obtained. 

If T denotes the random future lifetime of (z) , then T has a probability 
density function of tp=/~z+t, 0 < t < c~. Assume that  T is independent  of 
the process { Z ( t ) , 0  < t < c~}. 

The random present value of a future payment stream b(t), 0 < t < T, 
would be /or  b(t) e x p { -  f~ R(s)ds}dt. For b(t) = 1, Vt, we let 

By the independence assumption,  

E[~rlR] = ERET[~IRIR 1. 

By Theorem 3.1 on page 62 of Bowers et al (1986), 

/? Er['~IR[R ] = ,-~'-x(t) ,p=dt. 

With the use of Fubini's Theorem, and Section 2, 

ERET['E~IRIR ] = ~°° e-6t,p=Ex{e-x(')}dt 

Z = e-" ,p ,  exp[A(O,t)/2ldt 

= e x p { o ' { 1 -  
J0 

Note that  as a 2 ~ O, this reduces to ~=, as it should. 
For the second moment ,  

E[~-~I.] = E [ { f o rexp {  - fo'R(,)ds}dt}']. 

In the notation of Theorem 3.1 [Bowers et al (1986)], 
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2 [ f 0 ' e x p { - 6 v -  X(v)}dv]e  - ' ' - x (O.  Thus, 

ERETIZ(T)JR]  

by Fubini's Theorem 

2 fo °° fo' e - " - "  exp~.'A(v't)2 + ~ A ( O '  v) [ 1 + e_,=(,_~)],},p=dvdt 

by Section 2. 

:Remarks. As usual, Var [~ la ]  = E I ~ T l a ] -  {E[~ Ia ]} ' .  These applications 
of Theorem 3.1 (loc. tit .) prove very helpful in our later numerical  work. 

Example.  Let us now assume a Makeham law applies for the randomness 
in survival. Then/~= = A + B c  = for suitable constants A, B,  and c, and 

,p= = exp [ -At  - me=Co ' -  1)] 

for m = B~ In c. Thus, 

ERET['dyIRfR ] = f0°°e -St exp{a=[1 - - e -2" ' ] / 2}exp [ -A t  - 1 7 l C = ( C  t - 1)]dt. 

In part icular ,  we will use the values for A, B,  and e given on page 72 of 
Bowers et al (1986), which were used in an Illustrative Life Table for ages 
13-110. Thus,  A = 0.0007, B = 0.00005, and c = 10 °'°4. Also, we choose 
,~ = 0.17. Since =p= = 0 for t > 110 - x, 

ERET[ '~Ia lR]  = .to - " 

e p[-O.OOOTt - o . o o o s 4 3 ( l O  ° . " ' )  (lO °°' '  - 1)]dt. 

To continue the example,  we will let x = 65, 70, 75, and 80, 6 = 0.05, 0.06, 
0.07, 0.08, and e = 0.0200, 0.0100,0.0050, and 0.0025. The results appear  
in Table 3. 
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Table 3: E[E~IR] 

x = 65 ~ x = 70 

6 \ a  0.0100 0.0050 0.0025 ' 0.0100 0.0050 0.0025 

0.05 9.997377 9.997093 9.997021 8.506024 8.505792 8.505734 
0.06 9.270577 9.270317 9.270252 7.973056 7.972842 7.972788 

~ \ a  0.0200 0.0100 0.0050 I 0.0200 0.0100 0.0050 
0.07 8.628516 8.627566 8.627329!7.494350 7.493560 7.493362 
0.08 8.057140 8.056268 8 .0560507.061512 7.060779 7.060595 

x = 75 i x = 80 

6 \ a  0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 

0.05 7.015673 7.015492 7.015447 5.594024 5.593891 5.593858 
0.06 6.645794 6.645626 6.645584 5.352478 5.352353 5.352322 

~ \ o  0.0200 0.0100 0.0050 0.0200 0.0100 0.0050 

0 . 0 7  6.308186 6.307557 6.307400 5.128616 5.128143 5.128024 
0 .08!5.998107 5.997518 5.997371 4.919888 4.919440 4.919329 

In a similar manner,  

P l l O - z  rt 

E[ETIR] = 2 /  / e - ' ~ - ' ' .  
J 0  ,t0 

exp{,,=[1 _ , -o. -C,-ol ] /2  + o'[1 - ~ - °"~] /211  + ,-o., ,¢,-~>]~}.  
exp(-0.0007t - 0.000543(10 °°4=) (10 °°4' - 1))dvdt. 

We then let x = 65,70,75, and 80, ~ = 0.05,0.06,0.07,0.08, and a = 

0.0200, 0.0100, 0.0050, and 0.0025, and calculated the second moments .  The 
s t andard  deviations were computed in the usual way. The results appear  
in Table 4. 

4 R a n d o m n e s s  in 5, D e v i a t i o n s  from 8, and  
M o r t a l i t y  

Instead of a fixed level 5, we will now consider a random level A with 

distr ibution function P[A < 5] = Fa (5 ) , 0  _< 5 < L for some upper limit 
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Table 4: {Var[~lR]} 1/~ 

x = 65 x = 70 
6\a 0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 
0.05 4.045069 4.044869 4.044819 3.921975 3.921796 3.921752 
0.06 3.574495 3.574316 3.574271 3.527891 3.527729 3.527689 
6 \ a  0.0200 0.0100 0.0050 0.0200 0.0100 0.0050 

0.07 3.177656 3.177013 3.176852 3.187913 3.187326 3.187179 
0.08 2.839882 2.839299 2.839154 2.892203 2.891669 2.891535 

x = 75 x = 80 
i 

6 \ a  0.0100 0.0050 0.0025 0.0100 0.0050 0.0025 

0.05 3.661435 3.661281 3.661243 3.277316 3.277190 3.277158 
0.06 3.349754 3.349613 3.349578 3.046110 3.045994 3.045965 

| 

~ \ a  , 0.0200 0.0100 0.0050 , 0.0200 0.0100 0.0050 
0.07;  3.074991 3.074475 3.074346 2.838123 2.837691 2.837583 
0.08 2.830978 2.830505 2.830386 2.649732 2.649332 2.649231 

L. Assume tha t  A is independent of T, and {X( t ) , 0  < t < oo}. Then the 
expected  values of ~YiR and ~ I R  will involve three operat ions.  

E [~ IR]  = EAER{E,:['g~IR[R ,ALIA} 

= L" 
E[~rlR] = EAER{ET['~}I,[R, AllA} 

= 2 

As usual, 

Var[  lR] = E[ }l R] - {EIght. l} ' .  
As an example ,  assume tha t  A = 0.05, 0.06, 0.07, and 0.08 with proba-  

bilities 0.10, 0.50, 0.20, and 0.20 respectively. Then  we obta in  the following 
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tables. 

Table 5: EaER{ET['~IR[R,A]IA} 

a \ z  65 70 75 80 
0.0100 8.971793 7.747998 6.485480 5.245158 
0.0050 8.971544 7.747791 6.485317 5.245036 

6: } ' / '  

a\x  65 70 75 80 
0.0100 3.463658 3.414022 3.246349 2.961359 
• 0050 3.463485 3.413866 3.246213 2.961247 

5 S e v e r a l  P r o b a b i l i t i e s  for the  O r n s t e i n -  U h -  
l e n b e c k  P r o c e s s  

In Section 2, it is observed that we want 6t + X(t) > O, t > 0 for non- 
negative force of interest accumulations. So we want the O.U. measure for 
the set of paths which stay above the line -S t ,  for t >_ 0. In order to utilize 
some earlier research on a similar problem, we will seek the O.U. measure 
for the set of paths which stay above the line - a  - 6t, a > 0, for t > 0. 
By the symmetry of the O.U. paths over {0, QI starting with X(0) = 0, we 
can seek the measure of the paths which stay below the line a + 6t, t > 0. 
Or equally good, we seek the measure of the paths which exceed a + 6t for 
some t values in [0, Q]. 

Remark. The following theorem generalizes Theorem 3 of Beekman-Fuelling 
(1979), by replacing the boundary function Aoe ~t, t > O, by a function f(t) 
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where f ( t )  is cont inuous on [0, Q], and f (0)  > 0. Its proof  parallels tha t  of 
Theorems  1, 2, and 3 of the cited paper .  It is included because it presents  
the ideas in a more unified manner ,  and  for the more  general bounda ry  
funct ion.  

T h e o r e m  1 Let {X(t}, 0 < t < oo} be an O.U. process with transition 
density Iunetion (s < t) 

p(x, ,;~,t)  = ~ P ( x ( t )  < u l x ( s )  = x} 

= [2rcA(s,t)]-] exp{ {y - x e x p [ - ~ ( t  - s)]} 2 
2A(s , t )  }' 

where 

A(s , t )  = a ' [ 1 - e x p ( - 2 ~ ( t - s ) ] ,  

and 

a s > O, ~¢ > O. 

Let 
F(Q)  = P (  max  [X(t) - f ( t ) ]  > 0 I X(0) = 0}, 

o_<t_<Q 

w h e r e  f ( t )  is continuous on [0, Q], and 1"(0) > 0. Then F(Q)  = G(1),  
where G(t),  t > O, is the solution of the integral equation 

f t ¢ { [ h ( t )  - h(s)] / ( t  - s ) ] }dG(s )  = ¢[h( t ) / t  s* ] 
JO 

where 
h ( x )  = o - l [ x  + (e 2~Q - 1)-z]2 x f ( l n { l +  x(e '~Q - 1)} t )  

and 

L ¢(~) = (2,0-½ ~p(- , , ' /2 )du,~ ,  _> o. 

Proof.  Let  {Y( t ) ,  0 < t < oo} be a second O.U. process wi th  variance and  
covariance paramete rs  of 1, t ha t  is, a ~ = i¢ = 1. T h e n  

F(Q) = P{ mv^lY(t)  - / ( t ) / o ]  > 01Y(0) = 0}. 

This follows f rom Theo rem 2 of Par t  II of Beekman  (1976). We now trans-  
fo rm O.U. probabil i t ies into probabil i t ies  concerning the Wiener  process 
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{W(t) , t  >_ 0}, where E{W(t)}  = 0 for all t _> 0, and Covar{W($), W(t)} = 
minimum (s, t), for s _> 0, t _> 0. From page 138 of Rosenblatt (1962), 

L{Y(t) ,O <_ t < oo} = L{e- 'W(e") ,O < t < oo}, 

where L stands for probability law. Thus 

L{Y(t),t >_ OIY(O ) = O} = / . , {e - 'W(e : ' ) , t  > OIW(1) = 0}- 

= L { e - ' [ W ( e " )  - W ( 1 ) ] , t  > 0 [ W ( 1 )  = O} 
= L { e - t W ( e  2 ' -  1),t > 0}, 

since the distributions of increments are stationary in time and W(0) = 0; 
see page 94 of Rosenblatt (1962). Therefore, one obtains 

F(Q) = P{ max [e- 'W(e 2' - 1) - f ( t ) /o ]  > 0}. 
0_<~_<~Q 

Transform the variable t to ,cA, so tha t  

Next, let 

F(Q) = P{ max [e-"aW(e 2"~ - 1) - f ( ~ A ) / a ]  > 0}. 
0_<a<Q 

= = ( ~ ' '  - 1 ) / ( ~ ' " ~  - 1) .  

This yields 

F(Q) = P{ m ~  [ ( l += (~ '~ - l ) ) - ;wC(~ '~ - l )= ) - fC ln [= (~2"~ - l )+ l ]~ ) / , ,  ] > o } .  
o_<~_<z 

We now use the property that  distributions for the process {W(u) ,u  >_ 0} 
and the process (O]W(u/O),u > 0} are the same. Thus 

F ( Q )  = P {  max [WCx) - ( x +  (e 2"Q - 1 ) - ' ) } f ( l n [ x C e  :~'Q - 1) + 1 ] ] ) / a ]  > 0}. o<,',_<I 

The probability can be determined through Theorem 1 and section 4 of 
Park-Schuurmann (1976). Since ~:Q > 0, 

a - ' ( : r  + (e ' 'Q - 1 ) - ' ) ' } f ( l n [ x ( e  2 '~  - 1) + 1]½) 

as a function h(x) is continuous on [0, 1], and h(O) > O. This also uses 
the properties of f(t),O < t < Q. With the time end-point of 1 replaced 
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by t, the Wiener probability is denoted by G(t) and satisfies the integral 
equation 

c C t ) =  ¢[hCt)lt*,] + ~o' ¢{[hCt) - h(s)]l(t - $)~}dG(3)~ 

where &(x) = I - ¢(x). Because h(O) > 0 implies that G(O) = O, G(t) = 
fJ dG(s), and the above equation becomes 

c ( t )  = ¢ [ h C t ) / t ~ ]  + o C t )  - f0' ¢{[hCt) - h ( ~ ) ] l ( t  - 8) Z: }dCr($). 

Upon canceling the G(t) terms, the Theorem's conclusion is reached. 

Example 1. f ( t )  = Aae 6t, t > O. Then 

f ( I n { l  H- x(e : 'Q - I ) } ] )  = Aae ~In{1+=(:'Q-')}½ 

= Aa{1 + z ( e  ='=0 - l ) } ~ / : , x  > O. 

Also 
h(=) = A { I  + : ( : ~  - I)}~/~[= + (e ' ~  - 1)- ' ] t ,  : _> O. 

Example 2. f ( t )  = a + bt,t > 0,a > 0. Then 

f ( I n { l  + z(e , 'O - I ) }½)  = a +  b l n { l  + z(e :~0 - I)}=~), z > O .  

h(=) -- o ' - t [ x  -t" (e ''=(;' - 1)-x]~={a -I- btn[1 -f- xCe ='¢0 - 1)]~} 

aa b ln[l "I- x(e ''~0 1)])  for x > O. = [x-t-  (e ' ' ¢ q -  1 ) - ' ] ~ {  -t- ~ - _ 

We will now choose some specific values for =a" and "b" in Example 
2, and provide a table of values of F(Q) for various Q values. We choose 
b = 0.06, and let "a" equal various constants. 
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Table 7: F(Q) Values 

a Q=I Q=5 q=lo 
0.0250 
0.0200 
0.0150 
0.0100 
0.0010 
0.0001 

0.000010 
0.000001 

0.000000 0.000000 0.000000 
0.000000 0.000000 0.000000 
0.000009 0.000018 0.000018 
0.000809 0.001022 0.001022 
0.541455 0.543956 0.543956 
0.941373 0.941727 0.941727 
0.993986 0.994022 0.994022 
0.999397 0.999401 0.999401 

Remark. The reader may find tables in Keilson-Ross (1976) and Beckman- 
Fuelling (1977) useful. Those references provide tables for 

P{ max X(t) < Aa [ X(O) = O} 
o<t<_O 

for various values of Q, A, a, and ~;. 
There are many papers and monographs concerned with Brownian mo- 

tion approximations to solutions for boundary crossing problems. In some 
cases, these probabilistie works also relate to actuarial science, in particular 
collective risk theory. Two such references are the monograph Siegmund 
(1985), and the paper Asmussen (1984). 
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