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ABSTRACT: This paper is concerned with various 
modifications of the Kimeldorf-Jones Bayesian graduation method. 
These enhancements entail the use of time series and eigenvalue 
decomposition. By augmenting the existing method one can 
empirically smooth the Kimeldorf-Jones technique. 

In Bayesian statistics, one begins with a prior assumption 

which is quantified by choosing a probability distribution that 

best describes that assumption. This distribution will be called 

the prior distribution with random variable T. Denote this 

distribution as fT(t). Next, one conducts various experiments, 

makes observations, and chooses a conditional distribution 

fUiT(u{t) where U is the random variable of the observations. 

Note that the parameter U is related to the prior opinion's 

variable T. Once fUiT(ult) has been determined, the distribution 
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fu(u) can be obtained from summing or integrating fUiT(ult) fT(t) 

over the range of t. 

The classic Bayes formula 

fTju(tlu) = fUiT(UltlfT(t ) (11 

fu(U) 

produces the posterior conditional distribution. Note: Most 

prior distributions are chosen such that when they are linked 

with the conditional distribution fUiT(ult), the posterior 

distribution has the same form of distribution as the prior 

distribution. These distributions are called conjugate 

distributions. 

These techniques can be related to graduation by assuming a 

collection (Ti) are 'true rates' of mortality and {Ui) are 

observed rates from a mortality study. If one produces 

fT1,T2,...,T(tl't2'''''tn)'n 
fUl,U2,...,Unl TI,T 2,...,T~ ul'u2'''''unltl't2'''''tn)' 

and 

fUl,U 2 u(Ul'U2'''''Un ) 
too.rn 

then one can find the posterior distribution 

fTI,T2,...,Tnl U1,U2,...,U n (tl't2'''''tnlUl'U2'''''Un) 

So one's concept of 'true rates' would be modified by the 

observations. For further insight see [ii]. 

This paper is concerned with the Kimeldorf-Jones model [8], 

which from this point will be referred to as the K-J model, in 

which the prior distribution of the rates of mortality is 
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selected to be the multinormal distribution. Also the observed 

conditional distribution is selected as multinormal, which allows 

the conjugate posterior distribution to be multinormal. One can 

refer to [8] or [9] for a brief review of the use of the 

multinormal distribution. 

In the K-J model, one sets up two covariance matrices, A and 

B. A is the covariance matrix that is associated with the prior 

distribution, and B is the covariance matrix associated with the 

observations. In [8], A = {aij } is defined to be admissible if 

the following four properties hold: 

(i) 

(ii) 

(iii) 

(iv) 

i~j~k or i~j~k implies a. 
13 

a~ 2 

33 

aij a 0 for all i,j. 

A is a symmetric matrix, i.e. 

aik > 
al/2 " 
kk 

A '  = A .  

(2) 

(3) 

(4) 

A is positive definite. That is all eigenvalues 

are positive. (5) 

The B matrix associated with the observations must be 

admissible as well. In Kimeldorf's and Jones' orginal paper [8] 

they made the assumption that the random variables of the 

observed (Ux} are independent, which causes B to be a diagonal 

matrix. The x'th element in this diagonal matrix was of the form 

Ex/(mx(l-mx)), where E x is the exposure at age x and m x is the 

mortality rate associated with the prior distribution. 

Now in the K-J model, one represents the prior distribution 

mortality rates (mx} as a vector m and the observed mortality 

rates {Ux) as the vector u. The graduated rates {Vx) , denoted v 
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are then obtained from 

w = u + (I + AB-I)-I(m - u). (6) 

This can be adjusted to the following: 

v = m - m + u + c(m - u) 

= m - ( m  - u )  + c ( m  - u )  

= m + (C - I)(m - U) (7) 

where C = (I + AB-I) -I" 

The K-J method has been criticized in several ways, one of 

which is its subjectivity in how the matrix A is constructed. 

Another criticism is that the method is too sensitive to outliers 

in the observed data. This causes the K-J method to tend not to 

smooth out the data. This paper will address the following 

enhancements to correct these problems: 

(i) Use the concept of autocorrelation 

from time series analysis to reduce the 

selection of the elements of the matrices A 

and B. 

(ii) Revise the basic K-J model by using 

eigenvalue-eigenvector methods to eliminate 

the effect of the outliers. 

TIME SERIES ANALYSIS 

To modify the creation of the matrix A (or B) from the K-J 

method use the formula 
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n-k 

t=x 
(m t - m) (mt+ k - ~) 

r k = (8) 
n 2 
T (m t - ~) 

t=x 

to calculate the auto-correlation coefficents, where m is the 

average of all the mortality rates, and n is the total number of 

rates. See [12]. One can accelerate these calculations by the 

use of finite Fourier transforms [i]. Now the (rk} must be 

adjusted to meet the admissibility requirements. The first 

adjustment is to convert all negative (rk} to zero. This will 

satisfy the condition in equation (3). If any r k > rk_l, then 

let r k = rk_ I. 

In the construction of the matrix A (or B), let D be the 

diagonal matrix diag(dl,d2,...,dn) representing the variances at 

each age for the A (or B) matrix. Define the upper triangular 

matrix K by 

kij [ j~v~jrj_ i if j > i 
= ( 9 )  

0 j _< i 

Define A = K' + D + K. A is a symmetric matrix, and one must 

test equation (2) for admissibility requirements. If the 

variances {di) are constant, then A is a symmetric Toeplitz 

matrix [3] and will satisfy admissibility equation (2). This 

type of matrix A is very close to the Class 2 matrix in [8]; 

however, this structure does not guarantee that A is postive 

definite. To use matrix A or B, one must determine the 

eigenvalues of A or B, and verify that the eigenvalues are all 
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positive. If this is not the case, one can revise the {rk) 

further by letting rj = 0 for all j > m for some m and then 

redetermine the covariance matrix. Further research may be done 

here to determine further restrictions on A (or B) to guarantee 

that the symmetric Toeplitz matrices are positive definite. 

ITERATIVE GRADUATION 

T. N. E. Greville in [7] made reference to a repeated 

application of a graduation process to smooth data. He proceeded 

to use various eigenvalue techniques to theoretically obtain a 

modification of the Whitaker-Henderson method, which he later 

claimed contained the K-J method as a subcase. See the 

discussion in [8]. In this paper, practical eigenvalue and 

eigenvector algorithms will be used to create an empirical method 

that allows one to control the effect of outliers on the K-J 

method. 

If one takes the results of equation (7) and substitutes the 

values of v in place of u, one obtains the following formula 

v(2) = m - (c-I)2(m - u) (10) 

and in general, the r'th iteration has the formula 

v (r) = m + (-l)r-l(c-I}r(m - u) (11) 

If the limit of equation (11) exists as r tends to infinity, 

the behavior of smoothing, as referred to in [7], holds, and the 
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effect of outliers on the graduated data is eliminated. However, 

it turns out that the infinite limit of (ii) goes to m. This is 

because of the following argument supplied by Dr. James Daniel: 

Let A and B be positive definite symmetric matrices, and 

suppose C=(I+AB-I) -I. Let d be an eigenvalue of C-I. Then l+d 

is an eigenvalue of C, and I/(l+d) is an eigenvalue of 

C -I = I + AB -I, and i/(l+d) - 1 is an eigenvalue of AB -I. This 

reasoning is correct in both directions, hence d being a 

eigenvalue of C - I is equivalent to B = I/(l+d) - 1 being an 

eigenvalue of AB -I" 

Now what is the form of the eigenvalues of AB-I? Since B is 

positive definite and symmetric, one can write B=RTR for some 

real non-singular matrix R. Then AB-Ix = Bx or AR-IR-ITx = Bx, 

so by multiplying by R -IT, R-ITAR-I(R-ITx) = B(R-ITx) and 

R-ITAR-Iy = BY with y = R-ITx. That is, B is an eigenvalue of 

the symmetric positive definite matrix A' = R-ITAR -I. This is 

positive definite since xTA'x = (R-Ix)TA(R -Ix) > 0 if x + 0. So 

all ~ > 0. Thus 

I 
1 > 0 

l+d 

and finally 

- i < d < 0. 

So C - I cannot have negative one as an eigenvalue. 

So to find the limit of equation (ii) as r tends to 

infinity, the C - I will converge to the zero matrix. So the 
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graduated rates will converge to the prior table. However, 

intermediate results will still supply a viable graduation 

technique. First some preliminary definitions are necessary. 

Let w = (wi) be a vector. Define the euclidean norm of w to 

be 
n 

II , . ,  II - -  ( z lwii2 ) 1 / 2  
i = l  

and define the 2-norm of a n x n matrix F to be 

It Fx il 
II F II = sup 

~+0 U x IL 

where x is a n x 1 vector. The same double-bar notation is used 

for the matrix norm as for the vector norm. The context will 

determine whether the notation is for the vector or matrix form. 

Define the condition number of a n x n matrix F to be 

c(F) -- II F 11 II F-I  II 

In [4] matrices with small condition numbers are said to be 

well-conditioned (less thatn 106). If c(F) is large, then F is 

said to be ill-conditioned. 

To determine the eigenvalues and eigenvectors of C - I, the 

practical QR or QZ algorithm can be used. See [5]. These 

algorithms are available in EISPACK (see [15] and [2]), or MATLAB 

(see [13]). When these algorithms are used, a eigenvalue matrix 

D and a eigenvector matrix X are generated, If the c(X) is well- 

conditioned, one can assume that the eigenvectors are 

independent. See [5]. 
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Let the eigenvalue and eigenvector matrices of C - I be 

designated as D and X respectively. 

So C - I = XDX -I" Now 

(C - I)r = XDrX-I 

r r r 
where D r = diag(d ,d ,...,d ). In fact, 

1 2 n 
r-I r r-i r r-I r 

(-l)r-l(c - I) r = diag((-l) d ,(-i) d ..... (-I) d ) 
1 2 n 

Hence, a useful approximation to D r is to create a matrix D' 

which is determined by setting the eigenvalues very near negative 

one, to exactly negative one, and all others to zero. This 

allows one to selectively decide the level of smoothing to the 

prior table. Once this matrix D' is obtained, create a new 

matrix C' = XD'X -I. Instead of using equation (Ii) for D r , use: 

V = m + C'(m - u) (12) 

This will be demonstrated in the example below. 

EXAMPLE 

The data presented in Table 1 is an approximation to the 

data underlying the 1971 Group Annuity Mortality Table, Female 

Lives. See [6] and [i0]. The vector m of prior means was 

specified as the mortality rates of the 1951 Group Annuity Table, 

Female lives from [14]. Using formula (8) one obtains the 

autocorrelation coefficents, (rk) , as displayed in Table 2. The 

{rk} have been adjusted, by setting all negative values to zero. 
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The variances for the prior covariance matrix A are all set to 

the constant one. The off diagonal elements are created as 

discussed above. When the eigenvalues for A are calculated, they 

are all positive, and so in this model, A is positive definite. 

To simplify the process, we assume that the observations in B are 

independent; therefore B will be a diagonal matrix with variances 

determined by the formula Ex/(mx(l-mx) ) . Applying equation (6) 

one obtains the graduated values (Vx}. These values are 

displayed in Figures 1 and 2, and in Table 4. The numerical fit 

measure F is determined from the formula 

F = Z nx(V x - UX )2 
x 

Vx(l-v x) 

where the smoothness measure S is determined by 

s = ~ (/_.k3Vx)2 
x 

One may note from these measures that there is very little 

deviation from the observed (Ux}. 

In the determination of the {V'x) , the matrix C - I from 

equation (7) is obtained from the above matrices A and B. Then 

the matrix C - I was factored into a eigenvalue matrix D and an 

eigenvector matrix X. The condition number on the eigenvector 

matrix X was 17.2; therefore the matrix is well conditioned. 

Listed in Table 3 is the set of the eigenvalues obtained by the 

QR algorithm. Due to roundoff error, one obtains eigenvalues 

equaling negative one. Next, a diagonal matrix D' was created 

with zeros for the first sixteen diagonal entries and negative 
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one for the remaining entries. Using D' and X, let C' = XD'X -I. 

Using the equation (12) one finally obtains the (V'x), which is 

displayed in Figures 3 and 4 and in Table 4. 

Now create a diagonal matrix D'' with zeros for the first 

twelve entries and negative one for the remaining entries. In 

Figures 5 and 6 and v'' x in Table 4, one can observe the effect 

of the matrix D'' in graduating the data. In this method, by the 

use of autocorrelation coefficents and constant variances for the 

prior distribution, the only subjectivity arises in the decision 

of whether to set the eigenvalues to zero or negative one. 

In summary, these enhancements remove a great deal of 

subjectivity from the selection of the matrices A and B. Also, 

they allow the actuary to control the effect of sensitivity to 

low exposure. However, it would be desirable to be able to work 

directly with equation (7) in determining a weighted average 

between an established table m and the observed data u without 

recourse to the Bayesian techniques of the K-J method. However, 

the conditions on C, which will guarantee this modification, 

require further research and study. 
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55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

APPROXIMATION TO 1971 GAM FEMALE LIVES - TABLE 1 

8X E x U x X 8 x E x 

1 84 .01190 80 374 6140 
2 418 .00478 81 348 4718 

I0 1066 .00938 82 304 3791 
21 2483 .00846 83 249 2806 
35 3721 .00941 84 167 2240 

62 5460 .01136 85 192 1715 
50 6231 .00802 86 171 1388 
55 8061 .00682 87 126 898 
88 9487 .00928 88 86 578 

132 10770 .01226 89 97 510 

267 24267 .01100 90 93 430 
300 26791 .01120 91 75 362 
432 29174 .01481 92 84 291 
491 28476 .01724 93 31 232 
422 25840 .01633 94 75 196 

475 23916 .01986 95 29 147 
413 21412 .01929 96 25 i00 
480 20116 .02386 97 20 161 
537 18876 .02845 98 5 II 
566 17461 .03242 99 3 I0 

581 15012 .03870 i00 2 8 
464 11871 .03909 i01 0 5 
461 10002 .04609 102 2 4 
433 8949 .04839 103 0 2 
515 7751 .06644 104 1 2 

U x 

.06091 

.07376 

.08019 

.08874 

.07455 

.11195 

.12320 

.14031 

.14879 

.19020 

.21628 

.20718 

.28866 

.13362 

.38265 

.19728 

.25000 

.12422 

.45455 

.30000 

.25000 

.00000 

.50000 

.00000 

.50000 
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AUTOCORRELATION COEFFICENTS - TABLE 2 

1 0.9089 
2 0.8589 
3 0.8033 
4 0.7428 
5 0.6780 

6 0.6095 
7 0.5497 
8 0.4973 
9 0.4511 

i0 0.4101 

ii 0.3733 
12 0.3400 
13 0.3097 

14 0.2818 
15 0.2563 

16 0.2327 

17 0.2109 
18 0.1908 
19 0.1721 
20 0.1548 

21 0.1385 
22 0.1233 
23 0.1091 
24 0.0956 
25 0.0829 

26 0.0708 
27 0.0593 
28 0.0484 
29 0.0380 
30 0.0281 

31 0.0186 
32 0.0095 
33 0.0008 
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FIGURE 1 
MORTAUTY RATES 
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EIGENVALUES - TABLE 3 

1 -0.483 
2 -0.615 
3 -0.733 
4 -0.788 
5 -0.865 
6 -0.970 
7 -0.976 
8 -0.986 
9 -0.990 

i0 -0.993 
ii -0.995 
12 -0.996 
13 -0.997 
14 -0.998 
15 -0.999 
16 -0.999 
17 -i.000 
18 -i.000 
19 -I.000 
20 -1.000 
21 -1.000 
22 -i.000 
23 -i.000 
24 -i.000 
25 -i.000 
26 -I.000 
27 -i.000 
28 -I.000 
29 -I.000 
30 -I.000 
31 -i.000 
32 -i.000 
33 -i.000 
34 -i.000 
35 -i 000 
36 -I 000 
37 -i 000 
38 -I 000 
39 -I 000 

40 -I 000 
41 -i.000 
42 -i.000 
43 -i.000 
44 -i.000 
45 -i.000 
46 -i.000 
47 -1.000 
48 -i.000 
49 -I.000 
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FIGURE ,3 
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FIGURE 5 
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55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

9O 
91 
92 
93 
94 
95 
96 
97 
98 
99 

i00 
i01 
102 
103 

m x 
0.0051 
0.0056 
0.0062 
0.0069 
0.0078 
0.0087 
0.0098 
0.0110 
0.0122 
0.0136 
0.0149 
0.0164 
0.0182 
0.0203 
0.0231 
0 0265 
0 0304 
0 0347 
0 0394 
0 0443 
0 0495 
0 0551 
o.o61o 
0.0674 
0.0741 
0.0811 
0.0883 
0.0959 
0.1039 
0.1123 
0.1213 
0.1309 
0.1412 
0.1523 
0.1643 
0.1771 
0.1911 
0.2063 
0.2230 
0.2413 
0.2615 
0.2836 
0.3080 
0.3348 
0.3644 
0.3971 
0.4332 
0.4729 
0.5182 

GRADUATION RESULTS 

u X 
0.0119 
0.0048 
0.0094 
0.0085 
0.0094 
0.0114 
0.0080 
0.0068 
0.0093 
0.0123 
0.0110 
0.0112 
0.0148 
0.0172 
0.0163 
0.0199 
0 0193 
0 0239 
0 0285 
0 0324 
0 0387 
0 0391 
o 0461 
0 0484 
0 0664 
0 0609 
0.0738 
0.0802 
0.O887 
0.0746 
0.1120 
0.1232 
0.1403 
0.1488 
0.1902 
0.2163 
0.2072 
0.2887 
0.1336 
0.3827 
0.1973 
0.2500 
0.1242 
0.4546 
0.3000 
0.2500 
0.0000 
0.5000 
0.0000 

- TABLE 

V x 
0.0119 
0.0048 
0.0094 
0.0085 
0.0094 
0.0114 
0.0080 
0.0068 
0.0093 
0.0123 
0.0110 
0.0112 
0.0148 
0.0172 
0.0163 
0.0199 
0.0193 
0.0239 
0.0285 
0.0324 
0.0387 
0.0391 
0.0461 
0.0484 
0.0664 
0.0609 
0.0738 
0 0802 
0 0887 
0 0746 
0 1119 
0 1232 
0 1403 
0 1488 
0 1902 
0 2162 

0.2073 
0.2881 
0.1348 
0.3810 
0.1984 
0.2493 
0.1266 
0.4152 
0.2963 
0.2439 
0.0909 
0.3740 
0.1636 
F = 0.73 

S=4.253 

4 

v~ x 
0.0125 
0.0047 
0.0094 
0.0084 
0.0094 
0.0114 
0.0080 
0.0068 
0.0093 
0.0123 
0.0110 
0.0112 
0.0148 
0.0172 
0.0163 
0.0199 
0.0193 
0.0239 
0.0285 
0.0324 
0.0387 
0.0391 
0.0461 
0.0484 
0.0665 
0.0611 
0.0738 
0.0801 
0.0883 
0.0740 
0.1056 
0.1320 
0.1496 
0.1637 
0.1771 
0.1907 

0.2029 
0.2142 
0.2264 
0.2408 
0.2579 
0.2779 
0.3008 
0.3277 
0.3575 
0.3906 
0.4272 
0.4678 
0.5137 

F=82.95 
S=0.014 

VllX 
0.0118 
0.0048 
0.0094 
0.0085 
0.0094 
0.0114 
0.0080 
0.0068 
0.0093 
0.0123 
0.0110 
0.0112 
0.0148 
0.0172 
0.0163 
0.0199 
0.0193 
0.0239 
O.O285 
0.0324 
0.0387 
0.0391 
0.0461 
0.0484 
0.0664 
0.0609 
0.0738 
0 0802 
0 0888 
0 0747 
0 1120 
0 1227 
0 1399 
0 1482 
0 1823 
0 2234 

0 2418 
0 2394 
0.2299 
0.2216 
0.2168 
0.2173 
0.2215 
0.2477 
0.2759 
0.3109 
0.3523 
0.3992 
0.4521 

F=62.23 
S=0.023 
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