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ABSTRACT

This paper focuses on two aspects of Statement of Financial Accounting
Standards 87:
(1) the variability of the discount rate, and its consequences; and

(2) the “corridor” approach to gains and losses amortization.

The analysis centers on the variability of pension expense over time. A
simplified model is used; its main features are a stationary population and
random fluctuations of discount rates and returns on assets. The work is
carried out mathematically and with the help of computer simulations. Sen-
sitivity analyses are performed with respect to the parameters of the model
(variance of discount rates, variance of returns on assets, length of amor-
tization period and width of corridor). It turns out (under the particular
scenario chosen) that the variance of discount rates and the length of the
amortization period are the most important determinants of the variability
of expense. It is also shown that when the plan population is mature the
variability of pension expense is mostly due to the amortization of (account-
ing) gains and losses, and not to the sensitivity of the service cost to the

discount rate.



PREFACE

This paper focuses on two aspects of Statement of Financial Accounting
Standards 87 (SFAS 87):
(1) the variability of the discount rate, and its consequences; and

(2) the “corridor” approach to gains and losses amortization.

The analysis centers on the variability of pension expense over time.
The work is carried out mathematically and with the help of computer sim-
ulations. The ultimate goal of the study is to give a better understanding
of (1) and (2) above. It is the author’s belief that deterministic case studies
(assuming parameters to be constant over time) are not sufficient. The con-
sequences of (1) and (2) appear more clearly when fluctuations of some of the

parameters are taken into account. This is why randomness was introduced.

The degree of complexity of a mathematical model is a function of the
number of variables involved. Of particular importance is the number of
random factors taken into account: if this number is too large, the results
may well become impossible to interpret. In the case at hand, it was decided
that only the discount rate and the rate of return on the fund’s assets would

be random. Other factors (e.g. mortality) are supposed static.

Chapter 1 describes the model chosen. Concepts from control theory are
also introduced. Chapter 2 deals with the existence of stationary (or steady-
state) limits for the stochastic processes considered. Chapter 3 presents the

results of the computer simulations performed.



It is hoped that this study will be of interest to those involved in pen-
sion accounting and funding. The framework described herein may help in
making accounting or funding decisions, for instance in choosing an amor-
tization period or method. Another important use would be to assess the
effects on pension plans at large of changing funding or accounting rules.
An example of the latter would be to try to answer the following question:
“Suppose FASB were to allow a 15% corridor for gains and losses amortiza-
tion, instead of the current 10% corridor; would this have a significant effect
on pension expense (for plans switching from the old to the new minimum
amortization requirement)?” Based on the numerical results shown in Sec-
tion 3.5, it appears that pension expense would be unchanged on average
(which makes sense intuitively). Fluctuations over time would be somewhat
affected: under the “base scenario” employed (see Section 1.4}, the standard
deviation would move from 10.90 to 10.13 (a 7% decrease). The change is
small, and suggests that allowing a 15% corridor may not by itself bring a
significant decrease in the variability of pension expense. A more refined
analysis would be required before a definite conclusion can be reached, since
the numbers quoted are the results obtained under just one scenario. Nev-
e}theless, in the absence of exact mathematical formulas for the variance of
pension expense, the methodology suggested should be helpful in studying
this type of problem. How the model should be used is discussed further in
the Conclusion.

N.B. Unless specifically referenced, all mathematical and numerical re-

sults are original and have not, to the author’s knowledge, appeared previ-

ously.
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CHAPTER 1 DESCRIPTION OF MODEL

1.1. General considerations

Two distinctive features of SFAS 87 are at the center of this study: (1)
the variability of the discount rate, and (2) the “corridor” approach to gains

and losses amortization. They are described below.

(1) The discount rate is the accounting counterpart of the valuation
rate of interest used in pension funding. It directly influences the values

of the projected benefit obligation and of the service cost. The Board’s

requirements are set out in paragraph 44 of the Statement:

44. Assumed discount rates shall reflect the rates at which the pension benefits could
be effectively settled. It is appropriate in estimating those rates to look to available
information about rates implicit in current prices of annuity contracts that could
be used to effect settlement of the obligation (including information about available
annuity rates currently published by the Pension Benefit Guaranty Corporation). In
making those estimates, employers may also look to rates of return on high-quality
fixed-income investments currently available and expected to be available during
the period to maturity of the pension benefits. Assumed discount rates are used in
measurements of the projected, accumulated, and vested benefit oblitations and the
service and interest cost components of net periodic pension cost.

The discount rate will therefore vary from year to year, causing fluctuations

in the pension benefit obligation and in the service cost.

(2) The minimum requirement for amortization of gains and losses is

described in paragraph 32 of the Statement:
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32. As a minimum, amortization of an unrecognized net gain or loss (excluding
asset gains and losses not yet reflected in market-related value) shall be included as
a component of net pension cost for a year if, as of the beginning of the year, that
unrecognized net gain or loss exceeds 10 percent of the greater of the projected
benefit obligation or the market-related value of plan assets. If amortization is
required, the minimum amortization shall be that excess divided by the average
remaining service period of active employees expected to receive benefits under
the plan. If all or almost all of a plan’s participants are inactive, the average
remaining life expectancy of the inactive participants shall be used instead of
average remaining service.
No amortization is required as long as unrecognized gains and losses (URL)
do not exceed 10% of the maximum of the projected benefit obligation
(PBO) and the value of assets (F'). In other words, the interval + 10%
max (PBO, F) acts as a “corridor” inside which gains and losses need not
be recognized. When URL drifts out of the corridor, the amount of gains or

losses to be recognized is the excess
|[URL| — .10max(PBO, F)

divided by the average remaining service period of active employees. It is
important to observe that no schedule of payments is set up, as would be the
case with the transition obligation or prior service costs. The whole exercise
is done anew every year, no reference being made to amounts previously

recognized (other than the fact that they reduced URL).

Two other features of SFAS 87 deserve mention. First, gains and losses
include the effect of changes in assumptions (paragraph 29). Thus an impor-
tant source of gains and losses is the instability of the PBO caused by the
discount rate changing from year to year. Second, pension expense being an
end-of-year amount, it must include interest to the end of the year. This is
done as follows. The service cost is first increased with interest on the PBO,
calculated using the discount rate; it is then decreased with tlie return on

plan assets, which is obtained using the “expected long-term ratc of return”
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assumption (not the actual rate of return on assets). The difference between
actual and expected return on assets becomes part of gains and losses, and

is not eligible for amortization until the following year.

All in all, the components of pension expense (E) are:

(a) Service cost

(b) Interest cost

{c) Return on plan assets

(d) Amortization of gains or losses

(e) Amortization of unrecognized prior service cost

(f) Amortization of transition obligation (or asset).

In order to simplify the model, it is assumed that there is no transition asset
or obligation, and that the plan remains the same over time. Items (e) and

(f) above are therefore nil. Furthermore, the population of members and

retirees is supposed not to change over time.

The evolution of discount rates has to be considered very carefully. Of
course a constant discount rate is out of question. Another possibility would
be to use past financial data (e.g. rates of return on fixed-income securities)
to generate a sequence of discount rates to be used in the model. This
approach has a number of advantages, but lacks the flexibility required to
péxform sensitivity analyses (e.g. how does one “increaée the volatility” of
discount rates?). It was decided to let the discount rate vary randomly over
time. More precisely, discount rates will be modelled using an autoregressive
process. This use of stochastic processes to represent financial parameters

deserves a few words of explanation.

The author does not believe that discount rates, or rates of return, are

drawn out of a hat every month or quarter. On the contrary, most people

13



will agree that those rates are the outcome of decisions made by a large num-
ber of economic agents and also, no doubt, of technological breakthroughs,
the weather, epidemics, earthquakes, and so on. The part played by “ran-
domness” is difficult to ascertain; one of the main difficulties lies in defining
randomness itself. (In relation to this question, a common objection to the
quantitative analysis of financial data is “arbitrary political decisions”, e.g. a
sudden increase in tax rates. Insofar as those decisions are indeed arbitrary,
either in their amplitude or their timing, they could in fact be viewed as

supporting the random hypothesis, rather than contradicting it.)

In the case at hand, the most compelling arguments in favour of stochas-
tic modelling of interest rates are (i) that they have fluctuated in the past,
and (ii) that future interest rates can only be partially predicted (in a statis-
tical sense) from previous ones. Whether this uncertainty arises out of “pure
randomness”, or whether it is ultimately caused by “chaotic” behaviour of a
completely deterministic (but yet unknown) system, the conclusion is the
same: some way of generating unpredictable changes has to be devised.

Stochastic processes are a convenient (and defensible) solution.

Fach possible set of rules for calculating pension amounts (pension
expense, funded status, ... ) transforms the stochastic processes represent-
ing discount rates and rates of return into new stochastic processes. This

yields a very flexible way of studying these sets of rules.

The choice of the stochastic processes representing the inputs (discount
rates and rates of return) is not an easy one. This study uses autoregressive
processes, which allow dependence between time periods. These processes

have been widely used to describe interest rates, but it is not clear that

they best fit historical data. This should not be a major problem, since

14



the research did not aim at representing interest rates as closely as possible,
but rather at quantifying how fluctuations in interest rates translate into
fluctuations in pension amounts.

Thus, pension expense and unrecognized losses become the outputs of
the “pension system”. What transforms the inputs (discount rates and rates
of return on assets) into the outputs are the methods used to fund and
account for the pension plan. The results of the research are the effect on
the outputs of (1) varying the inputs (e.g. changing the variance of the
discount rates) and (2) modifving the accounting rules (e.g. widening the

corridor, or spreading gains/losses over a shorter period).

Sections 1.2 to 1.4 explain the framework of analysis in greater detail.

1.2, The meaning of stationary distributions

The approach taken in studying SFAS 87 is the following: generate dis-
count rates and rates of return possessing specified distributions (described
in Section 1.4) to simulate the evolution of the pension “system” over a very
long period. The fluctuations of E and URL over time can then be measured
and compared for different sets of hypotheses. This section tries to justify
the approach chosen, and explains the concept of ergodicity, which is of great
theoretical importance in the present context.

“A very long period” refers here to a period so long that initial condi-
tions (i.e. funded status, unrecognized gains or losses, ... at the sfar? of
the simulation) have no influence on the statistics obtained. For the sake of
brevity, let us call the period “infinite”; this is correct mathematically but,
naturally, computer simulations could only be performed over a finite period.
Orne reason, perhaps the most important, for choosing an infinite time hori-

zon is convenience: fluctuations over shorter periods would depend on the

15



particular set of initial conditions chosen; using an infinite period removes
this dependence.

Of course in concrete cases initial conditions are an essential part of the
problem, and short time horizons (e.g. 10 or 20 years) are a natural choice.
It would be interesting to complete the data given in Chapter 3 by showing
the progression of distributions over the first, say, 20 years, given some set
of initial conditions.

For the subsequent discussion, it is useful to define the concepts of time
averages and ensemble averages. Suppose pension expense is simulated over
a 20-year period, yielding value E,; at time t for the ith simulation run.

Time averages are computed by letting the time parameter vary, e.g.

12
E,=— E;:;.
A2 20; "

Ensemble averages are computed at a specified point in time and with respect

to the distribution at that time; for example

1 M
E, =7 Y E.
=1

approaches the mean of E,, if the number of runs M is large enough. In
these expressions, the word “average” refers not just to mean values, but
more generally to averages of any function of the variable considered.

It is easy to see that, in general, time and ensemble averages do not convey
the same information. A simmple example will nevertheless be given, in order
to shed some light on an important point. Suppose a certain sum is to be
invested in a special fund with a fixed rate of return. The rate is decided on
once and for all at the time of the investment, but is unknown at present.

Assume that, from whatever previous experience, a probability distribution

16



has been obtained for R, the said rate of return, and that the distribution
of annual returns for the next 20 years is printed out (really 20 copies of
the same distribution). Examining that sequence of distributions, a person
unaware of the way they were obtained might conclude that, over time, the
returns will be moving up and down between the limits of the distribution,
with a greater frequency around its modes, etc. But this would be incorrect:
once R = r is decided upon, it’s fixed and there are no fluctuations at all.
The annual distributions per se would not show the total dependence between
returns in different years. Although this example is a little artificial, the same
reasoning applies to E and URL: ensemble distributions at specified points

in time {e.g. t = & or 10) would not adequately show fluctuations over time.

An alternative, not adopted here, would be to simulate the distribution
of E and U RL for next year (time 1), given particular values of £ and URL
at time 0. Performing this for a wide enough class of initial states would show
how likely fluctuations are over time. This approach appears feasible, but
is definitely more complicated than the one chosen here. Numerical results
would certainly be more difficult to obtain and harder to interpret.

Take another example. Suppose some phenomenon {Xg, X1,...} is mod-

elled by a. uniform distribution on the integers 0,...,9

)

P(X,:k):%a, D<k<o.

It is also assumed that the X’s are independent. One possible sequence of
X’s is

2 41 48 9119 2

4 0 8 96 2 5 040

17



(these random numbers were generated by my calculator). The characteris-
tics of this realization of {X;,1 < t € 20} may be expressed with the usual

statistics: mean, variance, etc. We find

20
1
S20 = 35 Y (zi — 720)* = 9.9475.

i=1

These time averages are also called the empirical mean and variance, because
they are based on observations only. The ensemble (or theoretical) mean and

variance are based on the probability distribution:

9
EX =Y %-1/10 =45
k=0

9
Var X = Y (k- EX)*-1/10 = 8.25.

k=0
The Law of Large Numbers states that the empirical mean will approach
the theoretical mean as the number of observations increases; in symbols,
Zpn — EX as n — oo. In fact, the Law of Large Numbers says a lot more.

It also implies that s? — Var X; furthermore, let
Yo=1 if X¢=9
=0 otherwise.
We have §z0 = 3/20 = .15. Since EY; = P(Y; = 9), we know that
gn — P(Y: = 9) = .10 as n — oo. More generally, it can be said that
the empirical distribution approaches the theoretical distribution as the num-

ber of observations increases. In other words, time and ensemble averages

are the same provided the time period is infinite.
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This property of a sequence of variables is called ergodicity. For any
ergodic sequence, the proportion of the time the observations are in a certain
region A always approaches, in the long run, the theoretical probability that

one observation lies in region A.

For an ergodic process, therefore, the distribution at one point in time
already tells a lot concerning the behaviour over time of the process. A se-
quence of independent and identically distributed random variables is always
ergodic. Sequences of dependent variables may or may not be ergodic. The

autoregressive sequence
X:'—_-aXi—l'*‘Cg, |al < 1, (11)

where {e;} are independent and possess the same normal distribution, is

ergodic. But the sequence

is not ergodic. Indeed this implies %, = r for all n, and this does not
converge to ER, except by chance. This will be recognized as the investment

example given at the beginning of this section.

It will be shown in Chapter 2 that the stochastic processes representing
pension amounts (£ and URL) are ergodic provided (i) some stationarity
conditions are satisfied and (ii) realistic assumptions are made regarding the
treatment of gains and losses. Conditions (i) are simply that the underlying
population, rates of return on assets, discount rates, etc., be ergodic them-
selves. Requirement (ii) ensures that unrecognized gains or losses do not
become “too large” over time (if there is no amortization of gains or losses

then {I/ RL¢| drifts to +oo as t — o).
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The meaning of the stationary distribution is somewhat similar to that
of the probability of ruin in risk theory. The latter is the probability of insol-
vency if the current portfolio of insurance policies is replicated ad infinitum.
No one really believes insurance portfolio will last forever, but the probabil-
ity of ruin nevertheless measures the risk associated with a particular pre-
mium/liability structure. In pension accounting, the stationary distribution
of (say) pension expense reflects its potential variability, given a particular

set of economic/actuarial assumptions and accounting rules.

[N.B. Notwithstanding what precedes, the parallel between the model
presented here and classical risk theory is subject to serious limitations. For
one thing, in the classical risk theoretic model {(e.g. Bowers et al, 1986) the
surplus is the excess of premiums over claims in the period [0,t]. Premi-
ums are never adjusted, and are greater than average claims. Hence (1) the
amount of surplus, as well as claims experience, have no effect on premiums,
and (2) the surplus becomes infinite with probability one as time goes to in-
finity. In the present model pension expense (corresponding to premiums) is
adjusted through gains/losses amortization. This implies that unrecognized
gains/losses (corresponding to surplus) remain bounded over time. All the
amounts calculated reach a steady-state distribution as time passes; this is
not the case in the classical risk theoretic model. The model presented here
is closer in spirit to the ones described in Beard et al (1984, chapters 8 and

10) and Martin-Lof (1983).]

The ergodicity of the processes (E;) and(URL;) is studied in depth in
Chapter 2. The results show that under the assumptions made the processes
are ergodic. One consequence is that initial conditions have no effect on time

averages over an infinite period. We are therefore justified in believing that
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the numerical results shown in Chapter 3 are independent of the values of

E. URL, etc. at the start of the simulations.

1.3. Interpretation according to control theory

Jacobs (1974, p. v) describes control theory in the following terms:

Control theory is a branch of applied mathematics devoted to analysis and design of
control systems. Control systems are systems in which & controller interacts with a
real process in order to influence its behaviour. A primary objective for most control
systems is to make some real variable take a desired value, for example to regulate the
temperature of an oven or to make the direction of a receiving aerial track a moving
target. The objective is usually to be achieved by adjusting some other variable, such
as heat input to the oven or force applied to the aerial, although the response to such
adjustments in most real controlled processes is neither instantaneous nor certain.
The non-instantaneous response is accounted for by regarding the controlling and
controlled variables as input and output of a dynamic system described by differen-
tial or diflerence equations. The effect of uncertainties is reduced by using feedback
to provide the controller with continuous indication of what adjustment is needed;
for example, if the oven is too cold more heat must be supplied and if the aerial
points to the left of its target it must be forced to turn to the right.

Control theory was initially developed in relation to engineering problems.
Over the past thirty years or so it has also been applied to biology and
economics. There have been a few attempts to apply the theory to insurance
(Balzer and Benjamin, 1980; Balzer, 1982; Martin-L&f, 1983; Smith, 1984)
and pension funding (Benjamin, 1989; Dufresne, 1986a, 1991).

Contro] theory should be distinguished from a more recent development
known as optimal control theory. The latter aims at finding the best control
of a system given a performance criterion or “cost function”. This theory,
which will not be discussed here, was applied to pension funding by O’Brien

' (1986, 1987) and to insurance by Vandebroek and Dhaene (1991).

This section will formulate some pension funding and accounting prob-

lems in the language of control theory. A simple example will be used to

illustrate the concepts.

21



In pension funding, the variable to be controlled is the fund level or, to
be more precise, the unfunded liability (UL). The desired value of UL would
usually be zero. The control used is contributions; once again it might be
more correct to say that UL is controlled by the amount by which total

contributions exceed the normal cost.

Animportant feature of pension funding, from the point of view of control
theory, is that the behaviour of the control is itself of importance. For
instance, amortizing gains and losses over one year will certainly keep UL on
target, but then the control applied may become unacceptable (e.g. it may
fluctuate too much, or it may be too large in some years). Intuitively, one
imagines that if gains/losses are amortized over a longer period, then the
contributions fluctuate less, although the unfunded liability may fluctuate
more. This “trade-off” has been examined in Dufresne (1986a, 1986b, 1988,
1989, 1991); a similar phenomenon occurs in pension accounting (see Section
3.6).

Variable rates of return on plan assets are in effect “multiplicative” dis-
turbances (UL grows at a variable rate); this complicates the equations de-
scribing pension funding systems. Pension accounting also has its own com-
plexities. For those reasons, a simpler system will be used to illustrate the

concepts of control theory. Let
.X¢+1 =X¢+C:+D¢+1, (12)

Ct = control at time ¢.

Here X is the variable to be controlled, and (D¢, t = 1,2,...) are the distur-
bances affecting the system. Eq. (1.2) could represent the evolution of the
unfunded liability (X) if the following assumptions were made: the valua-

tion rate of interest is zero, —C is the payment made towards amortization
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of the unfunded liability (that is to say in excess of the normal cost), and
D4, is the actuarial loss experienced during the year (¢,¢ + 1). In pension
accounting, X could stand for unrecognized losses.

Suppose X has target value zero, and that the control applied is

This is called “proportional” control, since C is a fraction of the difference
between the target and the actual value of X. The minus sign on the right
hand side of Eq. (1.3) is not surprising: C and X must have opposite signs if
X is to be steered towards zero (hence the name “negative feedback” applied
to such controls).

The Preliminary Views on pension accounting issued by FASB in 1982
(i.e. prior to SFAS 87) included a “spreading” of gains and losses over the
average future working lifetime (AFWL) of members. This is an example
of proportional control, with k = 1/JAFWL. As was explained in Section
1.1, SFAS 87 transformed this into a minimum requirement, to be applied
only when U RL exceeds 10% of the greater of PBO and F. The current
minimum requirement is thus a modified form of proportional control.

Let us examine the response of system (1.2) when control (1.3) is applied,
for various inputs Dy. First let us suppose that Xo = 0, and that there is
only one disturbance, occurring at time 1 : Dy = L, Dy = 0 for t £ 1. We

find
X, =1L
Xep1 =1 —k)Xy, t>1
= X.=(Q1-k*!"L

The state of the system decreases geometrically to 0. The system never

completely gets rid of the disturbance.
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Next, consider disturbances which are constant at every step: D; = D

forallt > 1. Then

X;=D[1+ - +(1—Fk)7

[1-(1 -k

|t

A first observation is that X, remains bounded (i.e. does not become arbi-
trarily large) even though disturbances of equal magnitude and direction are
experienced at each step. Another observation is that the steady-state value
of X, is not zero,

lim X, = 2

t—oo k
The fraction k has a magnifying effect on this value. If the control amounts
to k = 10% of the current state of the system, then the latter will eventually
settle at 1/.10 = 10 times the value of the disturbance. With k = .5, the
ultimate level of X is D/.5 = 2D only.

Now suppose disturbances are random. In actual applications the
stochastic process representing the disturbances may be quite complex. For
illustrative purposes, however, it is simplest to assume that the variables
(D:) have a common distribution with mean 0 and variance ¢ > 0, and are

independent, i.e. for any s # ¢
Prob(D, € A, Dy € B) = Prob(D, € A) - Prob(D € B)

for all sets 4 and B.

It is essential, in the first place, to observe that although it is assumed that
they are zero on average, the disturbances do not “cancel out” over time. It is
wrong to think that “the law of averages implies the sum of the disturbances

will approach zero as time increases”. Any one who has simulated a pension
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fund with no amortization of gains/losses will have noticed this. What the

Law of Large Numbers says is that the average disturbance approaches zero:

llm—ZD =ED; =0

t—oo t

(refer to the discussion of ergodicity in the previous section). In fact, what

really happens to the sums of the disturbances is this:

t
lim max DI,ZD,, ] ,ZD,)=+oo
1

t—oc

t
hm min Dl,ZD,, . ,ZD,)—"
1

The proof of these statements is beyond the scope of this paper, but a rough
intuitive justification can be given. Imagine that D; ~ N(0,¢2) (“D, is

normally distributed with mean zero and variance ¢2”). Then

t
> D, ~N(0,t0?)
=1
and so

oVt

where Z ~ N(0,1). As t increases, this probability approaches 1/2. This

! 10
Prob(z D, > 1010) Prob(Z > —-0—)
=1

makes it plausible that, given enough time, the sum of the disturbances will

become as large as we choose (the same argument works for negative values).

In order to “stabilize” X some form of control has to be applied. The

proportional control (1.3) implies

)i—1+1 = (1 — k)_Xg + D1+l'
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Xi+1 1s a fraction (1 — k) of X, plus the new disturbance D,y;. Let us

assume that at time 0 the system is on target (Xp = 0). Then

EX=(1-k)-0+ED; =0
EXy,=(1~kEX,+ED; =0

EX(=0 ,t20

The disturbances being zero on average implies the same for X;. Now turn

to variances:

X, =Dy, Xa=Ds+(1-Kk)D,...,

Xg =D1 +(1 - k)Dg...] + +(1 i k)t*xDl

=>\fa_rXt=az[1+(1—k)2+...+(1_k)21—2]
_ 21-( -k
1—(1-k32°

Since 0 < k < 1, VarX increases from 0 to

a2 a2
1 \7 — = N .
M VX = T T TR 2 R (14)

Compare this with the uncontrolled system:

Vang = Va.I'(Dj + -+ Dg)
= to?

— o0 ast — oo.

A proportional control therefore brings a stable steady-state response, with

mean 0 and variance given by (1.4). Once again it is seen that the fraction
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k acts as a magnifier, but this time of the variance of X. If k = 10%, the
variance of X is 1/(.10-1.9) = 5.3 times that of the disturbances. If k = 50%.
the multiplier is only 1.3.

In many situations, including pension funding and accounting. it is also

important to look at the behaviour of the control ;. We get:

EGy = E(—=kX;) =0

Var Cy = k*Var X,
o2kl — (1 — k)¥]
1~ (1~ k)2

k
. 2
=>tlir§°VarC¢—a T

As a function of &, Var C,, behaves otherwise than Var X. The variance
of the control is directly proportional to k; it can be made artibrarily small
by choosing k small enough.

Table 1.1 shows the limit standard deviations of X, and C; as t tends
to infinity, for selected values of k in the interval [0, 1). [N.B. The standard
deviation is the square root of the variance. The variance is the average
squared deviation from the mean, and its units are those of X squared — if
X isin dollars, Var X is in dollars squared. Here it is perhaps better to deal
with standard deviations, which are in the same units as X and C.]

Table 1.1 shows that there is a trade-off between the variance of the state
of the system and the variance of the control applied: to increase k makes
Var C larger, and Var X, smaller. When both variances are considered,

no single value of k appears better than the others.
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In pension funding, X represents the unfunded liability and —C the
payments made to liquidate it; the disturbance Dy is the total actuarial loss
arising in year (¢t — 1,f). Intuitively it makes sense that to liquidate the

unfunded liability more rapidly (i.e. to increase k) has a destabilizing effect

k | vVVar Xoofo | VVar Cofo
0 o) -
1 2.294 229
2 1.667 333
3 1.400 .420
4 1.250 500
5 1.155 577
6 1.091 655
7 1.048 134
.8 1.021 816
9 1.005 905
1.0 1.000 1.000

Table 1.1. Limits of standard deviations of X; and C; when t
tends to oo, as multiples of o. {X; is the state of the system, C;

the control applied, 0% the variance of the disturbances (D,), k is

the fraction of X fed back into the system.)
on contributions and the reverse effect on the unfunded liability. This 1s
another way of interpreting the numbers in Table 1.1. Nevertheless there is
a significant difference in pension funding, caused by interest. Consider the

system described above but with interest at constant rate i > O:

Xip1=(1 +i)(X1+C;)+Dg+1, (15)
Ct - ‘—k' Xt.
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k VVar Vo /o | /Var Coo /o
0 0o -
0196 (= d) 00 00
.025 9.548 .239
.030 6.886 .207
.035 5.666 .198
.03883(= &*) 5.075 19706
.04 4.929 19714
.06 3.520 211
.08 2.894 .232
.10 2.522 .252
.20 1.730 .346
.40 1.264 .506

Table 1.2. Limits of standard deviations of X, and C; when t tends
to oc, as multiples of 0. The interest rate is ¢ = .02.

Table 1.2 shows the standard deviations of X and C as functions of &
when 1 = .02. [N.B.. Since we are dealing with limits as ¢ — oo, it is better to
use deflated (constant) monetary values; ¢ is therefore net of wage increases.]
For values of k greater than k* = .03883, there is the same trade-off as before,
that is to say to increase k decreases Var X but increases Var C. But for
k < k* things are radically different: to decrease k increases both Var X and
Var C. This means that any k& smaller than k* is to be rejected, since it
implies values of Var X and Var C which are both larger than they would
be for k = k*. It is shown in Appendix 1.1 that

k* =d(1+v)

~ 2d
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where v = 1/(1+41),d = 1/{1+¢). In other words, in order to reduce variances
it is necessary to pay at least twice the interest on X. Observe that when
1= .02

k* = .03883 = 1/dzzm.

Variances are reduced if the unfunded liability is “spread” over a period
shorter than 36 years. This maximum period is a function of ¢, but not of
o (see Appendix 1.1). For example, it is 18.2 years when ¢ = .04, and 12.4

years when 7 = .06. It can be shown that
m* =~ log2/log(1 + i) + .5,

which indicates that the maximum period is a decreasing function of 2.

In the above example the disturbances were additive (see Eq. (1.3)). A
more realistic model would include random rates of return on pension assets,
which are multiplicative disturbances. The situation then becomes a little
different, e.g. k" depends on the distribution of the rates of return. The
interested reader is referred to Dufresne (1988, 1989, 1991) for more details
on this topic.

This section illustrated the type of analysis which will be performed in
Chapter 3. The problems studied are not as tractable as the simple one

described above; this is why computer simulations have to be relied on.
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1.4. The model

The description of the model has been devided into three parts:
1. Population and pension plan
2. Economic and actuarial assumptions

3. Equations describing the system

1.4.1. Population and pension plan

In order to focus more accurately on fluctuations caused by rates of return
and discount factors, a stationary (i.e. static) population has been chosen.
Of course real pension plan populations are at best only approximately sta-
tionary, but including population fluctuations would only serve to cloud up

the analysis.

The two factors influencing the choice of the population are (1) simplicity
and (2} sensitivity to changes in the discount rate (which is the valuation
rate of interest for accounting purposes). The first requirement is that nu-
merical results be easy to check or reproduce. Since this study is not aimed
at a particular real pension plan, the population chosen does not have to
be “realistic”, as long as the numbers obtained conform to what would be
expected in real situations. The only way the population comes into play
is in the computation of the actuarial liability and normal actuarial cost
(funding), and projected benefit obligation and service cost (accounting). Of
crucial importance is the sensitivity of these values to changes in valuation

rates of interest {or discount rates).

The same considerations apply to the choice of the pension plan terms.
Accordingly the simplest plan was chosen: one retirement age, benefits equal

to a fixed fraction of final salary, payable for life.
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The assumptions concerning the plan and population are shown below

Benefits b% of salary per year of service
payable annually for life

Entry age 30

Retirement age 65

Pre-retirement mortality none

Post-retirement mortality ¢, =0, 2 <79, ¢grg =1

(N.B. The constant b will be set equal to a computationally convenient value

whenever needed; of course this does not affect the conclusions reached.)

Appendix 1.2 shows that the sensitivities of the actuarial values calculated
on the above basis are comparable to those obtained if the population is

stationary and in accordance with the 1983 Group Annuity Mortality Table.

The assumption of no mortality before retirement would be appropriate
if each member were to withdraw his entire actuarial liability on termina-
tion before retirement. This is approximately true when the plan offers full
portability. In any case, Appendix 1.2 proves a rather surprising fact: if (i)
the plan has no pre-retirement benefits; (ii) the population is in accordance
with the Life table at all ages before retirement (this is the case with a sta-
tionary population); and (iii) the valuation method is projected unit credit,
then pre-retirement decrements have no influence on the sensitivities of the

service cost and benefit obligation to changes in the discount rate.

The post-retirement mortality table chosen greatly simplifies calculations
and programming. With a life expectation around 15 or 20 years at age 63,

the sensitivity of a¢s should compare with that of agz). This is examined

further in Appendix 1.2.
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1.4.2. Economic and actuarial assumptions

The following have to be specified:

- funding: - actuarial cost method and assumptions
- treatment of gains and losses
~ rates of return on plan assets
— expensing: - expected long-term rate of return on plan assets

— discount rates.

The plan will be funded according to the projected unit credit method
(another method could have been chosen). The mortality table used for val-
uation purposes (funding and expensing) is the one described in Subsection
1.4.1.

Now turn to the valuation interest rate for funding purposes. Rates of
return on plan assets (described below) fluctuate around a fixed mean value.
In practice the valuation rates of interest follow earned rates of return to
some extent, though a long-term approach is taken, meaning that valuation
rates usually vary little from one year to the next. It was decided to let
the valuation rate of interest be constant and equal to the long-term average
earned rate. This may seem questionable, but is in complete agreement with
the ideas expressed in Section 1.2. The goal of the work is to study the
vanability of pension amounts caused by some of the requirements of SFAS
87; it is essential, as a first step, to remove other sources of fluctuations
which could make results harder to interpret. A subsequent step (not taken
" here) would be to introduce valuation rates of interest which are based on,
say, the last 10 years’ experience.

No explicit inflation assumption is required, since rates of return on assets

and discount rates are net of wage increases and benefits are supposed fully
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indexed. This means, for instance, that in a fina] salary plan retirement
benefits are indexed in line with wage increases.

The treatment of (funding) gains and losses has an effect on the value of
the fund and therefore influences pension expense. There are many ways of
amortizing gains and losses; none of them seemed more appropriate than the
others. The simulations were done on the assumption that gains and losses
are recognized immediately (recall that fund returns are the only source of
gains and losses on the funding side). Intuitively, one expects that slower
recognition of gains/losses would bring a small increase in the variability of
funded status and pension expense. It would be interesting to look into this
more closely.

Given that the valuation rate of interest (for funding purposes) is a con-
stant, the expected long term rate of return on plan assets (for expensing
purposes) was also held constant.

Before turning to discount rates and rates of return on plan assets, let

me first remark on vocabulary. If the value of some asset grows by a factor
U=1+R=¢€°

during a certain period, R will be called the arithmetic rate of return, and G
the geometric rate of return. These terms are more descriptive than the usual
“rate” and “force of interest”. They also agree with the vocabulary used in
other disciplines. (The expression “force of interest” probably comes from
“force of mortality”; both expressions refer to continuous models, as these
rates are instantaneous. Furthermore, when speaking of rates of return, and

not rates of interest, it feels awkward to use the expression “force of return”.)

Paragraph 44 of SFAS 87, quoted in Section 1.1, gives the requirements

concerning the discount rate. Since rates implicit in annuity contracts and
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PBGC rates are not easy to model, the author chose to focus on high-quality
bond yields. There is no single accepted model describing bond yields (or
bond rates of return) over time. Very sophisticated models have been devised,
for example including transition probabilities between different yield curves,
or other “functional processes” specifying yield curves over time. For the
purpose of this research it was thought sufficient to model the discount rate
directly, i.e. without using a model describing the evolution of the whole
vield curve over time. A sequence of independent random variables would
have been convenient, but historical bond yields do not appear to follow this
kind of process. The approach taken in Panjer and Bellhouse (1980) was
retained. Those authors fitted autoregressive (AR) processes to a number of
financial series. The results were AR processes of order one or two. I chose

to use an AR(1) process
X, = M+ A(X. - M) +V,

with a parameter A = .9. In the cases of Standard and Poor’s Compos-
ite yield on high grade corporate bonds, Panjer and Bellhouse had found
A = .957. A mean (arithmetic) discount rate of 1% was chosen after exam-
ining long-term US bond yields, deflated by wage increases, over the period
1926-1988 (Tables 9A and 11A of Economic Statistics for Pension Actuar-
ies, 1990). The geometric net rates have an average of 0.71% and a standard

deviation of 4.96%, which mean an arithmetic average of about
exp (.0071 + .5..0496%) — 1 = 0.84%.

The situation is less clear with respect to rates of return on assets. Typ-
ically, pension fund assets are not invested for the most part in high quality

bonds, so that the above approach is not appropriate. Pension funds often
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invest significant amounts in stocks. A number of authors have contended
that the rates at which individual stock prices grow (over time) are indepen-
dent random variabales (e.g. Fontaine, 1990). True or false, this does not
really help us, as pension funds are managed and, therefore, stocks are not

kept indefinitely, but bought and eventually sold.

The approach adopted here is based on two considerations:

(1) that there should be a dependence between discount rates and
rates of return on the fund’s assets; and

(2) that, besides the dependence stated in (1), the additional random-
ness present in the sequence of rates of return on assets should

result from random variables which are independent over time.

The idea is that part of the fund’s assets have returns similar to those
of long-term bonds, while the rest of the fund has rates of return which are
completely unpredictable. The rates of return on plan assets are thus less
predictable than are discount rates.

The processes representing discount rates and rates of return on assets

will now be described. The required inputs are:

EDS mean arithmetic discount rate

ER mean arithmetic rate of return on assets
VARDS variance of geometric discount rates

VAROR variance of geometiic rates of return on assets
COR correlation coefficient of geometric discount rates

and rates of return on assets.

The above parameters are sufficient to completely specify the two pro-

cesses. Define:
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DSCR arithmetic discount rate

X geometric discount rate = log(1 + DSCR)

R arithmetic rate of return on assets

Y geometric rate of return on assets = log(1 + R)
HX mean geometric discount rate

HY mean geometric rate of return on assets

(V2), (M7) two independent sequences of independent

N(0,1) random variables.
Geometric discount rates and rates of return on assets satisfy the following

equations:

Xe=HX+ A(X;-1 - HX)+ B -V,
"=HY + D(X; - HX)+ G - W,

fort > 1. In Chapter 3 the parameter A will be set equal to .9. Whatever
the value of Xy, as ¢ increases the average value of X, appr;mches HX, since
EV; = 0. (X;)is an AR(1) process, but (%) is not. Y; is a combination of

Xy and W;. The mean of Y; approaches HY as t increases.

The variances of geometric discount rates satisfy
Var X, = A® Var X1 + B?
and thus

lim Var X; = B?/(1 — A?)
t—oo

lim Var Y, = D*B*/(1- A*) + G*.
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From now on, suppose the process (X¢) is stationary. From what has
just been said, this implies that X, ~ N(HX,B?/(1 — A%)), and Y; ~
N(HY,D?B?/(1 - A?) + G?) for all ¢t. Then

Cov(X,Y,) = E(X, - HX)(Y, — HY)
= E[D(X:-HX)* 4+ G -Wy(X, - HX))
=D Var X,

and thus

Corr( X, ¥3) = Cov(X, ¥2)/(Var X, Var ¥;)!/?
= D(Var X,/ Var Y;)!/?

= D-B/[D*B* + G*(1 — A%)}'/?

(B is chosen positive). The inputs EDS, ER, VARDS, VAROR and COR
completely specify the parameters B, D, G, HX and HY. The correlation

COR can take any value between —1 and +1. It is shown in Appendix 1.3
that

B = [(1 — A2)VARDS)'/?
D = (VAROR/VARDS)'/*COR
G = [VAROR(1 — COR™))}/?
HX =log(1+ EDS) - (1/2)VARDS
HY =log(1+ ER) — (1/2)VAROR.
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Mean | Standard Deviation

1. Long-term US Government

Bond Yields (nominal) 4.95% 2.96%
2. Wage Index (annual rate of increase) | 4.24% 4.31%
3. Series 1 deflated by Series 2 0.71% 4.96%
4, Standard and Poor's Composite

Composite Value Index (nominal) 9.23% 20.10%
5. Series 4 deflated by Series 2 5.00% 20.20%

Table 1.3. Means and standard deviations of five economic series.
All rates are geometric. Each series covers the period 1926-1988.
(Computed by author based on Tables 94, 11A and 15A of Economic
Statistics for Pension Actuaries, 1990.)

The “base” scenario is shown below.

Valuation rate of interest (arithmetic) .02

Expected long-term rate of return on plan

assets (arithmetic) .02
Mean arithmetic discount rate (EDS) .01
Variance of geometric discount rate (V.4RDS) .0009
Mean arithmetic rate of return on assets (ER) .02

Variance of geometric rate of return on
assets (VAROR) .0025
Correlation between geometric discount rate and

rate of return (COR) .60

Although some guidance was sought from published statistics (see Table 1.3),

these assumptions are not meant to portray any historical period accurately.

As was explained previously, the mean arithmetic discount rate of 1% is

approximately equivalent to the values on the third line of Table 1.3. The
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variance of discount rates was set equal to .0009 (i.e. a standard deviation of
3%), which is smaller than the observed value of .0496%. As will be seen in
Chapter 3, the volatibility of pension amounts is very sensitive to this param-
eter, and it is plausible that plan sponsors will try to limit the fluctuations

of the discount rates used.

Now turn to rates of return on assets. Many pension funds are heavily
invested in stocks and bonds, with other assets playing a relatively minor
role. Corporate bond yields are higher than those of US Government bonds,
while stocks have returns which, in the long run, clearly surpass those of
bonds. This would suggest a mean rate of return on pension fund assets of
around 3 — 4% (net of wage increases). However, to take into account the
“prudence” exercised in pension fund investments, a mean rate of 2% only
was chosen. For the same reason the standard deviation of rates of return
was set at 5%, which is low considering that stock returns historically show

a 20% standard deviation.

The valuation rate of interest and the long-term expected rate of return
were set equal to the mean rate of return on assets, although those three are

probably seldom equal in practice.

The model requires the correlation between discount rates and returns on
assets. It would have been possible to use US statistics to try to estimate this
parameter; it was quicker to use the correlation coefficient of bond returns
and total pension fund returns, shown on p. 25 of the Report on Canadian
Economic Statistics (1990). The value given s .61, which was rounded to
.60.

As a final remark on the base scenario, observe that one of its distinctive

features is probably the fact that the average discount rate is lower than the
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valuation rate of interest (1% versus 2%). The reverse situation is probably
often seen in practice, especially when the valuation rate of interest is chosen
Conservatively. The base scenario assumes that the latter is a best estimate
of the long-term returns of the fund (since it equals ER). (Of course in
practice the actuary only has a small number of observations to work with,
and could not estimate the long-term average rate of return with perfect

accuracy, as is supposed here.)
1.4.3. Notation and mathematical analysis

The following notation will be used throughout.

AFWL average future working lifetime of active
employees

AL actuarial liability (funding)

AM amortization of gains and losses (expensing)

B annual (aggregate) benefit payments (constant)

C contributions (funding)

COR correlation coefficient of geometric discount rates

and rates of return on assets (see Subsection 1.4.2)

DSCR arithmetic discount rate (expensing)
E - pension expense
EDS mean arithmetic discount rate (see Subsection 1.4.2)
ELTR expected long-term rate of return on plan assets
ER mean arithmetic rate of return on assets
(see Subsection 1.4.2)
F fund value
HX mean geometric discount rate (see Subsection 1.4.2)
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HY mean geometric rate of return on assets

(see Subsection 1.4.2)

k 1/AFWL

L loss (gain if negative) during one fiscal year (expensing)
NC normal actuarial cost (funding)

FBO projected benefit obligation (expensing)

R arithmetic rate of return on assets

SC service cost {expensing)

URL unrecognized losses (gains)

v sequence of independent variables used in defining

DSCR and R (see Subsection 1.4.2)
VARDS variance of geometric discount rate
(see Subsection 1.4.2)

VARCR variance of geometric rate of return on assets

(see Subsection 1.4.2)

VI valuation rate of interest (funding)
X geometric discount rate (see Subsection 1.4.2)
Y geometric rate of return on assets

(see Subsection 1.4.2)
w sequence of independent variables used

in defining R (see Subsection 1.4.2)
Some of the equations below are given in Berin and Lofgren (1987),
though with a different notation.

As explained before, the population is static, and all amounts are deflated
by increases in benefits. Annual benefit outgo is therefore constant. Assets

are valued at year-end. Contributions and benefits are paid in totality at the
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beginning of the year.
Fund values fluctuate solely because rates of return on assets vary over

time. We have

Fy=(1+4 R)(Fi-1 + Ci—1 — B).

Under the base scenario, gains/losses are amortized over one year, i.e.
Ci=NC+ AL - F,.
and

Fi=(Q1+R)(AL+ NC - B)
=AL(1+ Ry)/(1+ V)

since, under static conditions
AL=(14+VI}AL+ NC - B).

The pension benefit obligation (PBQ) shown in the financial statement
at time t is the projected unit credit liability valued at DSCR;. By contrast,
the service cost (SC) in the financial statement at time ¢ is computed at the
beginning of the year, i.e. at time ¢ — 1.

Unrecognized losses (URL) are set equal to 0 at time 0. Afterwards,
URL is increased with emerging losses (or decreased with emerging gains)

and decreased by the amount recognized in expense:
URL=URL,_ 1+ Ly — AM,.
Here

Ly = PBO, - PBO,_; + (ELTR — R)(Fi_; + Ci_; — B)
= PBO, — PBO:_1 + F(ELTR - R)/(1+ Ry)
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The first part of this expression is the unexpected increase of the PBO during
the year. In the present model this loss (gain) is entirely due to the fact that
DSCR; # DSCR;_;. The second part is the interest loss on assets during
year t —1 to t. It is the difference between the projected and the actual fund
at time ¢. One notable feature of SFAS 87 is that pension expense (a year-
end amount) includes interest on PBO,—_; at rate DSCR,_;, but is reduced
by return on assets at rate ELTR. The difference between projected and
actual return on assets in pushed into the loss for that year, and is therefore
not eligible for amortization until the following year. Observe that in the
model chosen contributions and benefit payments are paid at the beginning

of the year, and thus get a full year’s interest.

Let
M= maX(PBO¢_1 3 Fg_l )

M is the greater of the PBO and the fund at the beginning of year
(t — 1,t). It is this amount which is compared to unrecognized losses (also
at the beginning of the year) in order to determine the minimum amount to

be recognized at time t:

AM, =0, if |URLi_,| < 10%M
= k(URL:-; —10%M), if URLey > 10%M
= k(URL¢y +10%M), if URLi_y < ~10%M

(see Paragraph 32 of the Statement, reproduced at the beginning of Section

1.1). Here k is the reciprocal of the average future working lifetime of active
employees.
The model excludes prior service cost and transition obligation. Pension

expense therefore consists in
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— the service cost,

— plus interest on PBO,

— minus return on assets,

— plus recognition of part of URL, if any.

In symbols

E(= SCi_1(1+ DSCR_;) + DSCR,_1(PBO_; — B)
— ELTR(F._, — B) + AM,. (1.6)

(N.B. Benefits are paid at the beginning of the year, and thus get a full year’s
interest. Including interest on benefits at two different rates may seem a little

strange; see Section 3.2 for an explanation.)

The service cost (with interest to the end of the year) is typically very
sensitive to changes in DSCR. The same thing can be said about the PBO.
This source of volatility of pension expense has been widely recognized (see
for example paragraph 182 of the Statement). The two remaining terms in
Eq. (1.6) also cause volatility in pension expense. In particular, AM may
bring about important fluctuations (whether or not the minimum amortiza-
tion described above is applied); this is because losses include the inexpected
increase/decrease of the PBO, which can be quite large by comparison to
other losses (mortality, terminations, etc.).

The part of the right hand side of Eq. (1.6) which directly depends on

the discount rate is
Q=5SC(1+ DSCR)+ DSCR(PBO - B).

It 1s instructive to try to analyse mathematically the sensitivity of Q to

changes in DSCR. Of course it is difficult to do this in general, as the results
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obviously depend on plan benefit and demographic profile. The remainder of
this subsection examines three specific cases in some detail.

First, suppose the population is stationary (as will be done in Chapters
2 and 3). The equation of equilibrium

PBOi.y, =(14+ DSCRy_,)(PBO¢-; + SC,_, — B)
implies
0=(1+DSCR(-;)SCi_; + DSCR,_,(PBO,_; — B) — B.
Thus Q = B and
Ey =B — ELTR(Fi_, — B) + AM,.

In a stationary population, service cost plus interest on PBO (minus benefits)
is always precisely equal to benefits. The latter quantity is not sensitive at
all to changes in the discount rate. The sensitivities of the service cost, on
one hand, and interest on the PBO (minus benefits), on the other, cancel out
completely. In this case the volatility of pension expense is entirely due to
AM,.

REMARK. That @ does not depend on DSCR when the population is
stationary can be given another (more intuitive) explanation. Consider an
unfunded plan with a stationary population. The cost of the plan can be
calculated in either of two ways. First, it is simply the cost of benefits paid;
in our model, this is (1 + DSCR)B, at the end of the year. Second, suppose
any valuation method is used. The cost (at the end of the year) is the service
cost (with interest) plus interest on the pension benefit obligation. These two
costs have to be equal, i.e.

(1+ DSCR)B = (1+ DSCR)SC + DSCR- PBO
<= B =(1+ DSCR)SC + DSCR(PBO - B). O
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As a second example, suppose that the active population conforms ex-
actly to the life table, but that retirees are separated from the active lives.
Use primes to denote this new situation, and no primes for the stationary
case above. Define

RPBQO = retirees’ pension benefit obligation

= actuarial present value of retirees’ benefits.

Then SC' = SC, PBO' = PBO ~ RPBO and
SC'(1+ DSCR)+ DSCR-PBO'
=5C(1+ DSCR)+ DSCR-PBO — DSCR- RPBO
=B{(1+ DSCR)- DSCR-RPBO.
Now suppose r is the retirement age, and p the annual benefit paid to one

retiree. Then
(1+ DSCR)(RPBO — B) = RPBO — pé,i,.

(this 1s an equilibrium equation for the retired population only; see Dufresne

(1986a), p. 84). This implies
DSCR- RPBO = (1+ DSCR)B — ptré,

and

SC'(1+ DSCR) + DSCR-PBO' = pt,&,.

The annuity &, is valued at rate DSCR. Therefore, when there are no

retirees, SC plus interest on PBQ is very sensitive to variations in DSCR.

As a third and final example, suppose there are no active members, only
retirees with a population in accordance with the life table. Then there is

no service cost, and interest on the PBO (minus benefits) becomes

DSCR - (RPBO — B) = B — pl,a,.
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This is very sensitive to changes in DSCR, but this time it is an increasing

function of DSCR.

Another way of analysing the problem is to consider individual service
costs and benefit obligations. Suppose e is the entry age into the plan. Then

for one member age z

Q: = (1+ DSCR)SC, + DSCR- (PBO, - B;)

= - i . (14+ DSCR+ (z — ¢)DSCRJ(1 + DSCR)—(r”‘)(Er/Er)p&,,
f e<z«r
= DSCR - pa,, if z2>r.
Since
g. a.
it 4= g E apy (1.7)

3
8. (1-(+i)7F
2is (2
% 1-EQ+i)%]
=ER(1+i) K150

we see that @, is a decreasing function of DSCR for young members and
an increasing one for older members. (For an explanation of Eq. (1.7) the
reader is refered to Section 5.4 of Bowers et al, 1986).

We therefore conclude: the service cost plus interest on the pension benefit
obligation is a decreasing function of DSCR for a relatively young (“under-
mature”) population, and an increasing function of DSCR for a relatively
old (“overmature”) population; when the population is approzimately station-
ery (“mature”), service cost plus snierest on PBO shows little sensitivity to

changes sn DSCR.

48



What precedes somewhat weakens (at least for mature populations) the
claim that fluctuating discount rates produce large fluctuations in pension
expense. Nevertheless it should be noted that fluctuations do arise in all
cases, since unexpected variations in the PBO have to be amortized. In the
case of a mature population, these variations can be quite large. The final
outcome is that emphasis is shifted from the service cost to the amortization

of gains and losses. This is explored in Chapter 3.
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Appendix 1.1. Formula for &*
From (1.5),
X1 =1+ - k)X + D
=g Xt + Dy
where ¢ = (1 +¢)(1 — k). Then

X1 =D; + gzo
Xy = Dy 4+ ¢D; + q*z¢

X¢=Di+¢Dio1+ ¢°Dyca + -+ + ¢'z0. (1.8)
It can be shown that X, will have a limit as ¢ — oo (in the sense of
convergence in distribution) as soon as [¢]| < 1, i.e.
(1+9)(1-k)|<1
1—kl<v
—v<k—-1<v

d<k<l4v

(v=1/(1+1),d = 1—v). It is therefore necessary to pay at least interest
on X in order to obtain a meaningfull steady-state response. From (1.8) we

get

Va.l' Xt=02(1+92+q4+"'+q2t—2)

=o’(1-¢")/(1-¢).
As t — oo, this approaches

Var Xoo = 0?/(1 = ¢%).
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Since Cy = — kX, we conclude that
Var Xoo = 0?/[1 = (1 4+i)%(1 - k)3
Var Coo = 02k*/[1 - (1 +1)%(1 — k)?).

It is possible to specify the value k* below which variances are too high. It

is the point at which Var Cq, is 2 minimum, and is thus the solution of
= S/ - (140 - k)
ie.
E=1-vt=(10—-v)1+40)
=d(1 + v).
The corresponding “maximum period” m* can also be calculated:
k* =1/d=m
edl+v)=d/1-2™)
&1-v™ =1/(1+v)
o™ =v/(1 +v)
& m®=1+log(l+v)/log(l+1)
= log(2 + 1)/ log(1 + 7).
m* does not depend on the distribution of the disturbances (D,), and is a

decreasing function of . A very good approximation of m* can be found as

follows:
m* = [log2 + log(1 + i/2)}/ log(1 + 1)
= (log 2)/6 + log(1 +i/2)/log(1 +1), &= log(1 +1)
= (log2)/6 + .5

since the function z — log(1 + z) is nearly linear for small values of z.
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Appendix 1.2. Sensitivity of actuarial values to changes in valua-

tion interest rate

The criteria which were applied in deriving the demographic assumptions
given in subsection 1.4.1 are (1) simplicity and (2) that the sensitivities of the
service cost (SC) and projected benefit obligation (PBO) be comparable to
those which would be observed in real-life situations. The latter depend on the
demographic profile of the plan population; the yardstick which will be used
here is a stationary population following the 1983 Group Annuity Mortality
(GAM) Table. The results would be different if the population were younger
{undermature) or older {overmature).

The discount rate will be represented by i. The notations d = /(1 + ?)
and v = 1/(1 + ¢) will also be used. The rate of interest is net of wage
increases, and SC and PBO are correspondingly valued in dollars deflated by
the wage index. By suitably choosing the constant b defining the benefit level
(for example if there are £; member age z, each receiving a pension of 1 unit

from age 65), we have

1 64
S5C = m ;82 65—z|0x

64

1 .
= % Ze, vss_:(fes/fz) ass
30

= 365 &55 am/&’) (19)
To calculate PBO, use the equation of equilibrium

PBO = (1 +i)(PBO + 5C - B)
- PBO = (B - 5C)/d
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where
w—1

B=3 0, =0 aly

65

is the annual benefit outgo. Thus
PBO = fgs (agg) - ag?aa—s,/ss) /d (1.10)

{These relationships are simple consequences of the stationarity of the pop-
ulation; the reader is referred to Trowbridge (1952) or Dufresne (1988) for
more details.)

Observe that pre-retirement decrements do not appear in Eq. (1.9) nor
in Eq. (1.10); hence pre-retirement decrements have no influence on the
sensitivities of SC or PBO to changes in the discount rate. This is essentially
a consequence of three assumptions: (i) there are no pre-retirement benefits;
(i1) the population conforms to the life table at all ages before retirement; (iii)
the projected unit credit method is used. The conclusion would in general
be incorrect if any of these assumptions did not hold.

Table 1.4 shows the sensitivities of SC and PBO for the model popula-
tion and the 1983 GAM Table. The base rate is 2% (recall that this rate
is net of wage increases). The model population produces slightly smaller
variations. then 1983 GAM. For comparison purposes, two other sets of fig-
ures are shown. The first part of Table 1.5 uses the 1983 GAM Table with
£, replaced with £,(1.02)7{*~%%) at ages r > 65. The point in doing this is
that using the same net valuation rate of interest before and after retirement
means that benefits in payment increase at the same rate as salaries. This
is rarely the case in practice: at best benefits in payment would get full CPI
indexation, which is less than indexation in accordance with wage increases.

The medified £; function corrects this situation by supposing that benefit
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payments are increased by the wage index minus 2%. The result is slightly
smaller sensitivities, since benefits paid have a shorter duration.

The second set of figures in Table 1.5 is based on the assumption that
survival is certain up to age 81, instead of age 79 under the model population.
Thus &gg) = 17 (instead of 15), which is closer to 17.19 = af.,‘;) under 1983
GAM.

In conclusion, the model population produces sensitivities which are com-
parable to {though slightly smaller than) those obtained using the 1983 GAM
Table.

REMARK. Some plan features have an effect on the duration of bene-
fits paid, for instance: pre-retirement benefits, early retirement, guaranteed
periods for benefits in payment, joint and survivor pensions. Intuitively the
first two should decrease duration, and the last two increase it. These plan
features should therefore have similar effects on the sensitivities of SC and

PBO. It would be interesting to try to quantify these effects. 0
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Model population 1983 GAM

i ScC PBO sC PBO
.01 11.767 326.58 13.093 414.05
(25.7%) (13.6%) (29.0%) (15.3%)
.02 9.361 287.58 10.151 359.14

) ) ) )
.03 7.549 255.82 8.004 315.50
(-19.4%) (-11.0%) (-21.2%) (-12.2%)

Table 1.4. Service cost (SC) and projected benefit obligation

(PBQO). Relative variations from values at i1 = 2% are shown in
brackets.
Modified 1983 GAM Modified model population
1 SC PBO 5C FBQO
.01 10.936 330.88 13.207 T 383.11
(27.7%) (14.8%) (26.8%) (14.0%)
.02 8.561 288.22 10.412 335.98
=) ) ) (-)
.03 6.811 254.10 8.325 297.83
" (-20.4%) (-11.8%) (-20.0%) (-11.4%)

Table 1.5. Service cost (SC) and projected benefit obligation
(PBO). On the left the £, function from the 1983 GAM Table has
been replaced with £,(1.02)%3~% for z > 65. On the right ¢, = 0,
z < 81, g1 = 1.
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Appendix 1.3. Formulas for B,D,G,HX,HY

The problem is to obtain the values of B, D, G, HX and HY, from those
of the inputs EDS, ER,VARDS,VAROR and COR. The parameter A has
been set equal to .9. Recall that the process X is supposed stationary.

From
VARDS = Var X, = B?/(1 — A?)
we get
B =[(1 - A*)VARDS]'/2.

Next,
VAROR = VarY: = D’B?/(1 - A>) + G?
COR=D-B/[D*B? + G*(1 — AY)]*/?

imply

VAROR/VARDS = [D*B? + G*(1 — A%)]/B*
D = [VAROR/VARDS|'/? . COR.

The parameter G can be found from

1- COR? = G¥1- AY)/[D*B* + G*(1 — A?)]
= VAROR(1 — COR?) = G*
= G = [VAROR(1 - COR?)]*/%.

Now turn to HX. For any variable Z ~ N{u, 0?),

Eez - c“+(]/2)02.
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Thus

1+ EDS =exp(HX +(1/2)VARDS)
= HX =log(1+ EDS) - (1/2)VARDS.

Similarly

1+ ER =exp(HY 4+ (1/2)VAROR)
= HY =log(1 + ER) — (1/2)VAROR.
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CHAPTER 2 EXISTENCE OF LIMIT DISTRIBUTIONS

2.1. Introduction

This chapter demonstrates the existence and uniqueness of the limit dis-
tributions of unrecognized losses (URL) and pension expense (E) under the
mode] described in Chapter 1. As explained below, these questions are of
importance when building a model which will be simulated over long periods
of time, as will be the case in Chapter 3.

Section 2.2 first defines the concepts used: stochastic processes, Markov
processes, stationary distributions, and embedding. The general theorem
which will be used to prove the ergodicity of URL and E is then stated;
finally, several relatively simple examples show the application and meaning
of the theorem. The last two sections (2.3 and 2.4) deal with the ergodicity
of unrecognized losses and pension expense, respectively. The rest of the
present section is a discussion of two aspects of the problems studied later
in this chapter: (1) the ezistence of a limit distribution; (2) the dependence
of the limit distribution on initial conditions.

Not all stochastic processes have “meaningful” limit distnibutions. For
example, consider the so-called “random walk” model for rates of return.
Under this model the deviation of the rate of return in year ¢ from some base
rate r is S, with

Si=e14- -+ &

where (g¢,t > 1) are independent and identically distributed (i.i.d.) and have

mean zero. This model has the interesting property that

E(St+1|5'¢) = S:
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i.e. given what is known at time ¢, next year’s rate (Si41 + 1) is “expected”
to be this year’s rate (S, + r). This model has been used in finance and
actuarial science (e.g. de Jong, 1984). The less interesting property of the
random walk model is that S; cannot have a limit distribution. In fact the
probability that S, lies in the range [~100%, +100%] approches 0 when ¢
becomes very large. This kind of process could not have been used for the

purposes of the present research.

The same thing occurs in a pension model if gains/losses are not amor-

tized. For instance, consider
URL,=URLy_;+ L — AM,

If we suppose AM, = (0 for all ¢, then URL, is the cumulative sum of past
losses {gains). In this respect paragraph 184 of SFAS 87 contains the follow-
ing sentences:

184. The Board noted that, if assumptions prove to be accurate estimates of
experience over a number of years, gains or losses in one year will be offset by
losses or gains in subsequent periods. In that situation, all gains and losses would
be offset over time, and amortization of unrecognized gains and losses would be
unnecessary.

The view expressed by FASB appears to be that

t

ZL, ~ 0,

=1
if assumptions are correct on average and t is large enough. This is math-
ematically incorrect: 3°._, L, behaves very much like the random walk S,
i.e. its probable values are further and further away from 0 as t increases.
(The main difference between the two processes is that the losses (L,) are not
independent; this does not change the conclusion). Thus, no amortization of

gains and losses implies that there is no limit distribution for URL.
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Now turn to the dependence of limit distributions on initial conditions.
The following example will show what can happen when a “corridor” ap-
proach is adopted. Consider a pension funding model, with a stationary pop-
ulation, no inflation and constant valuation rate of interest 1 = .06. Earned

rates of return are independent and have distribution
R; = .065 with probability 1/2
= .055 with probability 1/2.
Since the population is stationary and there is no inflation,
AL=(1+1:)(AL+ NC - B).
Fund values evolve according to
Fiyi=0+ R (Fi+ AM+ NC - B).
Subtracting this equation from the previous one, we obtain a recurrence
relation for the unfunded liability:
ULiy1 = AL — Fia
=14 Re+1)(AL+ NC - B)— (14 Rt )(Fi + NC - B)
— (14 Riy1)AM — (Re41 — 1)(AL + NC - B)
=(1+ Re+1)(ULy — AM;) — (Reg1 — i)vAL
= (14 Ri41)(UL; — AM,) —vALAR.4,

where AR¢y; = Riyy —t. Assume that the gains/losses amortization
payment AM; is the excess of the unfunded liability over 10% of AL, di-
vided by 5:

AM, = 200UL, - .10AL), UL: > .10AL
=0, UL < 10AL
= QO(ULt + .IOAL), UL, <« -.10AL.
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First, suppose |ULo| < .10AL, i.e. that the system is initially inside

the corridor. Then UL, will sooner or later drift out of the corridor. One
possibility is that UL; > .10AL for some ¢ > 1. Let us see what happens at
time ¢ + 1: with probability 1/2, R4, = .065 and
ULty = 1.065[ULy — .20(U L¢ — .10AL)) — vAL(.005)
=1.065-.80UL, +1.065- .02AL — .005vAL
>1.065-.80-.104AL + 1.065- .02AL — .005AL/1.06
= .1018AL.

With probability 1/2, Res; = .055 and
ULy, =1.085[UL, — .20(UL, — 10AL)] + vAL(.005)
>1.055- .80 - .10AL + 1.055- .02AL + .0053AL/1.06
= .1102AL.

Thus, once UL is above 10%AL, it can never become smaller than that

amount again.
The other possibility is that for some ¢ > 1, ULy < —.10AL. Then with
probability 1/2
ULesr = 1.065[U Ly — .20(U Ly + .10AL)) — vAL(.005)
| =1.065- .80UL, — 1.065 - .02AL — .005AL/1.06
< —.11124L

or

ULiyy = 1.055[UL; — 20(UL; + .10AL)] + vAL(.005)
=1.055-.80UL;— 1.055-.02AL + .005AL/1.06
< —.1008AL.

61



The same phenomenon is seen to take place: if the surplus ever exceeds

10%AL, it can never get smaller than that amount again.

It can be shown that there is a hmit distribution for UL, (and therefore
AMy,), whatever the initial state of the system. If the system starts in the
region {UL > .10AL}, then the limit distribution is concentrated on that
region, since entry into the corridor is impossible. The existence of a limit

distribution is a consequence of
E(1-20(14+Ria) <1

(loosely speaking, this means that more than interest on UL — .10AL is
fed back into the system). The situation is identical if ULy < -.10AL,
with a limit distribution concentrated on the region {UL < ~.10AL}. I
ULg is inside the corridor, then the limit distribution depends on which
threshold (+.10AL or —.10AL) is eventually reached. There is no ergodicity;

for example, the empirical mean

1 T
ULt=T§UL,

will converge to the theoretical average of one or the other limit distribution.

These values are

(for the distribution on (.10AL,0)) and

L5 =106[UL 5 —.20UL 3, +.10AL)]

UL ,
= UL 5 = —1.06-.024L/(1 — 1.06 - .80)
= —.13954L

62



(for the distribution on (—o0, —.10AL)).

Could the same thing happen with the model described in Section 1.47
The problem has to be studied, if the results of Chapter 3 are to be believed.

2.2. Some definitions, and a theorem

A stochastic process is a collection of random variables. In the present
context, stochastic processes are indexed by the non-negative integers, that
is to say there is one random variable for each integer 0,1,2,.... Some of
the stochastic processes encountered in the following sections take values in
R? or R3, that is to say to each integer there corresponds a random vector

in two or three dimensions. The distribution of a random variable X is that
function
mx(A) = P(X € A)

which associates to a set A the probability that X lies in A. In some cases
a stochastic process (X, X3,...) has a imit distribution, i.e. a distribution

m such that

m(A) = ‘13.:210 P(X. € A)

for all relevant sets A. This does not mean that lim;_ o X; exists. Take a
simple example: call X, the result of throwing a die for the t** time. Then
X: has no limit: each X, is completely unpredictable from past values. But
the (X¢) do have a limit distribution, simply the distribution common to
all of them. Something similar happens when we simulate pension funds.
The distribution of, say, total contributions (in real terms) may approach a
particular distribution as time increases, though in any one simulation total

contributions continue to fluctuate indefinitely.
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A stochastic process is sald to possess the Markov property, or to be
markovian, if its movement from time ¢ to time t + 1 depends only on its
position at time t, and not on its previous positions at times ¢ — 1,1 —2,.. ..

An example is the random walk
Xe=e€1+4+ -+ &

where (€1,¢€2,...) are independent. Here P(X¢41 € A | Xt € By,---, X1 €
By)) = P(Xi3+1 € A | Xy € By) for all sets A, B,,...,B;. What happens
before time t has no effect on the transition from time t to time ¢ + 1.

A stochastic processes (X;,X5,...) is stationary if the distribution of

any vector

Xy X))

is invariant under translation, that is to say if it is the same as that of

(Xh+ha' . 1Xt.+h)

for any h.

The process (X.) representing geometric discount rates (Section 1.4)

satisfies

Xis1 —HX =A(X1~—HX)+B'V1+1

where A = .9 and (V}) is an i.i.d. sequence of IN(0, 1) variables. This process
is markovian, since the transition from X¢ = z to X4, depends only on z
and Vi4y, which are independent of ((X,,V,),s <t —1). If we set Xy = z¢
(fixed), then the process X is not stationary. Nevertheless, it is known that
if Xo ~ N(HX,B?/(1 — A?)) and X, is independent of V;,V;,..., then X
is statiopary. This may intuitively be explained as follows: the distribu-
tion N(H X, B2 /(1 - A?)) is the limit distribution obtained for X, as t — oo,
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whatever Xy = zo. If we give the initial condition X, the limit distribution,
then X can only reproduce that distribution, and so on for X», X3, ....
On the contrary, the process Y representing geometric rates of return is

not markovian. Recall that
Yig1 = HY &+ D(Xt+] — HX) + G - Wegr.

Thus Y;4, depends on X,4; and Wy4;. The variable Wiy, is independent
“the past” (i.e. of Y:—1,Yi—2,...) but X4, is not (since it depends on X.,
and Xy and Y} are dependent).

(X:) is markovian, (Y;) is not (because of its dependence on (X)), but
the two processes considered jointly form a two-dimensional markov process.
Consider Z; = (X¢,Y1)T. (N.B. “(a,b)T” denotes the transpose of the vector
(a,b), that is to say the column vector with elements a and 4.) Then

Zesy = <A:,+,) _ ( HX + A(X, — HX,) +B-Viys )
Yir HY + D( X1 —HX)+ G- Wi

_( HX 4+ A(X:—HX)+ B - Vi )
T \HY +D[(X¢—HX)+ B -Viu]+ G Wi,
= ¢(

Zt,Vit1, Weqr).

The variables V34, and Wiy, are independent of the past (i.e. of Z,-1,Z;_2,
...). Thus the transition from 2, to Z:4; is independent of Z;_, Z¢_»,...,
and (Zy) is markovian.

The technique used above (looking at one variable as a component of a
higher dimensional variable with “better” properties) is called embedding. It
will be used to prove the ergodicity of (U RL;) and {E,).

Markov processes indexed by the integers are called Markov chains. The

theorem given below concerns the ergodicity of certain types of Markov
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chains. A few more definitions are required first. The transition law (at

time t) of a Markov chain (M,) is the function

Q«m, A) = Prob(M4, € A given M; =m)
=P(M1+1 EAIJ\vft:m)

where A is a subset of the space in which (M) takes values (this space will
be denoted by Ad). We will only consider Markov chains with the same
transition law at each step; these chains are called time-homogeneous. Let
¢ be a o-finite measure on M. (M,) is said to be p-irreducible if, whenever

w(A) > 0, for every m € M there is t > 0 such that
P(M, € A} Mg =m)>0.

The only case considered here is when ¢ is Lebesgue measure on the whole
d-dimensional space R?; irreducibility then means that any state m’ can be
reached from any other state m in a finite number of steps. The last technical
definition is the strong continuity of a transition law. @ is said to be strongly

continuous if the function

z— Q(z,A)

is continuous for each subset A of M.

The next theorem is taken from Tweedie (1975), Section 5.

THEOREM. Suppose (M) is a time-homogeneous, p-irreducible Markov
chain taking values in ¢ finite-dimensional Banach space M, with strongly

continuous transition law Q(m, A). Let || - || denote the norm on M and

h(m) = E([[Megsll = [[Mill | My =m)
- / Q(m, dm) || = flm|.
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Then (My) is ergodic if there ezist strictly positive constants a and b such
that

(i) h{m) is uniformly bounded if ||m|| < a, and

(11)  h{m) < —b for all m such thaet ||m| > a.

This theorem can be interpreted as follows: a Markov chain is ergodic
if it “drifts” consistently back to the “center” when it takes values far from
it. (N.B. The norm ||m|| represents the distance from the origin to m.) The
following examples illustrate the meaning and application of the theorem. In

all examples () is a sequence of i.i.d. normal variables with mean x and

variance o2.

Ezample 1. The random walk
SQ=E]+"‘+€t, tZ].

is a Markov chain. Given S = s, St4+1 may take any value in R, since the
variable £,4; = Sy4+1— 5, has a continuous distribution with a;positive density
on (—oo,00); (St) is thus irreducible with respect to Lebesgue measure. The
transition law is normal and thus strongly continuous. Let us try to apply

the theorem to (5:). We obtain
h(s) = E(ISet1] = ISd] | St =)= Els +ewsa| - |s].

There is no @ > 0, b > 0 such that A(s) < —-bif |s| > a. In fact it is easy to
see that

bm Efs + 41| —[s] =0.

fsj—oo

This is consistent with the fact that (S:) does not attain an “equilibrium”

distribution as t increases, as was pointed out earlier.
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Ezample 2. Consider the autoregressive process
Xit1 = aX¢ + €141, t>1,

with |a| < 1. Irreducibility and strong continuity are obtained as in the

previous example. Here

h(z) = E(IXen] = 1X4] | X = 2)
= Elaz + €441| — |2]
< E(lallz] + leeta]) = |2l
=(lal =izl +¢, = Eletal.
The conditions in the theorem are satisfied, since (Ja] — 1)|z] — —oo as
|z] — oo. We conclude that (X}) is ergodic. Intuitively, the fact that |a| < 1

means that X, is pulled back towards the origin, unlike the process S; in
Example 1. (N.B. Example 1 is obtained by setting a = 1.)

Ezample 8. Consider the “autoregressive process with autoregressive noise”
(Yr):

Yiri=B8Yi+ Xetq , (Bl <1

Xemi=aXi+e , laf<i
Y: is not markovian, but the vector M, = (K,Xg)T is. The space M is

now RZ. Irreducibility and strong continuity are easily verified. Given M, =

(y,z)7, the transition from M, to M4, can be represented as

y . By+ az + €44
z oz +£¢41 ’

It is better not to use the ordinary euclidean norm ||(y, z)|l. = (y¥* + z2)*/?,
but rather
(v, DIl = |yl + dlz|
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where d is a strictly positive constant such that {1 + d)|a| < d (take any
d > |a|/(1 — |a])). We then get

h(y,2) < (18] = Dlyl + [(1 + d)la| - d)jz| + (1 + DE | eena.

The conditions of the theorem are satisfied, and (M) is ergodic. This also
proves the ergodicity of (Y7) since Y; is a function of M; (namely the projec-

tion (y,r) — y).

Ezample /. Consider a modification of Example 3:
Yo =AY+ e, |6 <1

){¢+1 = aY; + €141, |a| < 1.

The noise is now the exponential of an autoregressive process. Intuitively
(Y:) should once again be ergodic, since basically the same situation prevails:
Y} is brought back towards the origin by the constant 5, and the noise added
reaches an equilibrium distribution itself (since |a| < 1). However, using the

norm || - || of the previous example, we get
h(y,z) < (18] = Dlyl + d(je| — 1)lz| + dElecs1| + e Ee®+1.

It cannot be said that h(y, z) < —bfor all (y, ) such that ||(y, )| is greater
than some a > 0. This is because €®* is unbounded as |z| increases (unless
a equals 0). The theorem given can apparently not be used to prove the
ergodicity of (Y;) (some clever trick might do it, but the author was unable
to find such a trick). (Y7) is nevertheless ergodic. This is proved by noting
that

Vi=eX 4 X gy ptote X
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has a limit distribution, since |8| < 1 and (X)) itself has a limit distribution;
see Brandt (1986) or Dufresne (1991, Section 3) for more details.

The above difficulty will surface once more in Section 2.3 and 2.4. Es-
sentially the difficulty here is that Ee®**e+! is unbounded as a function of
“the present”; in the pension model] the same will apply to the average gain

or loss arising in one year.

Ezample 5. Now consider an autoregressive process with “thresholds”:
Xip1 = a(X )X + €041
where

a(z)=a if |z|[>1, Jaj<1

=8 if jz|<1.

The constant 8 does not have to be smaller than 1 in absolute value. Here
X, drifts back towards the origin, but only when it is outside the “corridor”

[~1,1]. We find
h(z) < (la| = Diz| + Eleeal, if |z >1,

and conclude that (X,) is ergodic.

Ezample 6. Consider a pension funding model with a stationary population,
no inflation and constant valuation rate of interest :. The earned rates of
return on assets (R,) are i.i.d. with a lognormal distribution (i.e. 1+ R, =

exp &:). Then (see Section 2.1)

ULH.] = (1 + RH.])(ULt - AM;) —vAL ARy
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where UL is the unfunded liability, AM is the special payment towards
amortization of UL and ARyy; = R¢41 — t. Suppose

AM; =k UL,

(this was called “proportional control” in Chapter 1). Then, given UL, = u,

ULi41 = (14 Reg1)(1 — k)u — vAL AReq

= h(u) = E|(1 4 Re41)(1 — k)u — vALAR4y| — |y]

<[E(1+ Ry )1 — k) —1)|u| + vAL - E|AR: 4|
A sufficient condition for the ergodicity of (UL,) is therefore
EQ1+RH)1-k)<1

or

k>1-1/E(1+ R,)
=1~exp(~u—0*/2)
if 1 + Ry ~ logN(g,0?). It can be shown that if k <1— 1/E(1 + R,), then
(UL4) does not have a limit distribution.

The theorem requires the distribution of R; to be continuous and positive
over a sufficiently wide interval (this is to satisfy irreducibility and strong
continuit}.’). In this example, however, other more direct methods can be
used to show that (UL;) is ergodic as soon as k > 1—-1/E(1+ R,), whatever

the distribution of R,. The next example is different in this respect.
Ezample 7. Consider the same model, but let
AM,=k(UL,-C), f UL >C
=0, if |[ULJ|<C
=k(UL +C), if UL <-C
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for some C' > 0. This generalizes the example given in the latter part of

Section 2.1. Now assume UL; = u; then

G)ifu>C,

ULy = (1 + RH—I)[U - k(u - C)] — vAL AR
= (1 + Rt.*.])(l - k)u + (1 + R3+1)kc - 'L‘AL AR¢+];

() if [u| < C,
UL;+1 = (1 + Rt“)u —vAL AR¢+1;
(i) if u < —C,

[JvL¢+1 = (1 -+ RH»I){U - k(u + C)l —vAL AR:+]

= (1 + RH..])(I - k)u — (1 + RH.l)kC —vAL AR!+1-

Then

h(u) = E(JULeyy | | ULy = u) — |y
< [E(Q 4+ Reg1){(1 — k) = 1)|u| + kCE(1 + Rey1) + vAL - E|AR11]

< -b

for all u such that |u| is large enough, if E(1 + R;)(1 — k} < 1. Observe
that this is the same condition as in the previous example, i.e. the presence
of the corridor does not change anything this far. But (U;) may yet fail to
be ergodic. In Section 2.1, the rates of return on assets take the two values

.0065 and .0055 with equal probability, and k = .2; thus

E(1+ R)(1—k)=1.06(1-.20) < 1.
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Nevertheless ({”L,) did not have a unique limit distribution. This is because
the condition of irreducibility was not satisfied. As was explicitly shown in
Section 2.1, it is impossible for UL to move from the region (—co, —.10AL)
to the region {+.10AL, +00), or vice-versa. Thus the range space can be “re-
duced” to three sets (namely (—o0,—.10AL]), (-.10AL,+.10AL),
[+.10AL, +oc)), two of which are “closed” (i.e. cannot be escaped from).
This particular distribution for the rates of return therefore violates one of
the conditions of the theorem. The theorem will apply if the rates of return
have a continuous distribution with a range sufficiently wide to allow UL to

move (with positive probability) from any one point to any other one.

2.3. Ergodicity of unrecognized losses (URL)

The ergodicity of (U RL;) will now be proved, assuming the model] de-
scribed in Section 1.4. The population may be any stationary population,
not necessarily the one adopted for the simulations; all the parameters are
left unspecified, except that |A| < 1 (to ensure ergodicity of discount rates
and rates of return on assets) and 0 < k < 1; it will be assumed that funding
gains and losses are liquidated over one year, although the result would also

hold for less rapid amortization.

From Section 1.4,
URLtt+1 =URLy + L1 — g(URL,, Fe V PBOy)

where

L4, = accounting loss during (¢, + 1)
= PBO4+1 — PBO¢+ (ELTR — Ry41)AL/(1 + V)
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g(URL,, F; vV PBO,) = losses recognized in expense at time ¢ +1

= AM:+1.
Here Fy V PBO, = max(F;, PBO;) and

9(u,9) =0, if |u] < cq
=k(u—cq), ifu>cq

= k(u + cq), if u < —cq.

The constant ¢ > 0 determines the width of the+corridor (for example ¢ =
10% in SFAS 87), and the function g takes as inputs u (= unrecognized
losses) and ¢ (= maximum of fund and projected benefit obligation) and

outputs the minimum amount to be recognized at time ¢ + 1.

As pointed out before, (URL,;) is not markovian; however, the vector
(URL;, X, F;) is a Markov chain; thus it is sufficient to prove that this
vector is ergodic in order to show that URL, is ergodic. It is technically
easier to deal with H, = log Fy, instead of F; itself. We have

Hypy = HY + DJA(X, — HX) + B - Veg1] + G- Wegr + log[AL/(1 + VI)).

Consider the vector (M) = (URL¢, X¢, H)T. Given My = m = (u,z, k)7,
we have
My

u + Legr — g(u,e" Vv p(z))

=| HX + Az ~HX)+ B V4

HY + D[A(z — HX)+ B - Viya] + G - Weyy +log[AL/(1 + V)]
Here the function p(z) represents the projected benefit obligation valued at
geometric rate z (so that PBO, = p(Xy)).
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In Section 1.4 the variables (V) and (W:) had N(0, 1) distributions. This
is not required here. The calculations below suppose that each sequence is
rid. with E|V;

strongly continuous if the distributions of V; and W, are continuous. Just as

< 00, E|W;| < oco. The transition law of (M;) will be

in Example 7 of Section 2.2, irreducibility requires that the ranges of these
variables be wide enough to make it possible for URL to move (with positive
probability) from any one point u to any other point ¢’ in a finite number

of steps.

The following norm will be used:
Il = K2, ) = ful + [z} + B
where d > 0 is such that |4|+ d|D - A| < 1. Let
h(m) = E(I M — M| | M, = m).

We have to show that there exist strictly positive constants a and b such
that h(m) is bounded for ||m|| < a, and A(m) < =b for ||m|| > a. The first

condition clearly holds. In order to check the second one, observe that
u-g{u,q) =y, i ul<eq
=(1-kju+keg, if u>cq
=(1-ku—keq, i u<-—cqg.
Since 0 < k¥ <1 and ¢ > 0, ¢ > 0, the foregoing imply

'u - g(an)I - lul = 0) if Iul S cq

= —k(lu| —cq), i |u| > cq.
A more concise way of writing this is

Ju = g(u,q)| = |u] = —k(Ju| — cq)+
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where (z)4 is the “positive part of z” (i.e. z if positive, zero otherwise).

Using the triangle inequality (Ja + 8] < |a| + | 8]) repeatedly, we find
h(m) < =k(Jul — cq)+ + (|4 + d|D - A| - 1)|z| — d|i| + C(=)
where ¢ = e" V p(z) and

C(z) = E()Ls+1] | Mi=m)+(1 - A+d|D- A))|HX|+ |HY|
+ (1 +d|D})|B}- E[Vi41] +d|G| - E|Wi41] + d | log[AL/(1+ VI)] | .
C(z) depends on z only through the first term E(|L;4:1] | M: = m). This
term depends on z because
E(|L1+1| I M, = m) = E“PBOH.1 — PBO: + (ELTR - R¢+1)
x AL/(1+ VI)| ( M, = m]
=FEpp(HX + A(z ~ HX) + B - Vi41) — p(z)

+ (14 ELTR —exp{HY + D[A(z — HX)

+B - Vinl+G-W i DAL/(1 + V1)
When the possible range of V; is (—o0, +o0), z also has range (~oo, o0), and
the above expression is unbounded as a function of z. We are then faced with

the same problem as in Example ¢ (Section 2.2). In order to be able to use
Tweedie’s theorem to prove the ergodicity of (M;), the following assumption

is made: there ezists C < oo such that
E(|Leni| |[Mi=m)<C (%)

for all m € R®. This assumption will be discussed in the remarks below.

The proof may now be completed. There is a constant C; < oo such that

h(m) < —k(Ju] ~ cg)+ + (|Al+d|D - A| ~ 1)|z| = d|h| + Ch.
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Let b > 0. There exist C; < oo and C3 < oo such that
lu| = c[e” V p(z)] = C2 = h(m) < =b,

|z] + dh| > Cs = h(m) < —b.

Let

Ci=c- sup [e*Vvp(z)]
[z]-+d]R]<Cs

and suppose ||m|| > C2 + C;3 + Cy4. Then there are two possibilities:
(H |z| + dJh| < Cs which implies (a) c[e® V p(z)] € C4 and (b) ju} >
C; + Cy which in turn imply |u| — c[e* V p(z)] > C2 and h(m) < —b.

(2) |z| + djh| 2 C3 which implies h(m) < —b.
The proof that (URLy,) is ergodic is complete.

REMARKS 1. The result appears plausible even without assumption (*).
In fact, the result can be so proved when there is no corridor (i.e. ¢ = 0),
see Brandt (1986). Unfinished calculations also show that the result might
be proved for ¢ > 0, without (*), but only when 0 < 4 < 1.

2. From a modelling point of view, there is no difficulty in accepting assump-
tion (x). The loss during one year depends on the increase in the PBO and
on the value of the fund at the end of the year. Most of us would accept that
PBO and F have natural limits e.g. the earth’s total wealth, or the largest

number the computer can handle. These limits ensure that (*) is satisfied.

. 3. The reason why PBO and F may take unlimited values under the model
described in Chapter 1 is that X, (the geometric discount rate) and Y; (the
geometric rate of return on assets) may take values in the whole interval

(=00, +o0). For most purposes this is not a problem, as the probability of
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“very large” values of either X or Y is very small as long as their variances
agree with historical observations. For instance, under the base scenario X,
has a normal distribution with a mean value around g = .01 and a standard
deviation of ¢ = .03; the probability that a normal variable takes a value
outside the interval (u~ 50, u+5a) is less than 10~°. In some cases, however,
it might be appropriate to limit the possible ranges of X or Y. One simple
way of achieving this would be to limit the possible values of the disturbances
(Vi) and (W;). This would be another way of making sure that (x) holds.

4. Other ways of amortizing unfunded liabilities could be considered, for
example (1) amortization payments equal to a fraction k' of UL, or (2)
separate amortization of each annual gain/loss over a number of years. In
those cases Fy would not be a function of R; alone, but would also depend on
its own past. Proving ergodicity in these cases is possible by using a higher

dimension vector. O

2.4. Ergodicity of pension expense (E)

We have (see Section 1.4)
E,=B-ELTR(F,-, — B)+ AM,.

Thus E; is a function of Fy_,, PBO¢.; and URL;_;, which means that E,
may also be seen as a function of the vector (URL,—;, X, —;, H;—,) considered
in Section 2.3. This automatically proves the ergodicity of (E;) under the

assumptions made in that section.

78



CHAPTER 3 RESULTS OF SENSITIVITY ANALYSIS

3.1. Methodology

This chapter quantifies the variability of pension expense and unrecog-
nized losses under the model described in Chapter 1. Chapter 2 has shown
that the stochastic processes representing these amounts are ergodic, im-
plying that their stationary distributions can be obtained from one “long”
realization of the processes. The stationary distributions obtained under dif-
ferent sets of assumptions can be compared, showing the relative importance
of each assumption. This section describes how the computer simulations
were performed. The next section analyses in some detail the numbers ob-
tained under the base scenario. The rest of the chapter presents the results
of the sensitivity analysis conducted with respect to the following parame-
ters: the variance of discount rates (Section 3.3); the variance of the rates of
return on assets (Section 3.4); the width of the corridor (Section 3.5); and,

finally, the fraction of losses recognized in each year (Section 3.6).

A Tortran program was written to simulate the model described in Chap-
ter 1. The program takes the parameters of the model as inputs and outputs
the mean, variance as well as the frequency distributions of pension expense
(E) and unrecognized losses (URL). Each simulation ran for one million

periods.
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Pseudo-random numbers (U;) possessing a uniform distribution on inter-

val (0,1) were generated using the combined congruential method

X =40014X,_; (mod2147483563)
Y; = 40692Y,_; (mod 2147483399)

with Xy = 383 and ¥y = 99. U, is then equal to Z; rescaled to (0,1). This
generator has period 2.3 - 10'® (Bratley et al, 1987, p. 204). The normal
variables (V}) and (W) were then obtained from the so-called Box-Muller

transformation

Vi = cos(2nUz )/ —2log Uzs—
W, = sin(27Us )/ —2log Uze—;s.

REMARK. It is well known that using a linear congruential generator

in conjunction with the Box-Muller method produces very poor normal vari-
ables (the pair of variables obtained are certainly not independent, for one
thing). The combined congruential method used here avoids this problem.
For more details, the reader is referred to Bratley et al (1987), pp. 204,
223-224. 0

3.2. Analysis of results under the base scenario

The parameters chosen for the base scenario are as follows:
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Arithmetic valuation rate of interest (VI) .02

Expected long-term arithmetic rate of return

on plan assets (ELTR) .02
Mean arithmetic discount rate (EDS) .01
Standard deviation of geometric discount

rate (VARDS/?) .03
Mean arithmetic rate of return on assets (ER) .02

Standard deviation of geometric rate of

return on assets (VAROR!/?) .05
Correlation between geometric discount rate

and rate of return on assets (COR) .60
Fraction of max(PBO, F) used ‘

for corridor (C) .10

Fraction of excess of |[URL| over

C - max(PBQO, F) recognized in expense 1/15

Economic and actuarial assumptions were analysed in Subsection 1.4.2.
In all simulations the geometric discount rates (X) and rates of return on

assets are generated from

Xt+1 =HX + 9(X¢ —HX) + B- ‘/g+1

Vi1 =HY + D( X1 — HX)+ G - Wiy,
where (V;) and (W,) are two independent i.i.d. N(0,1) sequences, and HX,
HY, B, D and G are such that EDS, VARDS, ER, VAROR and COR
take the desired values. Under the base scenario the corridor used is the one

prescribed by SFAS 87, i.e. £10% of max(PBQO,F). When unrecognized

losses fall outside the corridor, the excess, multiplied by 1/15, is included in
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expense for that year. This corresponds to an average future working lifetime
of active employees (AFW L) equal to 15 years.

The pension plan (see Subsection 1.4.1) provides % of salary per year of
service. For convenience, bis chosen so that the total annual benefit outgo is
equal to 15 units (in constant currency). This corresponds to setting £gs = 1

in the formulas shown in Appendix 1.2. On the funding side, the actuarial

liability and normal cost are valued using the projected unit credit method:

AL(@ VI = 2%) = 287.58

NC(@ VI = 2%) = 9.361.
If the discount rate is equal to its mean value, then

PBO(@ DSCR = 1%) = 326.58
SC(@ DSCR = 1%) = 11.767.

Table 3.1 shows the frequency distributions of pension expense and un-
recognized losses. Means and standard deviations are summarized in Table
3.2. Figures 3.1 and 3.2 are graphic representations of the distribuitons of E
and URL. Observe that pension expense has a very large frequency around
9.56; this is a consequence of the use of the corridor: if [URL-;| < 10%max
(F4-1,PBO0;_,), then AM,; = 0 and

E = B- ELTR(Fi_, - B)

which has a relatively small variance. Otherwise the data has three striking
features: (1) the distributions have very wide ranges; (2) their variances are
large, and (3) the distributions are skewed (i.e. not symmetrical). These

points will be discussed in turn.
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FREQUENCY DISTRIBUTIONS

Expense (E) Unrecognized losses (URL)
Interval Frequency Interval FPregquency
— 00 -0
1,154 33
-13.13 -683.0
1,930 13
-10.74 -611.1
5,621 38
-8.35 -539.2
13,931 89
- 5.97 -467.3
29,245 438
-3.58 -395.4
50,398 2,965
-1.19 -323.5
72,860 22,912
1.19 -251.6
90,715 90,111
3.58 -179.7
97,087 176,204
5.97 -107.8
94,365 201,577
8.35 -36.0
246,193 168,761
10.74 36.0
63,486 120,298
13.13 107.8
50,831 77,964
15.52 179.7
39,467 48,978
17.90 251.6
30,602 30,572
20.29 323.5
23,912 19,040
22.68 395.4
18,332 12,340
25.06 467.3
14,143 8,116
27.45 539.2
10,809 5,492
29.84 611.1
8,544 3,816
32.23 683.0
36,375 10,243
oo o0 :

Table 3.1. Frequency distributions of pension expense (E') and unrecognized
losses (URL) under base scenario (one million iterations). Second column
shows the number of times the variable took a value in the interval given in
first column.
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FIGURE 3.1. Frequency distribution of pension expense
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FIGURE 3.2. Frequency distribution of unrecognized losses
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Variable Mean Standard deviation
Pension expense (E) 9.558 10.90
Unrecognized losses (I/RL) 3.83 197.94
Amortization payment (AM) 0.01 10.74
Losses (L) 0.01 100.60
Losses due to increase

(decrease) in PBO (LPBO) 0.00 98.09
Losses due to return on fund (LF) 0.01 14.38
Pension benefit obligation (PBQ) 377.97 195.64
Geometric discount rate (X) 0.009504126 0.029976002
Geometric rate of return (Y7) 0.018520661 0.049982874
Arithmetic discount rate (DSCR) 0.010003097 0.030281681
Arithmetic rate of return (R) 0.019966476 0.051009802

Table 3.2. Observed means and standard deviations of some of the

variables, under base scenario (one million iterations).

That the distributions of E and U RL have wide ranges is easy to explain.

The loss in year (t — 1,t) was defined in Chapter 1 as

Le = PBO,— PBO,_, +(ELTR - R)AL/(1+ VI)

= (unexpected increase (decrease) in PBO)

+ (loss or return on eassets).

(3.1)

The PBO is valued at (geometric) rate X = log(14+ DSCR), X having a nor-

mal distribution. When X becomes very large, PBO approaches zero. When

X becomes large in magnitude but negative, PBQ increases without bounds.

(Consider one unit discounted s years at geometric rate G, G a normal ran-

dom variable; the discounted value is then exp(—sG). Since the possible

values of G are (—o0,+00), the possible values of exp(—sG) are (0, +oc).
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The same thing applies to PBO.) Thus the range of PBOy — PBO;_; (and
of L; by way of consequence) is the whole real line. Unrecognized losses and

pension expense therefore have values ranging from —oo to +oo.

Of course, just as very large values (positive or negative) of X have very
low probabilities, the frequencies of very large values of E or URL are quite
small (see Figures 3.1 and 3.2). Nevertheless the standard deviations of these
amounts remain quite high (Table 3.1). The variances of £ and URL are
determined by the distribution of the process (L;). The standard deviation
of the second component of L, (see Eq. (3.1) above) is 14.38 = Stdev(R) -
287.58/1.02; that of the first component is 98.10 (see Table 3.2). Thus, the
large variances of £ and URL result mostly from the great variability of
PBO; — PBO,_;. Rates of return on assets vary more than discount rates,
but the fluctuations of the latter have far greater consequences than those
of the former.

The distributions of PBO; and PBO,;— PBQ,_; are themselves of some
importance. Figure 3.3 shows PBO as a function of DSCR. PBOQ is seen to
be a convex function of DSCR (i.e. its second derivative is always positive).

It follows that for any (non-degenerate) distribution for DSCR,,
Expected value of PBO; > PBO valued at expected value of DSCR;

(from Jensen’s inequality). This is clearly seen here, as E(PBO;) = 377.97 >
326.58 = PBO(Q@1%). The PBO is very sensitive to DSCR, as evidenced
by its large standard deviation. The distribution of PBOj is shown in Figure
3.4; 1t is not symmetric. Nevertheless the distribution of PBO, — PBO,_,

(not shown) 1s perfectly symmetric, as explained in Appendix 3.1.
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FIGURE 3.3. Pension benefit obligation as a function of the discount rate
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FIGURE 3.4. Frequency distribution of pension benefit obligation
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The author was puzzled for some time by the skewness of the distri-
butions of E and URL. Intuitively, there are two reasons why one would
expect symmetric distributions: (1) the distribution of L, is dominated by
that of PBO— PBQO,_,, which is symmetric about 0, and (2) negative losses
are treated the same way as positive ones: AM; is a symmetric function of
URL,_,. What was more intriguing is that £ and URL do not have sym-
metric distributions even if the second term in Eq. (3.1) is removed. In this

case the distribution of losses and the “system” itself (i.e. the way AM; is
obtained from URL,_;) are perfectly symmetric about the origin, but the
outputs E and URL still have significantly skewed distributions. The expla-
nation was finally found: the variable PBO,—PB(QO,_; may have a symmetric
distribution, but this cannot be said of the process (PBO, — PBO,_;,t > 1).
Details are given in Appendix 3.1. The skewness of the distributions of E
and URL ultimately results from the skewness of that of PBO;.

The skewness of some of the distributions may explain why URL is not
precisely zero on average. On average pension expense is very close to the
normal actuarial cost plus interest (9.558 versus 9.361 - 1.02 = 9.548). This

is not a coincidence, as will now be explained. Define

LPBQO; = accounting loss on PBO
= PBO( - PBOg_l;
LF; = accounting loss on F

=(ELTR — R)(Fi_y + Ce-y — B)

so that
Lt = LPBOt + LF;
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We find

and

Thus

LPBO, = PBO, — (1 + DSCR,_1)(PBO_, + §C;_, - B)
= (PBO, — PBO,_,) — [SC:-1(1 + DSCR—1)
-+ DSCR,..](PBOg__l - B) - B]

LFg = [(1 + ELTR) - (1 + Rt)](Fl-] + Ct—l - B)
=F_,+Ci1 -B+ELTR(F;_, +C,_, — B) - F,
= ELTR(F!—] + Ct—l - B) =+ (Ft—l - Fg) + Cg_l - B

E = S5C,_1(1+ DSCR,_1) + DSCR,_1(PBO_; — B)
_ ELTR(F._; — B) + AM, (3.1)
= (PBO, - PBO,_;) + (Fi_1 - F\) — L, + AM,
+(1+ ELTR)C,_,.

Recalling that

URL: = URL(..I + Lg - AMt

we finally obtain

E,= (PBO;— PBOi,)+ (Fioy— Fy)
+(URL;—y —URL))+(1+ ELTR)C,_,. (3.2)

On average the three terms in brackets should equal zero. Given that the

valuation interest rate is equal to the earned rate of return on assets, on

average (1 + ELTR)C;-; is equal to 1.02 - 9.361 = 9.548.
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REMARKS 1. We can now justify our including interest on benefits at
two different rates in Eq (3.1). Failure to do so would have resulted in an
extra term (DSCR,_;— ELTR)B in Eq. (3.2). In our model this term is not
zero on average, and E; would have been equal to 9.558+(.01~.02)15 = 9.408
on average. In practice the treatment of interest on benefits is probably not
a major concern, especially since benefits only get half a year’s interest in

1nost cases.

2. Eq. (3.2) is the counterpart of Eq. (9) in Berin and Lofgren (1987). Those
authors avoid the problem noted above by using the same symbol (yB;) to
represent benefits with interest at rate DSCR (in their Eq. (1)) and also at
rate ELTR (in their Eq. (2)), even though these two rates are in general
different. a

3.3. Sensitivity to the variance of discount rates

It is expected that the variability of pension expense would be signifi-
cantly affected by changing the variance of discount rates (everything else
remaining the same as in the base scenario). This is substantiated by Table
3.3 and Figure 3.5. When the standard deviation of X (= log(1 + DSCR))
is close to zero, the standard deviation of F is close to 5.48. This is the vari-
ability attributable to the other source of gains and losses, namely returns
on assets. As the standard deviation of X is increased, that of E increases
more and more rapidly; the relationship appears more exponential than lin-
ear. This can be explained by the fact that PBO 1s extremely sensitive to
DSCR. Table 3.4 shows the mean and variance of PBQ for Stdev(X) rang-
ing from 0 to .05. The very large figures obtained for the higher values of
Stdev(X) are caused by the higher probability of low values of DSC R, which
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Stdev(X) Stdev(E)
.0000 5.480
.0025 5.531
.0050 5.625
.0075 5.761
.0100 5.944
.0123 6.181
.0150 6.483
0175 6.866
.0200 7.348
.0225 7.953
0250 8.716
.0275 9.679
.0300 10.902
0325 12.466
.0350 14.487
.0375 17.125
.0400 20.618
.0425 25.308
.0450 31.707
.0475 40.575
.0500 53.054

Table 3.3. Standard deviation of expense (Stdev(E)) as a function of the

standard deviation of geometric discount rates (Stdev(X)).
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FIGURE 3.5. Standard deviation of pension expense as a function
of the standard deviation of discount rates
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result in a very large PBO (see Figure 3.3). The mean value is also affected;
this is a consequence of the convexity of PBQO as a function of DSCR.

Stdev(X) Mean Standard deviation
.00 326.58 0.00
01 331.43 45.42
.02 347.16 102.87
.03 377.97 195.64
.04 433.96 394.09
.05 539.89 986.06

Table 3.4. Mean and standard deviation of pension benefit obligation
(PBO) as functions of the standard deviation of geometric discount
rates (Stdev(X)). The mean discount rate (EDS) remains equal to
.02.

3.4. Sensitivity to the variance of rates of return on assets

Table 3.5 and Figure 3.6 show the standard deviations of pension expense
for standard deviations of rates of return on assets ranging from 0 to .09.
When Stdev(Y') = 0, Stdev(E) = 8.82, which thus represents the variability
attributable to discount rate fluctuations only. (N.B. This value, together
with the variability attributable to rates of return only, 5.48, add up to more
than Stdev(E) under the base scenario, i.e. 10.902. This is because the

variables LPBO; and LF; are dependent.)
v It is plain that Stdev(Y") has a much smaller influence on Stdev(E) than
Stdev(X) has. This is what should be expected, since LPBO; has a much
greater variability than LF}.
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Stdev(Y) Stdev(E)
.000 8.82
.005 8.87
.010 8.96
.015 9.09
.020 9.25
.025 9.45
.030 9.69
.035 9.95
.040 10.25
.045 10.56
.050 10.90
055 11.26
.060 11.64
.065 12.03
.070 12.44
075 12.87
.080 13.30
.085 13.75
.090 14.21

Table 3.5. Standard deviation of expense (Stdev(E)) as a function of the

standard deviation of geometric rates of return on assets (Stdev(Y)).
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FIGURE 3.6. Standard deviation of pension expense as a function of
the standard deviation of rates of return on assets
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3.5. Sensitivity to the width of the corridor

Table 3.6 and Figure 3.7 show the dependence of Stdev(E) on the width
of the corridor, other things equal. As expected, pension expense fluctuates
less when the corridor is wider. The dependence is perhaps not as dramatic
as one might have thought. For instance, if there is no corridor Stdev (F) is
equal to 12.61; when a 10% corridor is allowed Stdev (E) becomes 10.30, a
decrease of less than 15%.

Percentage Stdev(E)
0.00 12.61
0.05 11.73
0.10 10.90
0.15 10.13
0.20 9.42
0.25 8.77
0.30 8.16
0.35 7.60
0.40 7.09
0.45 6.62
0.50 6.20

Table 3.6. Standard deviation of expense (Stdev(E)) as a function
of percentage used for corridor

3.6.  Sensitivity to the fraction of losses recognized when URL is

outside corridor

The fraction k, representing the reciprocal of the average future work-

ing lifetime of active members, has a significant effect on the variability of
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FIGURE 3.7. Standard deviation of pension expense as a function of
the percentage used for the corridor
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pension expense. This is shown in Table 3.7 and Figure 3.8.

When k = 0, there is no amortization of losses (4M, = 0) and
E, = SC,_1(1 + DSCR,_,) + DSCR,_,(PBO,-, — B)
_ ELTR(Fe_, — B)
=B - ELTR(F,_, - B)

so that

Stdev(E;) = ELTR - Stdev(Fi—,)
= .02-Stdev(R._,) - AL/(1 + VI)
= .02-.051 - 287.58/1.02
= .288

(Notice that URL has no Limit distribution in this case.)
Stdev(E) is an increasing function of k. The dependence is nearly linear
(Figure 3.8). This is not surprising. In Section 1.3, for the system
X1 =X+ Co+ Dy
Ct = '—kXt
where (D;) are independent adn identically (i.i.d.) disturbances, we had

found

k
Var C = -i-_—kO’Q, 02 = Var D,

:Stdev(C):a(Z_k) .

The graph of this function is very similar to Figure 3.8. In fact the approxi-

mation

1/2
StdeV(E) = <A + B2_—-Z)
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k=1/AFWL AFWL Stdev(E)
0.000 o0 0.288
0.001 1000.00 0.956
0.005 200.00 2.18
0.010 100.00 3.22
0.020 50.00 4.89
0.025 40.00 5.64
0.033 30.00 6.51
0.040 25.00 7.69
0.050 20.00 8.94
0.100 10.00 14.44
0.150 6.67 19.13
0.200 5.00 23.32
0.250 4.00 27.17
0.300 3.33 30.76
0.333 3.00 33.05
0.350 2.86 34.17
0.400 2.50 37.43
0.450 2.22 40.59
0.500 2.00 43.67
0.550 1.82 46.69
0.600 1.67 49.68
0.650 1.54 52.64
0.700 1.43 55.58
0.750 1.33 58.52
0.800 1.25 61.48
0.850 1.18 64.46
0.900 1.11 67.46
0.950 1.05 70.51
1.000 1.00 73.62

Table 3.7. Standard deviation of expense (Stdev(E)), as a function of
amortization period allowed (AW FL), or its reciprocal (k).
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is relatively good for well chosen constants A and B. This shows that the
qualitative response of the system is not totally different when disturbances
are dependent and a corridor is used, compared to the case of i.i.d. distur-
bances and no corridor.

Regarding the corridor approach to gains/losses amortization, one inter-
esting question is the following: given that Stdev(E) = 10.90 when k = 1/15
and there is a 10% corridor, for what k' do we get the same value for
Stdev(E), but when there is no corridor? In this case we find &' = .0545 =
1/18.35. In other words, as far as variability of pension expense is concerned,
extending the amortization period (AFWL) from 15 to 18.35 years has the

same effect as allowing a 10% corridor.
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Appendix 3.1. The skewness of the distributions of pension ex-

pense and unrecognized losses

The corridor approach to gains/losses amortization operates in a sym-
metric fashion, and the gains or losses themselves have a distribution which
is roughly symmetric about 0. So, why do F and URL have significantly
skewed distributions? The answer to this question follows.

Under the base scenario, the major component of the loss L is
LPBO{ = PBO«: - PBOt_l.

When the discount rate is a stationary normal process, as is the case in the
present model, LPBQO, will always have a symmetric distribution. This can

be proved as follows. Let

p(z) = PBO valued at geometric rate =

f(z1,22) = p(z1) — p(z2)

Xt = geometric discount rate at time ¢
so that

PBO; = p(X1)
LPBO; = p(X:) — p(Xe~1)
= f(Xe, Xeoa).

The notation U = V (“U equals V in distribution”) will mean that the
variable U and V have the same distribution. If (X,) is a stationary normal

process, then

(X0, Xem1) £ (Xemr, X0
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This is because means and covariances uniquely determine normal distribu-

tions. Thus

—LPBO, = p(X,_1) — p(X:)
= f(Xecr, X1)
2 f(Xe,Xe-1)
= LPBO,

i.e. PBO,—~PBQ,_, and PBO,_,— PBO, have the same distribution, which
therefore has to be symmetric about 0.

The equations describing the evolution of (E;) and (URL,) are

E =B - ELTR(F,_, — B) + AM, - (3.3)
URL, =URLe_, + L, — AM, (3.4)

AM, = [excess of [URL,_,| over 10%
x max(Fi_y, PBO,_,]-sign(URLq_,) (3.5)

L, = PBO, — PBO._, + (ELTR ~ R)AL/(1+ VI)  (3.6)

This system lacks symmetry in the following respects: (1) the term ELTR -
Fy_y in (8.3); (2) max(Fi—1, PBO;_,) and URL;_, are dependent; (3) the
distribution of ELTR — R; in (3.6) is not symmetric about 0. These facts
appear relatively unimportant; indeed, E and URL are still skewed even if
these aspects are changed to make the system completely symmetric (e.g.
remove term ~ELTR .- Fy_; in (3.3), etc). The same holds even when the
corridor is removed. The only way the author found (by trial and error) of
making £ and URL symmetric was to replace PBO, by a normal variable
in (3.6). This is what led to the following interpretation of the problem.
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Consider a system

Ur=alUia +Vi,  lal<1

Vi=er— e

where (€e:) is a sequence of i.i.d. random variables with mean 0 and variance
1. This is a simpler system than the one described above, but both have one
essential feature in common: the disturbances (V;) are dependent and have
a symmetric distribution.

Suppose (U;) is stationary (this is possible because {a| < 1). Let us
calculate the first and third moments of U;. Clearly EU; = 0. Thus (U;)
cannot be symmetric if we find that EU} # 0. We have

EU} = a®EU}_| 4+ 3a*EUZ ,V, + 3¢EU,_,V + EV;®
(D an ()

(I EUZ Vi = E(a’U{_3 + 2als—2Vee1 + Vi1 )€ — ee-1)

= '—QGEUt~2Vt—1 €¢—1 — Evtz_.)et—l
(1a) (Ib)

(Ia) EUz—zvz—let—l = EU:—z(et-l — €12 )et—l
=0
(Ib) EVZ ey = E(el_) — 2ei1ee-2+ €]_5)ers

3 3
= EC:_I = Ee,

() EUZ,V; = —E¢}
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(II) EU;._]V!Z = EUg_l(ez s 26(61_] + 63_1)
= EU!—le?—l

= E(aUt_z + W_])C?_l

= EVt—le?—l
= E(eq—1 — et—z)etz—1
= Eel_, = Ee}
(IH) EVt3 = E(e; - 61._])3 =0
() EUt3 = asEUf_] — 3a2Eef + 3aEé?

In these calculation we have repeatedly used the independence assump-
tion regarding (e;), and assumed that Ele,|* < oo. If (U;) is stationary, we
therefore obtain

EU} = 3a(1 —a)Ee} /(1 —a3).

Thus U, cannot be symmetric if ¢, is not itself so. (However it can be shown

that the skewness coefficient of U, will always be less than that of e;.)

Another way of viewing the problem is as follows. We have

Ui=VitaVio +a?Vegp + - -
= f(V)

where V, = (Vi Vi=1,...) and f is the function from R™ to R defined as

oo
(z1,22,... ) — f(Z1,22,...) = Za"lxj.
=1
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U 1s symmetric about 0 if, and only if, —U, 4 U,. Here
=Uy = -f(f/t) = f('f/t)

Thus, a sufficient condition for U; to have a symmetric distribution is that
-V, < V. (Open question: is the condition also necessary?) In general this

is not the case here, since

b

t= (Ct — €41, €t=1 — et-Zr"')

—~ft = (et-—l — €4,€1—2 — €42, . )

do not have the same distribution, except in some special cases (e.g. if e,
has a symmetric distribution to start with).

The above arguments break down when there is a corridor, since (1) we
can no longer calculate EU? explicitly, and (2) we can not express U, as f(V;)
for some function f : R — R. But it intuitively makes sense to believe that

the same situation prevails.
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CHAPTER 4 CONCLUSIONS

This chapter summarizes and complements the paper. The first section
states the main conclusions; Section 4.2 discusses the practical utility of the
methodology presented; Section 4.3 describes how the model is to be used;
Section 4.4 studies an alternative scenario, in an attempt to see whether the
conclusions reached in Chapter 3 hold more generally; Section 4.5 discusses
two points which were raised in relation to the model used in the paper: (1)
why negative discount rates arise, and (2) the exact methodology used to
perform the simulations; finally, Section 4.6 provides some ideas for future

research.

4.1. Main conclusions
This paper focused primarily on two aspects of SFAS 87:

(1) the consequences of the variability of the discount rate, and

(2) the minimum requirement for amortization of gains and losses.

The model adopted includes a stationary population and stochastic pro-
cesses representing discount rates and rates of return on assets. Pension
expense is therefore also a stochastic process, which can be studied mathe-
matically or with the help of computer simulations.

The four main conclusions of the paper are listed below. The first and
second are mathernatical results which hold in all cases. The third conclusion
is based on computer simulations and, therefore, may not hold with the same

generality as the previous two. At the time of writing the last one is still a
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conjecture.

1. When the plan population is mature, the quantity “service cost plus
interest on PBQO” is not sensitive to vaniations in the discount rate. This is

proved at the end of Section 1.4.

2. Given the stochastic processes assumed for discount rates and rates
of return on assets, pension expense and unrecognized losses have a limit (or
“steady-state”) distribution. This is proved mathematically in Chapter 2.
Observe that it is essential that appropriate amortization rules be applied,
for both funding and accounting purposes. One case where this requirement

is not met 1s described in Section 4.4.

3. It is not possible to calculate explicitly the limit distribution (or even
the moments) of pension expense. But this can be done using simulations. A
“base scenario” was chosen, specifying the behaviour of discount rates, rates
of return on assets, etc. (see Section 1.4). A semsitivity analysis was then
conducted with respect to four factors:

(a) variance of discount rates;

(b) variance of rates of return on assets;

(¢) width of corridor;

(d) fraction of unrecognized losses included in expense when outside the
corridor.

(For example, in case (a), the limit distribution of pension expense was
computed assuming that discount rates have variance 0, then .0001, and so
on, yielding the variance of pension expense for variances of discount rates
in the interval [0, .0025). The results show how important the first factor is
in determining the volatility of pension expense. The same was done for the

other factors, changing only one of them at a time.)
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The first factor was by far the most important determinant of the vari-
ability of pension expense. Even moderate fluctuations in the discount rate
produce sizeable fluctuations in expense. The sensitivity of the variance of
expense with respect to the variance of discount rates is very high. The sec-
ond and third factors were not very important by comparison. In the case
of rates of return on assets this is easily understood, since gains/losses on
return on assets are of smaller magnitude than those caused by variations
of the discount rate. As to the width of the corndor, it was observed that
the 10% corridor allowed under SFAS 87 decreased the standard deviation of
expense by 14%, when compared with the case where no corridor is allowed.
The same thing could be achieved by slightly increasing the amortization
period permitted (the “average future working lifetime” of active employees
under SFAS 87). The last factor turned out to be relatively important in
influencing the variability of expense. (This makes sense intuitively when the

pension accounting “system” is interpreted from the point of view of control

theory, as was done in Chapter 1.)

The results of the sensitivity analysis relate only to the base scenario
chosen, and, strictly speaking, it is impossible to predict what the results
would be if a different base scenario were used. Other simulation results are

presented in Section 4.4

4. As was pointed out above, allowing a corridor based on 10% of the
maxirpum of the pension benefit obligation and fund value does not drastic-
ally reduce the variability of pension expense. One possible explanation is
that gains and losses do not “cancel over time”, as some apparently believe;
on the contrary, it appears that their cumulative sum eventually becomes

arbitrarily large, even when actuarial assumptions are “correct on average”.
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This claim has been shown to be correct when successive gains and losses are
not correlated. (This was discussed in two talks recently given by the author,
one at the International Congress of Actuaries (June 1992) and the other at
the most recent Actuarial Research Conference (August 1992). A written
account of these talks will appear in ARCH.) Under the model described in
this paper gains and losses are correlated, and a mathematical proof has yet

to be found. The author is currently studying this problem.

4.2.  Practical utility of the methodology presented

The paper describes how the limit distribution of pension expense can
be computed and then used to study the effects of some of the accounting
rules contained in SFAS 87. It is stated in the Preface that the methodology

may be useful in two situations:

(a) when making accounting or funding decisions concerning a specific
pension plan, and
(b) when assessing the effects of new funding or accounting rules on

pension plans at large.

In case (a), a shorter horizon would usually be appropriate, say 10 or 20
years. The variability of pension expense may be obtained for each future
year within that period, for any given funding and/or accounting strategy.
This “methodology” is not new to actuaries, since they have been performing
pension plan simulations for a long time. The author has done a number
of short-term simulations using the model population and base scenario. It
appeared that the distributions of pension expense, unrecognized losses, etc.,
at duration 20 were not very different from the limit distributions, though

initial conditions still had some importance. It is thus plausible that in some
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specific cases an infinite horizon may be relevant, for instance if the plan
population is initially mature and is supposed to remain so for some time.
The methodology should be more useful in situation (b). The effects
of alternative accounting (or funding) rules can be assessed by comparing
the limit distributions obtained. The fact that these limit distributions are
independent of initial conditions now becomes an advantage. The procedure
could be applied to the rules concerning discount rates, amortization periods,
width of corridor allowed, etc. One restriction is that the limit distribution
may not exist, in cases where the rules for amortizing gains/losses do not
constitute a proper “control” of the system. This problem arises with the

Alternative Scenario as it is initially described in Section 4.4.
4.3. How the model is to be used

One should distinguish between cases (2} and (b) discussed above.

In case (a), the following have to be determined:

— time horizon (for example n = 20 years);

— evolution of population and benefits;

- economic scenario (rates of return on the various asset classes, indica-
tors used to set the discount rate, inflation);

- actuarial assumptions (may be “path-dependent”, that is to say de-
pendent on the evolution of the economic/financial scenario);

- how accounting parameters (discount rate, expected long-term rate of
- return on assets, amortization period) are determined;

- funding method (actuarial cost method plus amortization of gains and
losses and unfunded liabilities);

- accounting methods (e. g. faster/slower recognition of gains/losses and
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liabilities).

The simulations then yield frequency distributions for the variables of
interest (e. g. pension expense) for each of the n future years under consid-
eration. There remains the problem of making a decision based on these n
distributions. There is no clear-cut answer here. Many “decision functions”
are possible, among others:

- considering only the results of the last year;

- averaging some the results (e. g. variances);

- “discounting” results (i.e. giving a relatively smaller weight to more
distant years).

Case (b) requires similar assumptions and parameters. Choosing an
infinite horizon is not mandatory , but avoids the problem of multiple distri-
butions (since there is only one limit distributions for each variable). In this
case all amounts have to be deflated (otherwise they grow without bounds),

for example by expressing them as fractions of payroll.

4.4. Study of an alternative scenario

After a first draft of this paper had been written, an alternative scenario
was suggested. This scenario differs from the base scenario in the following
respects:

1. Standard Deviation of Return on Assets: 10%, rather than 5%.

2. Standard Deviation of Discount Rates: 0.5%, rather than 3%.

3. Relation of Mean Discount Rate to Valuation Interest Rate: the
former exceeds the latter by 0.25%.

4. Funding rules: no negative contributions.

This scenario is of great interest. Some comments follow.

114



First, the higher standard deviation for rates of return appears more
realistic, in view of the high variability of returns on stocks (see for instance
Table 1.3, p. 29). (I have not found American statistics on the subject, but
according to Table 7 of the Report on Canadian Economic Statistics, 1924-
1991, rates of return on Canadian pension plan assets showed a standard
deviation of 8.88% over the period 1967-1991.)

As to the third assumption, I chose to let the mean discount rate remain
unchanged at 1%, which implies a valuation rate equal to .75%.

There is a technical problem with the last assumption, because what the
simulations determine is a limit distribution which does not always exist, even
if the accounting or funding rules are justifiable in the real world. (This is
why the paper had to include mathematical proofs for the existence of the
limit distributions of pension expense and unrecognized losses.) If negative
contributions are not allowed, then fund values may not have a steady-state
distribution. I will give two justifications for this claim, one theoretical and
the other more intuitive.

First justification. Let us return to the theorem given on pp. 56 and
57. The theorem says that a process (if it satisfies the other conditions
stated) will have a limit distribution if it has the property of “reverting
to the center of the space”. If no negative contributions are allowed, the

equation describing the evolution of the fund becomes:

Fiy1 =(1+ Riy1)ALJ(1 +4), if NC+ AL — F. > 0;
=(1+R1)(F,-B), if NC+AL-F,<0.

It can be seen that when F; is larger than NC + AL no control is applied to

keep it from becoming even larger. Since there is a positive probability that
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F; will become larger than NC + AL, it is certain that this will eventually
cause the fund to grow without bounds.

Second justification. Consider the following example. Suppose a cer-
tain amount of money is invested initially, and that the return on the fund
is paid out every year (no new money is deposited into the fund after it is
established). To keep things simple, just ignore the possibility of negative
returns. Suppose that you simulate the operation of this fund over a long
period. Then clearly the value of the fund will reach a stationary distribu-
tion (if it is assumed that the returns on the fund themselves reach such a
distribution). Every year the fund will revert to its initial value, and the
only randomness left is the effect of the rates of return over one year. Now
suppose that you modify the rules, and say that returns will only be paid
out up to a certain fixed level, say 5% of the fund value (this is similar to the
interdiction of negative contributions in pension funding). Then every time
returns exceed 5% there will be a net addition to the fund, and over time
the fund will get larger and larger (without bounds). Consequently, there
will not be a limit distribution for the value of the fund.

Disallowing negative contributions may not cause any difficulty in prac-
tice because, among other things,

(a) gains and losses are amortized over more than one year, which lowers
the vaniability of contributions (see Dufresne, 1989);

(b) the plan sponsor will take “contribution holidays” long enough to

use up the surplus; and

(c) benefits are increased, actuarial assumptions are changed, etc.,
implying that negative contributions are not very likely to occur.

It is not possible to investigate the Alternative Scenario as it was sug-
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gested (running the computer programs produces meaningless overflows);
pension expense apparently does not have a limit distribution if negative
contributions are not permitted. The author therefore decided to study two

modifications of that scenario which do yield limit distributions:

Modified Alternative Scenario I (MASI): Alternative scenario as
described above, except for the last assumption (i. e. negative contributions

are allowed).

Modified Alternative Scenario II1 (MASII): Same as Alternative
Scenario I, except that
(a) funding gains and losses are amortized over 15 years;

(b) rates of return on assets are independent.

The scenarios are summarized in Tables 4.1 and 4.2. The first modi-
fication does lead to a limit distribution for pension expense, but negative
contributions occur very often, due to the large standard deviation of returns
on assets . The theoretical probability of a negative contribution is computed

as follows (using the data in Table 4.1 and on p. 110):

R = rate of return on assets = e’ — 1

P(F > AL+ NC)=P(e¥ AL/(1 + ER) > AL + NC)
= P(Y > log|(1 + ER)(1 + NC/AL)])
= .3398,
where Y is the geometric rate of return on assets. Out of the one million

iterations performed, there were 339,679 for which the contribution was

negative.

117



Arithmetic valuation rate of interest (V1) .0075

Expected long-term arithmetic rate of return

on plan assets (ELTR) 0075
Mean arithmetic discount rates (EDS) .01
Standard deviation of geometric discount

rate (VARDS'/?) .005
Mean arithmetic rate of return on assets (ER) .0075
Standard deviation of geometric rate of

return on assets (VAROR!/?) 10
Correlation between geometric discount rate

and rate of return on assets (COR) 60
Fraction of max (PBO, F') used

for corridor (C) .10

Fraction of excess of {URL| over
C -max(PBQO, F) recognized in expense 1/15

Amortization period for funding
gains and losses (years) 1

Table 4.1. Modified Alternative Scenario 1.

Under the second modification the variance of contributions is much
lower . Out of the one million iterations performed, there were 96,840 for
which the contribution was negative (a frequency of about 10%, which is
significantly less than with the first modified scenario).

REMARKS. 1. When returns are lognormal the distribution of gains has
range (—oo,+00). Hence, whatever the way gains are amortized there is

always a positive probability that contributions will become negative.

2. The present remark explains why assumption (b) was added in MAS
11. Rates of return on assets were supposed independent because otherwise

the average accounting gain or loss would not be zero any more. To see why
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Arithmetic valuation rate of interest (VI)

Expected long-term arithmetic rate of return
on plan assets (ELTR)

Mean arithmetic discount rates (EDS)

Standard deviation of geometric discount

rate (VARDS/?)
Mean arithmetic rate of return on assets (ER)

Standard deviation of geometric rate of
return on assets (VAROR!/?)

Correlation between geometric discount rate
and rate of return on assets (COR)

Fraction of max (PBQ, F) used
for corridor (C)

Fraction of excess of |[URL| over
C - max(PBO, F) recognized in expense

Amortization period for funding
gains and losses (years)

0075

0075
.01

.005
.0075

.10

.10
1/15

15

Table 4.2. Modified Alternative Scenario II.

this is so, consider the expression for the accounting loss (p. 33):

L; = PBO: - PBO;-]_ + (ELTR— Rg)(Ft_l + Cg_] - B)

The first part of the loss is the increase of the PBO during the year,

(ELTR - R)AL/(1+ V)
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and has mean zero. When funding gains/losses are amortized over one year

the second part (LF) boils down to

(Eq. (3.1), p. 76) which also has mean zero. For longer amortization pe-

riods there is no such simplification, and the dependence between rates of




return and fund values comes into play. With fifteen year amortization and
a correlation of .60 between discount rates and rates of return, there is a
correlation of -.063 between (ELTR — R;) and (Fi-; + Ci—y — B). Even
though the average value of R; is exactly equal to ELTR, on average LF
is equal to -7.00, which significantly decreases average pension expense. It
was feared that this would distort comparisons between MAS II and the
other scenarios. The problem is avoided by making rates of returns on assets
independent (which is achieved by setting COR = 0 in the model). O

Simulations were performed using the altenative scenarios. The results
are shown in Tables 4.3 and 4.4; the corresponding results for the base sce-
nario are shown in Table 3.2 (p. 76). Average pension expense is higher
than before; this is because the valuation rate of interest and rates of return
on assets are lower, producing larger funding contributions (see Eq. (3.2), p.
81). We now have

AL(@ VI = .75%) = 337.70

NC(@ VI = .75%) = 12.486.

The standard deviations of pension expense (E), unrecognized losses
(URL) and amortization payments (AM) are higher under MAS I than un-
der the base scenario. Nevertheless the standard deviation of annual losses
is significantly smaller. This deserves a few words of explanation. Under
the base scenario, the part of the loss due to the increase or decrease of
the pension benefit obligation (LPBQO) has a very large standard devia-
tion, in fact ten times larger than under MAS I. But the losses on the fund
(LF) have a greater variability under MAS I than under the base scenario.
All these facts are explained by the lower standard deviation of discount

rates and the higher standard deviation of rates of return on assets. The
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—
Variable

Mean Standard deviation J
Pension expense (E) 12.603 13.37 ]
Unrecognized losses (URL) 0.67 226.66
Amortization payment (AM) 0.02 13.24
Losses (L) 0.02 36.50
Losses due to increase
{decrease} in PBO (LPBO) 0.00 9.89
Losses due to return on fund (LF) 0.02 33.84
Pension benefit obligation (PBO) 327.77 22.05
Geometric discount rate (X) 0.009938463 0.004996001
Geometric rate of return (Y) 0.002408076 0.099965752
Arithmetic discount rate (DSCR) 0.010000618 0.005045970
Arithmetic rate of return (R) 0.007431756 0.1009481282

Table 4.3. Observed means and standard deviations of some of
the variables, under Modified Alternative Scenario I (one million

iterations).

reason why URL has a larger variability under MAS I, while annual losses

have a standard deviation three times smaller, is that the losses on the fund

are positively correlated. This can be seen from the expression for these

losses, which is

LF, = (ELTR - R)AL/(1+VI)

when funding gains and losses are amortized over one year (see Eq. (3.1),

p. 76). The variance of the sum of the LF’s is larger than the sum of the

variances, because of the positive correlation between the R's; thus URL

tends to take larger values. This compounding effect does not occur for the
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Variable Mean Standard deviation
Pension expense (E) 12.610 6.18
Unrecognized losses (URL) 0.75 113.94
Amortization payment (AM) 0.03 5.66
Losses (L) 0.03 36.05
Losses due to increase
(decrease) in PBO (LPBO) 0.00 9.89
Losses due to return on fund (LF) 0.03 34.65
Pension benefit obligation (PBO) 327.77 22.05
Geometric discount rate (X') ! 0.009938463 0.004996001
Geometric rate of return (Y") { 0.002408076 0.099965752
Arithmetic discount rate (DSCR) ! 0.010000618 0.005045970
Arithmetic rate of return (R) i 0.007431756 0.1009481282
1

Table 4.4. Observed means and standard deviations of some of
the variables, under Modified Alternative Scenario I (one million
iterations).

other part of the losses (LP BO), because the latter partly cancel over time:
LPBOy +---+ LPBO, = PBO, - PBQ,.

It can also be seen that the average value of the PB(O has significantly
decreased, though it is still larger than when it is valued at 1 = 01 =
average discount rate; this is not surprising (see p. 77).

It is also interesting to compare MAS I and MAS 1I. The standard de-
viations of L, LF and LPBO are nealy identical, but those of E and
URL are much smaller under MAS Il This is entirely attributable to the
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Percentage Stdev(E)
0.00 13.97
0.05 13.65
0.10 13.37
0.15 13.10
0.20 12.85
0.25 12.61
0.30 12.39
0.35 12.18
0.40 11.99
0.45 11.80
0.50 11.62

Table 4.5. Standard deviation of expense (Stdev(E)) as a
function of percentage used for corridor, under Modified Alter-
native Scenario .
fact that under MAS II rates of return are independent: th;: variance of the
sum of the LF’s is now equal to the sum of the variances. This is a striking
example of the fact that in this sort of model it is not sufficient to know the
distributions of interest rates and rates of return at each point in time. The
correlation structure of these processes is also very important.

Sensitivity analyses were conducted (for both MAS I and MAS II), with
respect to the same four factors as in Chapter 3: (1) variance of discount
rates, (2) variance of rates of return on assets, (3) width of the corridor
and (4) fraction of excess unrecognized losses included in expense. Only the
results concerning the width of the corridor are shown (see Tables 4.5 and

4.6, which correspond to Table 3.6, p. 88, for the base scenario).
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Percentage 17 Stdev(E)
0.00 7.11
0.05 6.60
0.10 6.18
0.15 5.82
0.20 5.51
0.25 5.24
0.30 5.01
0.35 4.80
0.40 4.62
0.45 4.45
0.50 4.30

Table 4.6. Standard deviation of expense (Stdev(E)) as a
function of percentage used for corridor, under Modified Alter-
native Scenario II

Overall the results are very similar to those described in Section 4.1
for the base scenario. The variance of discount rates was found to be the
most important factor determining the volatility of pension expense. The
last factor was found to be relatively important, while the second and third
were relatively less important.

Once again the effect of allowing a 10% corridor is not very great. Under
MAS 1it decreases the standard deviation of pension expense by 4.5%, while
there is a 15% decrease under MAS 1L

4.5. Answers to two specific questions

This section clarifies two points which were raised in connection with
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the model: (1) Why is it that discount rates can take negative values under
the base scenario? (2) Describe the exact methodology used to perform the

simulations, in enough detail to enable one to reproduce the results.

4.5.1. Negative discount rates

In the model all amounts are deflated by wage increases; correspond-
ingly, discount rates are net of rates of wage increase. In some years the rate
of increase of wages is higher than the nominal discount rate, thus producing
a negative (net) discount rate. (This possibility is mentioned on page 76.)
Under the base scenario (Chapter 3), the probability that the discount rate

takes a negative value can be calculated as follows:

DSCR=¢X -1, X ~ N(.00950,.0009)
=> P(DSCR<0)=P(X <0)

0 —.00950

=p(z
(< 03

), where Z ~ N(0,1)
= .376.

This probability is surprisingly high. What is even more surprising is that
it understates what actually happened in US economic history: during the
period 1926-1990, the annual rate of increase of the Wage Index was higher
than annual average long-term US bond yields in 27 out of the 65 years,

representing a frequency of 27/65 = .415 (Economic Statistics for Pension
Actuaries, August 1991, Table 11A).

4.5.2. Ezact methodology used to perform the simulations

All the variable names and equations, as well as a description of the

base scenario, are given in Section 1.4 (see pp. 25-35). A Fortran program
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simulated the operation of the pension fund and pension accounts, year after
year. Initially the fund was set equal the actuarial liability, and unrecognized
losses were set equal to zero. One million iterations were done (double-
precision) for each combination of the parameters considered. The formulas
used to generate the random numbers (including initial values) are given on

page 70.

4.6. Future research

The author has found this subject a fascinating area of research. The
paper goes some way in formulating a model and answering some basic ques-
tions, but a lot more could be done. Here are a few ideas for future work:

(1) Sensitivity of the pension benefit obligation to variations in discount
rates, given explicit assumptions as to salary and post-retirement benefit
ncreases.

(2) Speed of convergence of distributions to their limits.

(3) Modelling discount rates and rates of return on assets using other
sto- chastic processes.

(4) Suppose URLy = 0; how long does it take before URL escapes from

the corridor?
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