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A B S T R A C T  

This paper focuses on two aspects of Statement of Financial Accounting 

Standards 87: 

(1) the variability of the discount rate, and its consequences; and 

(2) the "corridor" approach to gains and losses amortization. 

The analysis centers on the variability of pension expense over time. A 

simplified model is used; its main features are a stationary population and 

random fluctuations of discount rates and returns on assets. The work is 

carried out mathematically and with the help of computer simulations. Sen- 

sitivity analyses are performed with respect to the parameters of the model 

(variance of discount rates, variance of returns on assets, length of amor- 

tization period and width of corridor). It turns out (under the particular 

scenario chosen) that the variance of discount rates and the length of the 

amortization period are the most important determinants of the variability 

of expense. It is also shown that when the plan population is mature the 

variability of pension expense is mostly due to the amortization of (account- 

ing) gains and losses, and not to the sensitivity of the service cost to the 

discount rate. 



P R E F A C E  

This paper focuses on two aspects of Statement of Financial Accounting 

Standards 87 (SFAS 87): 

(1) the variability of the discount rate, and its consequences; and 

(2) the "corridor" approach to gains and losses amortization. 

The analysis centers on the variability of pension expense over time. 

The work is carried out mathematically and with the help of computer sim- 

ulations. The ultimate goal of the study is to give a better understanding 

of (1) and (2) above. It is the author's belief that deterministic case studies 

(assuming parameters to be constant over time) are not sufficient. The con- 

sequences of (1) and (2) appear more clearly when fluctuations of some of the 

parameters are taken into account. This is why randomness was introduced. 

The degree of complexity of a mathematical model is a function of the 

number of variables involved. Of particular importance is the number of 

random factors taken into account: if this number is too large, the results 

may well become impossible to interpret. In the case at hand, it was decided 

that only the discount rate and the rate of return on the fund's assets would 

be random. Other factors (e.g. mortality) are supposed static. 

Chapter 1 describes the model chosen. Concepts from control theory are 

also introduced. Chapter 2 deals with the existence of stationary (or steady- 

state) limits for the stochastic processes considered. Chapter 3 presents the 

results of the computer simulations performed. 



It is hoped that this s tudy will be of interest to those involved in pen- 

sion accounting and funding. The framework described herein may help in 

making accounting or funding decisions, for instance in choosing an amor- 

tization period or method. Another important use would be to assess the 

effects on pension plans at large of changing funding or accounting rules. 

An example of the latter would be to try to answer the following question: 

"Suppose FASB were to allow a 15% corridor for gains and losses amortiza- 

tion, instead of the current 10% corridor; would this have a significant effect 

on pension expense (for plans switching from the old to the new minimum 

amortization requirement)?" Based on the numerical results shown in Sec- 

tion 3.5, it appears that pension expense would be unchanged on average 

(which makes sense intuitively). Fluctuations over time would be somewhat 

affected: under the "base scenario" employed (see Section 1.4), the standard 

deviation would move from 10.90 to 10.13 (a 7% decrease). The change is 

small, and suggests that allowing a 15% corridor may not by itself bring a 

significant decrease in the variability of pension expense. A more refined 

analysis would be required before a definite conclusion can be reached, since 

the numbers quoted are the results obtained under just one scenario. Nev- 

ertheless, in the absence of exact mathematical formulas for the variance of 

pension expense, the methodology suggested should be helpful in studying 

this type of problem. How the model should be used is discussed further in 

the Conclusion. 

N.B. Unless specifically referenced, all mathematical and numerical re- 

sults are original and have not, to the author's knowledge, appeared previ- 

ously. 
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C H A P T E R  1 D E S C R I P T I O N  O F  M O D E L  

1.1. G e n e r a l  cons ide ra t i ons  

Two distinctive features of SFAS 87 are at the center of this study: (1) 

the variability of the discount rate, and (2) the "corridor" approach to gains 

and losses amortization. They are described below. 

(1) The discount rate is the accounting counterpart of the valuation 

rate of interest used in pension funding. It directly influences the values 

of the projected benefit obligation and of the service cost. The Board's 

requirements are set out in paragraph 44 of the Statement: 

44. Assumed discount rat¢~ shall reflect the rat¢~ at which the pension benefits could 
be effectively settled. It is appropriate in estimating those rates to look to available 
information about rates implicit in current prices of annuity contracts that could 
be used to effect settlement of the obligation (including information about available 
annuity rates currently published by the Pension Benefit Guaranty Corporation). In 
making those estimates, employers may also look to rates of return on high-quality 
flxed-income in~,estments currently available and expected to be available during 
the period to maturity of the pension benefits. Assumed discount rates are used in 
measurements of the projected, accumulated, and vested benefit oblitations and the 
service and interest cost components of net periodic pension cost. 

The d~scount rate will therefore vary from year to year, causing fluctuations 

in the pension benefit obligation and in the service cost. 

(2) The minimum requirement for amortization of gains and losses is 

d e s c r i b e d  in  p a r a g r a p h  32 of  t h e  S t a t e m e n t :  
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32. As a rnmimum,  amor t i za t ion  of an unrecognized net  gain or loss (excluding 
asset gains and  losses not  yet reflected in marke t - re la ted  value) shall be included as 
a componen t  of net pension cost for a year if, as of the  beginning of the  year, t ha t  
unrecognized net  gain or loss exceeds 10 percent  of the  greater  of the  projected 
benefi t  obl igat ion or the  marke t - re la ted  value of plan assets. If amor t iza t ion  is 
required,  the  m i n i m u m  amor t iza t ion  shall be tha t  excess divided by the  average 
remain ing  service period of active employees expected to receive benefi ts  under  
the  plan. If all or almost  all of a p lan ' s  par t ic ipants  are inactive,  the  average 
remain ing  life expectancy of the  inact ive par t i c ipan ts  shall be used ins tead of 
average remain ing  service. 

No amortization is required as long as unrecognized gains and losses (URL) 

do not exceed 10% of the maximum of the projected benefit obligation 

(PBO)  and the value of assets (F).  In other words, the interval + 10% 

max (PBO,  F) acts as a "corridor" inside which gains and losses need not 

be recognized. When URL drifts out of the corridor, the amount of gains or 

losses to be recognized is the excess 

[U RL [ - .10 max( P BO , F) 

divided by the average remaining service period of active employees. It is 

important  to observe that  no schedule of payments is set up, as would be the 

case with the transition obligation or prior service costs. The whole exercise 

is done anew every year, no reference being made to amounts previously 

recognized (other than the fact that  they reduced URL). 

Two other features of SFAS 87 deserve mention. First, gains and losses 

include the effect of changes in assumptions (paragraph 29). Thus an impor- 

tant source of gains and losses is the instability of the P B O  caused by the 

discount rate changing from year to year. Second, pension expense being an 

end-of-year amount, it must include interest to the end of the year. This is 

done as follows. The service cost is first increased with interest on the P B O ,  

calculated using the discount rate; it is then decreased ~ t h  the return on 

plan assets, which is obtained using the "expected long-term ra t , ' , , f  return" 
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assumption (not the actual rate of re turn on assets). The difference between 

actual and expected return on assets becomes part  of gains and losses, and 

is not eligible for amortizat ion until the following year. 

All in all, the components of pension expense (E)  are: 

(a) Service cost 

(b) Interest cost 

(c) Return on plan assets 

(d) Amortization of gains or losses 

(e) Amortization of unrecognized prior service cost 

(f) Amortization of transit ion obligation (or asset). 

In order to simplify the model, it is assumed that  there is no transit ion asset 

or obligation, and that  the plan remains the same.over time. Items (e) and 

(f) above are therefore nil. Furthermore,  the population of members and 

retirees is supposed not to change over time. 

The evolution of discount rates has to be considered very carefully. Of 

course a constant  discount rate is out of question. Another possibility would 

be to use past financial da ta  (e.g. rates of return on fixed-income securities) 

to generate a sequence of discount rates to be used in the model. This 

approach has a number of advantages,  but  lacks the flexibility required to 

perform sensitivity analyses (e.g. how does one "increase the volatility" of 

discount rates?). It was decided to let the discount rate vary randomly over 

time. More precisely, discount rates will be modelled using an autoregressive 

process. This use of stochastic processes to represent financial parameters  

deserves a few words of explanation. 

The author  does not believe that  discount rates, or rates of return, are 

drawn out of a hat every month  or quarter. On the contrary., most people 
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will agree that those rates axe the outcome of decisions made by a large num- 

ber of economic agents and also, no doubt, of technological breakthroughs, 

the weather, epidemics, earthquakes, and so on. The part played by "ran- 

domness" is difficult to ascertain; one of the main difficulties lies in defining 

randomness itself. (In relation to this question, a common objection to the 

quantitative analysis of financial data is "arbitrary political decisions", e.g. a 

sudden increase in tax rates. Insofar as those decisions are indeed arbitrar3", 

either in their amplitude or their timing, they could in fact be viewed as 

supporting the random hypothesis, rather than contradicting it.) 

In the case at hand, the most compelling arguments in favour of stochas- 

tic modelling of interest rates are (i) that  they have fluctuated in the past, 

and (ii) that  future interest rates can only be partially predicted (in a statis- 

tical sense) from previous ones. Whether this uncertainty arises out of "pure 

randomness", or whether it is ultimately caused by "chaotic" behaviour of a 

completely deterministic (but yet unknown) system, the conclusion is the 

same: some way of generating unpredictable changes has to be devised. 

Stochastic processes are a convenient (and defensible) solution. 

Each possible set of rules for calculating pension amounts (pension 

expense, funded status, . . .  ) transforms the stochastic processes represent- 

ing discount rates and rates of return into new stochastic processes. This 

yields a very flexible way of studying these sets of rules. 

The choice of the stochastic processes representing the inputs (discount 

rates and rates of return) is not an easy one. This study uses autoregressive 

processes, which allow dependence between time periods. These processes 

have been widely used to describe interest rates, but it is not clear that 

they best fit historical data. This should not be a major problem, since 
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the research did not aim at representing interest rates as closely as possible, 

but rather at quantifying how fluctuations in interest rates translate into 

fluctuations in pension amounts. 

Thus, pension expense and unrecognized losses become the outputs of 

the "pension system". What transforms the inputs (discount rates and rates 

of return on assets) into the outputs are the methods used to fund and 

account for the pension plan. The results of the research are the effect on 

the outputs of (1) varying the inputs (e.g. changing the variance of the 

discount rates) and (2) modifying the accounting rules (e.g. widening the 

corridor, or spreading gains/losses over a shorter period). 

Sections 1. ° - to 1.4 explMn the framework of analysis in greater detail. 

1.2. T h e  m e a n i n g  of  s t a t i o n a r y  d i s t r i b u t i o n s  

The approach taken in studying SFAS 87 is the following: generate dis- 

count rates and rates of return possessing specified distributions (described 

in Section 1.4) to simulate the evolution of the pension "system" over a very 

long period. The fluctuations of E and U R L  over time can then be measured 

and compared for different sets of hypotheses. This section tries to justify 

the approach chosen, and explains the concept of ergodicity, which is of great 

theoretical importance in the present context. 

"A very long period" refers here to a period so long that initial condi- 

tions (i.e. funded status, unrecognized gains or losses, . . .  at the start  of 

the simulation) have no influence on the statistics obtained. For the sake of 

brevity, let us call the period "infinite"; this is correct mathematically but, 

naturally, computer simulations could only be performed over a finite period. 

One reason, perhaps the most important, for choosing an infinite time hori- 

zon is convenience: fluctuations over shorter periods would depend on the 
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particular set of initial conditions chosen; using an infinite period removes 

this dependence. 

Of course in concrete cases initial conditions are an essential part of the 

problem, and short time horizons (e.g. 10 or 20 years) are a natural choice. 

It would be interesting to complete the data given in Chapter 3 by showing 

the progression of distributions over the first, say, 20 years, given some set 

of initial conditions. 

For the subsequent discussion, it is useful to define the concepts of time 

averages and ensemble averages. Suppose pension expense is simulated over 

a 20-year period, yielding value Et,i at time t for the ith simulation run. 

Time averages are computed by letting the time parameter vary, e.g. 

20 
1 

E.,, = -~g ~ E,,, .  
t = l  

Ensemble averages are computed at a specified point in time and with respect 

to the distribution at that time; for example 

M 
1 E,,. = ~ ~ E,,i 

approaches the mean of Et, if the number of runs M is large enough. In 

these expressions, the word "average" refers not just to mean values, but 

more generally to averages of any function of the variable considered. 

It is easy to see that ,  in general, time and ensemble averages do not convey 

the same information. A simple example will nevertheless be given, in order 

to shed some light on an important point. Suppose a certain sum is to be 

invested in a special fund vdth a fixed rate of return. The rate is decided on 

once and for all at the time of the investment, but is unknown at present. 

Assume that,  from whatever previous experience, a probability distribution 
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has been obtained for R, the said rate of return, and that the distribution 

of annual returns for the next 20 years is printed out (really 20 copies of 

the same distribution). Examining that sequence of distributions, a person 

unaware of the way they were obtained might conclude that, over time, the 

returns will be moving up and down between the limits of the distribution, 

with a greater frequency around its modes, etc. But this would be incorrect: 

once R = r is decided upon, it's fixed and there are no fluctuations at all. 

The annual distributions per ~e would not show the total dependence between 

returns in different years. Although this example is a little artificial, the same 

reasoning applies to E and URL: ensemble distributions at specified points 

in time (e.g. t = 5 or 10) would not adequately show fluctuations over time. 

An alternative, not adopted here, would be to simulate the distribution 

of E and URL for next year (time 1), given particular values of E and URL 

at time 0. Performing this for a wide enough class ofirfitial states would show 

how likely fluctuations are over time. This approach appears feasible, but 

is definitely more complicated than the one chosen here. Numerical results 

would certainly be more difficult to obtain and harder to interpret. 

Take another example. Suppose some phenomenon {Xo, X l , . . .  } is mod- 

elled by a. uniform distribution on the integers 0 , . . . ,  9, 

1 
P ( X ,  = k )  = 'f-6' o < k < 9. 

It is also assumed that the X's are independent. One possible sequence of 

X's is 

2 4 1 4 8 9 1 1 9 2 

4 0 8 9 6 2 5 0 4 0 
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( these r a n d o m  number s  were genera ted  by my  calculator).  The  character is-  

tics of this rea l iza t ion of {X,,  1 < t < 20} m a y  be expressed wi th  the  usual 

statist ics:  mean ,  ~'a.riance, etc. We find 

20 

~2o = ~-~ zi = 3.95 

20 
1 

s~0 = ~-~ ~--~(xi - ~20) ~ = 9.9475. 
i 1 ' =  

These  t ime  averages  are also called the empirical  mean  and variance,  because  

they  are based  on observat ions  only. 'The ensemble (or theoret ical)  m e a n  and 

variance are based on the probabi l i ty  distr ibution:  

9 

E X  = ~ k . 1 / 1 0 = 4 . 5  
k = 0  

9 

v a r  x = E x )  2 • 1 / 1 0  = s . 2 5 .  

k = 0  

T h e  Law of Large  Num ber s  s ta tes  tha t  the empirical  m e a n  will app roach  

the  theoret ical  mean  as the n u m b e r  of observat ions increases; in symbols ,  

~,~ ~ E X  as n --~ ao. In fact ,  the Law of Large Number s  says a lot more.  

2 Vex X;  fu r the rmore ,  let It also implies  tha t  s~ 

Y t = l  if X t = 9  

= 0 otherwise.  

We have Y20 = 3 /20  = .15. Since EYt = P(Yt = 9), we know tha t  

yn --~ P(Yt  = 9) = .10 as n ---* c~. More generMly, it can be said tha t  

the empirical distribution approaches the theoretical distribution as the num-  

ber of observations increases. In other  words, t ime and ensemble  averages  

are the s a m e  provided  the t ime  per iod is in_Fiaite. 
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This property of a sequence of variables is called ergodicity. For any 

ergodic sequence, the proportion of the time the observations are in a certain 

region A always approaches, in the long run, the theoretical probability that 

one observation lies in region A. 

For an ergodic process, therefore, the distribution at one point in time 

already tells a lot concerning the behaviour over time of the process. A se- 

quence of independent and identically distributed random variables is always 

ergodic. Sequences of dependent variables may or may not be ergodic. The 

autoregressive sequence 

x ,  = ~ x , _ =  + ~,,  I~1 < 1, (1 .1)  

where {e,} are independent and possess the same normal distribution, is 

ergodic. But the sequence 

X~ = R, t = 1 , 2 , . . . ,  

is not ergodic. Indeed this implies ~n = r for all n, and this does not 

converge to ER, except by chance. This will be recognized as the investment 

example given at the beginning of this section. 

It will be shown in Chapter 2 that the stochastic processes representing 

pension amounts (E and URL) are ergodic provided (i) some stationarity 

conditions are satisfied and (ii) realistic assumptions are made regarding the 

treatment of gains and losses. Conditions (i) are simply that  the underlying 

population, rates of return on assets, discount rates, etc., be ergodic them- 

selves. Requirement (ii) ensures that  unrecognized gains or losses do not 

become "too large" over time (if there is no amortization of gains or losses 

then IURL,I drifts to +oc as t ---+ oc). 
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The meaning of the stationary distribution is somewhat similar to that 

of the probability of ruin in risk theory. The latter is the probability of insol- 

vency if the current portfolio of insurance policies is replicated ad infinitum. 

No one really believes insurance portfolio will last forever, but the probabil- 

ity of ruin nevertheless measures the risk associated with a particular pre- 

mium/liabili ty structure. In pension accounting, the stationary distribution 

of (say) pension expense reflects its potential variability, given a particular 

set of economic/actuariaI assumptions and accounting rules. 

[N.B. Notwithstanding what precedes, the parallel between the model 

presented here and classical risk theory is subject to serious limitations. For 

one thing, in the classical risk theoretic model (e.g. Bowers et al, 1986) the 

surplus is the excess of premiums over claims in the period [0,t]. Premi- 

ums are never adjusted, and are greater than average claims. Hence (1) the 

amount of surplus, as well as claims experience, have no effect on premiums, 

and (2) the surplus becomes infinite with probability one as time goes to in- 

finity. In the present model pension expense (corresponding to premiums) ix 

adjusted through gains/losses amortization. This implies that unrecognized 

gains/losses (corresponding to surplus) remain bounded over time. All the 

amounts calculated reach a steady-state distribution as time passes; this is 

not the case in the classical risk theoretic model. The model presented here 

is closer in spirit to the ones described in Beard ef al (1984, chapters 8 and 

10) and Maxtin-LSf (1983).] 

The ergodicity of the processes (E,) and(URL,)  is studied in depth in 

Chapter 2. The results show that under the assumptions made the processes 

are ergodic. One consequence is that initial conditions have no effect on time 

averages over an infinite period. I~Ye are therefore justified in believing that 
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the numerical results shown in Chapter 3 are independent of the values of 

E, URL, etc. at the start of the simulations. 

1.3. I n t e r p r e t a t i o n  a c c o r d i n g  to control theory 

Jacobs (1974, p. v) describes control theory in the following terms: 

Control theory is a branch of apphed mathematics  devoted to analysis and design of 
control systems. Control systems are systems in which a controller interacts with a 
real process in order to influence its behaviour. A primary objective for most control 
systems is to make some real variable take a desired value, for example to regulate the 
temperature of an oven or to make the direction of a receiving aerial track a m o ~ n g  
target. The objective is usually to be achieved by adjusting some other variable, such 
a~ heat input to the oven or force apphed to the aerial, although the response to such 
adjustments in most real controlled processes is neither instantaneous nor certain. 
The non-instantaneous response is accounted for by regarding the controlling and 
controlled variables as input and output  of a d~a,~mic system described by differen- 
tial or difference equations. The effect of uncertainties is reduced by using feedbac]~ 
to provide the controller with continuous indication of what  adjustment is needed; 
for example, if the oven is too cold more heat must be supplied and if the aerial 
points to the left of its target it must be forced to turn to the right. 

Control theory was initially developed in relation to engineering problems. 

Over the past thirty years or so it has also been applied to biology and 

economics. There have been a few attempts to apply the theory to insurance 

(Balzer and Benjamin, 1980; Balzer, 1982; Martin-L/Sf, 1983; Smith, 1984) 

and pension funding (Benjamin, 1989; Duf~esne, 1986a, 1991). 

Control theory should be distinguished from a more recent development 

kno~vn as optimal control theory. The latter aims at finding the best control 

of a system given a performance criterion or "cost function". This theory, 

which will not be discussed here, was apphed to pension funding by O'Brien 

• (1986, 1987) and to insurance by Vandebroek and Dhaene (1991). 

This section will formulate some pension funding and accounting prob- 

lems in the language of control theory. A simple example will be used to 

illustrate the concepts. 
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In pension funding, the variable to be controlled is the fund level or, to 

be more precise, the unfunded liability (UL). The desired value of U.L would 

usually be zero. The control used is contributions; once again it might be 

more correct to say that UL is controlled by the amount by which total 

contributions exceed the normal cost. 

An important feature of pension funding, from the point of view of control 

theory, is that the behaviour of the control is itself of importance. For 

instance, amortizing gains and losses over one year will certainly keep UL on 

target, but then the control applied may become unacceptable (e.g. it may 

fluctuate too much, or it may be too large in some years). Intuitively, one 

imagines that if gains/losses are amortized over a longer period, then the 

contributions fluctuate less, although the unfunded liability may fluctuate 

more. This "trade-off" has been examined in Dufresne (1986a, 1986b, 1988, 

1989, 1991); a similar phenomenon occurs in pension accounting (see Section 

3.6). 

Variable rates of return on plan assets are in effect "multiplicative" dis- 

turbances (UL grows at a variable rate); this complicates the equations de- 

scribing pension funding systems. Pension accounting also has its own com- 

plexities. For those reasons, a simpler system will be used to illustrate the 

concepts of control theory. Let 

Xt+l = X, + C, + D,+I, (1.2) 

Ct = control at time t. 

Here X is the variable to be controlled, and (Dt,t  = 1 ,2 , . . .  ) are the distur- 

bances affecting the system. Eq. (1.2) could represent the evolution of the 

unfunded liability (X) if the following assumptions were made: the valua- 

tion rate of interest is zero, -Ct  is the payment made towards amortization 
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of the unfunded liability (that is to say in excess of the normal cost), and 

Dt+l is the actuarial loss experienced during the year ( t , t  + 1). In pension 

accounting, X could stand for unrecognized losses. 

Suppose X has target value zero, and that the control applied is 

Ct = - k X t ,  0 < k < 1. (1.3) 

This is called "proportional" control, since C is a fraction of the difference 

between the target and the actual value of X. The minus sign on the right 

hand side of Eq. (1.3) is not surprising: C and X must have opposite signs if 

X is to be steered towards zero (hence the name "negative feedback" applied 

to such controls). 

The Preliminary \:jews on pension accounting issued by FASB in 1982 

(i.e. prior to SFAS 87) included a "spreading" of gains and losses over the 

average future working lifetime ( A F W L )  of members. This is an example 

of proportional control, with k = 1 / A F W L .  As was explained in Section 

1.1, SFAS 87 transformed this into a minimum requirement, to be applied 

only when URL exceeds 10% of the greater of P B O  and F. The current 

minimum requirement is thus a modified form of proportional control. 

Let us examine the response of system (1.2) when control (1.3) is applied, 

for various inputs D,. First let us suppose that X0 = 0, and that there is 

only one disturbance, occurring at time 1 : D1 = L, Dt = 0 for t # 1. W'e 

find 

X1 = L  

X t + l  = ( 1  - k)X,,  t > 1 

Xt  = ( 1  - k) t -]L.  

The state of the system decreases geometrically to O. The system never 

completclv gets rid of the disturbance. 
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Next,  consider dis turbances which are constant at every step: D, = D 

for all t > 1. T h e n  

x ,  = D[1 + . . .  + (1 - k) ' -1]  

-D[1 (1 k)'l. 
k 

A first observat ion is tha t  Xt  remains bounded  (i.e. does not  become arbi- 

traxily large) even though dis turbances  of equal magni tude  and direct ion are 

exper ienced at each step. Another  observat ion is tha t  the s teady-s ta te  value 

of X~ is not zero, 
D 

lira X,  = - - .  

The  f rac t ion  k has a magnifying effect on this value. If the control  amounts  

to k = 10% of the  current  s ta te  of the system, then the lat ter  will eventually 

settle at  1/ .10 = 10 times the value of the disturbance.  Wi th  k -- .5, the 

u l t imate  level of X is D/.5 = 2D only. 

Nov,- suppose disturbances are random.  In actual applicat ions the 

stochast ic  process representing the  disturbances may be quite complex. For 

i l lustrative purposes ,  however, it is simplest to assume tha t  the variables 

(D,)  have a c o m m o n  dis t r ibut ion with mean 0 and variance a 2 > 0, and are 

independent ,  i.e. for any s ~ t 

P r o b ( D ,  e A, D, e B)  = P r o b ( D ,  E A ) .  P rob (Dt  E B)  

for all sets A and B. 

It is essential,  in the first place, to observe that  a l though it is assumed tha t  

they are zero on average, the d is turbances  do not "cancel out"  over time. It is 

wrong to think tha t  "the law of averages implies the sum of the dis turbances 

will approach zero as time increases".  Any one who has s imulated a pension 

24 



fund with no amortization of gains/losses will have noticed this. What  the 

Law of Large Numbers says is that  the average disturbance approaches zero: 

lim -1 L D ° = E D a  = 0  

8 = ] .  

(refer to the discussion of ergodicity in the previous section). In fact, what 

really happens to the sums of the disturbances is this: 

2 ! 

lim max(Da, y~ D,, . . . ,  Z D,) = +¢x~ 
t ~ O C  

1 1 

2 t 

lira min(D,, Z D,,... Z D,) = 
t ~ O O  

1 1 

The proof of these statements is beyond the scope of this paper, but a rough 

intuitive justification can be given. Imagine that Dt "- N(0, a 2) ("Dr is 

normally distributed with mean zero and variance o'2"). Then 

t 

Z D, "" N(0, to.~) 
s = l  

and so 
' 10a0. 

$----'1 

where Z --- N(O, 1). As t increases, this probability approaches 1/2. This 

makes it plausible that, given enough time, the sum of the disturbances will 

become as large as we choose (the same argument works for negative values). 

In order to "stabihze" X some form of control has to be applied. The 

proportional control (1.3) implies 

Xt+a = (1 - k)X~ + Dt+a. 
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Xt+l  is a f ract ion (1 - k) of Xt ,  plus the new dis turbance Dt+l .  Let us 

assume tha t  at t ime 0 the system is on target  (Xo = 0). Then  

E X  = ( 1 -  k) . O + ED1 = 0  

E X 2  = (1 - k ) E X 1  + E D z  = 0 

E X t  = 0 , t > O. 

The  dis turbances  being zero on average implies the  same for Xt .  Now turn  

t o  variances: 

X1 = D 1 ,  X2 = D 2 + ( 1 - k ) D 1 , . . . ,  

X ,  = D, + (1  - k)D,_~ + . . .  + ( 1  - k)'-~D~ 

=~, V a r X ,  = aZ[1 + (1 - k) 2 + . . - +  (1 - k) 2'-=] 

21 - (1 - k) 2t 

1 - (1 - k)= " 

Since 0 < k < 1, \ rarXt  increases f rom 0 to 

l i m  VarXt -  
t ~ O O  

0,2 0.2 

1 - ( 1 - k )  2 k ( 2 - k )  

Compare  this with the uncontrol led system: 

(1.4) 

VarXt  = Var(D1 + --. + Dr) 

= t o  -2 

--+ c ~  a s  t --+ cx>. 

A propor t ional  control  therefore brings a stable s teady-s ta te  response, with 

mean 0 and variance given by (1.4). Once again it is seen that  the fract ion 
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k acts as a magnifier, but this t ime of the variance of X .  If k = 10%, the 

variance of X is 1/(.10-1.9) = 5.3 t imes tha t  of the disturbances.  If k = 50~,  

the multiplier is only 1.3. 

In man 5" situations, including pension funding and accounting,  it is also 

impor tan t  to look at the behaviour  of the control C,. We get: 

E C t  = E ( - k X t )  = 0 

Var Ct = k~Var X,  

o k [1 - ( 1  - k )  

1 - ( 1  - 

lira V a r C , = a  2 k 
*--~ 2 -  k" 

As a funct ion of k, Var Co~ behaves otherwise than Var Xo~. The  variance 

of the control  is directly propor t ional  to  k; it can be made  ar t ibrar i ly  smMl 

by choosing k small enough. 

Table 1.1 shows the limit s t andard  deviations of Xt and C, as t tends 

to infinity, for selected values of k in the interval [0, 1]. [N.B. The  s tandard  

deviation is the square root of the variance. Th e  variance is the average 

~quared deviat ion from the mean,  and its units are those of X squared - -  if 

X is in dollars, Var X is in dollars squared. Here it is perhaps  be t t e r  to deal 

with s tandard  deviations, which are in the same units as X and C.] 

Table 1.1 shows that  there is a trade-off between the variance of the state 

of the system and the ~xriance of the control applied: to  increase k makes 

Var C ~  larger, and Var Xoo smaller. When both  variances are considered, 

no single value of k appears be t t e r  than the others. 
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In pension funding, X represents the unfunded liability and - C  the 

payments made to liquidate it; the disturbance Dt is the total actuarial loss 

arising in year (t - 1,t). Intuitively it makes sense that to liquidate the 

unfunded liability more rapidly (i.e. to increase k) has a destabilizing effect 

k v~'aI X~/a 

0 oc 

• 1 2.294 

.2 1.667 

.3 1.400 

.4 1.250 

.5 1.155 

.6 1.091 

.7 1.048 

.8 1.021 

.9 1.005 

1.0 1.000 

v~-~ C~/a 

.229 

.333 

.420 

.500 

.577 

.655 

.734 

.816 

.905 

1.000 

Table  1.1. Limits of standard deviations of Xt and C, when t 
tends to oz, as multiples of a. (Xt is the state of the system, Ct 
the control applied, a 2 the variance of the disturbances (Dr), k is 
the fraction of X fed back into the system.) 

on contributions and the reverse effect on the unfunded liability. This is 

another way of interpreting the numbers in Table 1.1. Nevertheless there is 

a significant difference in pension funding, caused by interest. Consider the 

system described above but with interest at constant rate i > 0: 

Xt+l - (1 + i ) (Xt  + Ct) + D,+I, (1.5) 

C, = - k  X,. 
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k / <," 

0 

.0196 ( =  d) 

.025 

.030 

.035 

.03883(= k °) 

.04 

.06 

.08 

.I0 

.20 

.40 

OO 

9.548 

6.886 

5.666 

5.075 

4.929 

3.520 

2.894 

2.522 

1.730 

1.264 

m 

.239 

.207 

.198 

.19706 

.19714 

.211 

.232 

.252 

.346 

.506 

T a b l e  1.2. Limits of s t anda rd  deviat ions of Xt  and C, when t tends  
to oc, as multiples of or. The  interest  rate  is i = .02. 

Table 1.2 shows the s tandard  deviations of X and C as funct ions  of k 

when i = .02. [N.B.. Since we are dealing with l imits as t ---* ~ ,  it is b e t t e r  to 

use deflated (constant)  m o n e t a r y  values; i is therefore net of wage increases.] 

For values of k greater  than  k" = .03883, there is the same trade-off  as before, 

tha t  is to  say to increase k decreases Vat  X but  increases Va t  C. But  for 

k < k* things are radically different: to decrease k increases both Var X and 

Vat  C. This  means  tha t  any k smaller  than  k* is to be  rejected,  since it 

impfies values of Var X and Var C which are both  larger than  they  would 

be for k = k °. It  is shown in Append ix  1.1 tha t  

k" = d(1 + 

2d 
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where v = 1 / ( 1 + i ) ,  d = i/(l+i). In o ther  words, in order  to reduce variances 

it is necessary  to pay  at  least  twice the interest  on X .  Observe  tha t  when 

i = .02 

k* = . 0 3 8 8 3  = l / a 'gg  ~ .  

Variances are reduced if the unfunded liability is "spread"  over a per iod 

shor ter  t h a n  36 years. This  m a x i m u m  per iod is a funct ion of i, but  not  of 

a (see Append ix  1.1). For example ,  it is 18.2 years when i = .04, and 12.4 

years when i = .06. It  can be shown tha t  

m* m log2/log, 1 + i) + .5, 

which indicates  tha t  the m a x i m u m  per iod is a decreasing funct ion of i. 

In the above  example  the  d is turbances  were additive (see Eq. (1.5)). A 

more realist ic model  would include r a n d o m  rates  of re tu rn  on pension assets,  

which are mulfiplicative dis turbances .  The  si tuat ion then  becomes a little 

different, e.g. k ° depends  on the dis t r ibut ion of the ra tes  of re turn.  The  

in teres ted  reader  is referred to Dufresne (1988, 1989, 1991) for more  details 

on this topic.  

This  sect ion i l lus t ra ted the  type  of analysis which will be pe r fo rmed  in 

C h a p t e r  3. T h e  p rob lems  s tudied  are not as t r ac tab le  as the  simple one 

described above;  this is why c o m p u t e r  s imulat ions have to be relied on. 
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1.4. The  m o d e l  

The description of the model has been devided into three parts: 

1. Population and pension plan 

2. Economic and actuarial assumptions 

3. Equations describing the system 

1.4.1. Population and pension plan 

In order to focus more accurately on fluctuations caused by rates of return 

and discount factors, a stationary (i.e. static) population has been chosen. 

Of course real pension plan populations are at best only approximately sta- 

tionary, but including population fluctuations would only serve to cloud up 

the analysis. 

The two factors influencing the choice of the population are (1) simplicity 

and (2) sensitivity to changes in the discount rate (which is the valuation 

rate of interest for accounting purposes). The first requirement is that  nu- 

merical results be easy to check or reproduce. Since this study is not aimed 

at a particular real pension plan, the population chosen does not have to 

be "realistic", as long as the numbers obtained conform to what would be 

expected in real situations. The only way the population comes into play 

is in the Computation of the actuarial liability and normal actuarial cost 

(funding), and projected benefit obligation and service cost (accounting). Of 

crucial importance is the sensitivity of these values to changes in valuation 

rates of interest (or discount rates). 

The same considerations apply to the choice of the pension plan terms. 

Accordingly the simplest plan was chosen: one retirement age, benefits equal 

to a fixed fraction of final salary, payable for life. 
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The assumptions concerning the plan and population are shown below 

Benefits 

Entry age 

Retirement age 

Pre-retirement mortality 

Post-retirement mortality 

b% of salary per year of service 

payable annually for life 

30 

65 

none 

q~ = 0 ,  x < 7 9 ,  qr9 = t  

(N.B. The constant b will be set equal to a computationally convenient value 

whenever needed; of course this does not affect the conclusions reached.) 

Appendix 1.2 shows that the sensitivities of the actuarial values calculated 

on the above basis are comparable to those obtained if the population is 

stationary and in accordance with the 1983 Group Annuity Mortality Table. 

The assumption of no mortality before retirement would be appropriate 

if each member were to withdraw his entire actuarial liability on termina- 

tion before retirement. This is approximately true when the plan offers full 

portability. In any case, Appendix 1.2 proves a rather surprising fact: if (i) 

the plan has no pre-retirement benefits; (ii) the population is in accordance 

with the life table at all ages before retirement (this is the case with a sta- 

tionary population); and (iii) the valuation method is projected unit credit, 

then pre-retirement decrements have no influence on the sensitivities of the 

service cost and benefit obligation to changes in the discount rate. 

The post-retirement mortality table chosen greatly simplifies calculations 

and programming. With a life expectation around 15 or 20 years at age 65, 

the sensitivity of ~i~5 should compare with that of/i]~-q. This is examined 

further in Appendix 1.2. 
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1.4.2. Economic and actuarial assumptions 

"The following hax'e to be specified: 

- funding: - actuarial  cost me thod  and assumptions 

- t r ea tment  of gains and losses 

- rates of re tu rn  on plan assets 

- expensing: - expected long-term rate of re turn  on plan assets 

- discount rates.  

The  plan will be funded according to the projec ted  unit credit m e th o d  

(another  me thod  could have been chosen). The  mor ta l i ty  table used for val- 

uat ion purposes (funding and expensing) is the one described in Subsection 

1.4.1. 

Now turn  to the valuation interest  ra te  for funding purposes. Rates  of 

re tu rn  on plan assets (described below) f luctuate  a round a fixed mean value. 

In practice the valuation rates of interest  follow earned rates of re tu rn  to 

some extent ,  though a long-term approach is taken, meaning tha t  valuation 

rates usually vary little from one year  to the next.  It was decided to let 

the valuation rate of interest be constant  and equal to the long-term average 

earned rate. This may  seem questionable,  but  is in complete  agreement  with 

the  ideas expressed in Section 1.2. The  goal of the work is to s tudy the 

variability of pension amounts  caused by some of the requirements of SFAS 

87; it is essential, as a first step, to remove other  sources of f luctuat ions 

which could make results harder  to  interpret .  A subsequent step (not taken 

here)  would be to introduce valuation rates of interest  which are based on, 

say, the last 10 years '  experience. 

No explicit inflation assumpt ion  is required, since rates of re turn  on assets 

and discount rates are net of wage increases and benefits are supposed fully 
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indexed. This means, for instance, that in a final salary plan retirement 

benefits are indexed in line with wage increases. 

The treatment of (funding) gains and losses has an effect on the value of 

the fund and therefore influences pension expense. There are many ways of 

amortizing gains and losses; none of them seemed more appropriate than the 

others. The simulations were done on the assumption that gains and losses 

are recognized immediately (recall that  fund returns are the only source of 

gains and losses on the funding side). Intuitively, one expects that  slower 

recognition of gains/losses would bring a small increase in the variability of 

funded status and pension expense. It would be interesting to look into this 

more closely. 

Given that  the valuation rate of interest (for funding purposes) is a con- 

stant, the expected long term rate of return on plan assets (for expensing 

purposes) was also held constant. 

Before turning to discount rates and rates of return on plan assets, let 

me first remark on vocabular)'. If the value of some asset grows by a factor 

U = I + R = e  G 

during a certain period, R will be called the arithmetic rate of return, and G 

the geometric rate of return. These terms are more descriptive than the usual 

"rate" and '`force of interest". They also agree with the vocabulary used in 

other disciplines. (The expression '~force of interest" probably comes from 

'~force of mortality"; both expressions refer to continuous models, as these 

rates are instantaneous. Furthermore, when speaking of rates of return, and 

not rates of interest, it feels awkward to use the expression "force of return" .) 

Paragraph 44 of SFAS 87, quoted in Section 1.1, gives the requirements 

concerning the discount rate. Since rates implicit in annuity contracts and 
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PBG C rates are not easy to model,  the author  chose to focus on high-quality 

bond yields. There is no single accepted model describing bond 3ields (or 

bond rates of re turn)  over time. Very sophisticated models have been devised, 

for example  including transition probabilities between different yield curves, 

or other  "functional processes" specifying yield curves over time. For the 

purpose of this research it was thought  sufficient to model the discount rate 

directly, i.e. wi thout  using a model describing the evolution of the whole 

yield curve over time. A sequence of independent  random variables would 

have been converfient, but historical bond yields do not appear  to follow this 

kind of process. The  approach taken in Panjer  and Bellhouse (1980) was 

retained. Those authors  fit ted autoregressive (AR) processes to a number  of 

financial series. The  results were AR processes of order one or two. I chose 

to use an AIR(1) process 

Xt = M + A(Xt  - M )  + ~ 

with a parameter  A = .9. In the cases of Standard  and Poor 's  Compos- 

ite yield on high grade corporate  bonds, Panjer  and Bellhouse had  found 

A = .957. A mean (ar i thmetic)  discount rate of 1% was chosen after exam- 

ining long-term US bond yields, deflated by wage increases, over the period 

1926-1988" (Tables 9A and l l A  of Economic Statistics for Pension Actuar- 

ies, 1990). The geometric net rates have an average of 0.71% and a s tandard  

deviation of 4.96%, which mean an ar i thmetic  average of about  

exp (.0071 + .5. .04962) - 1 = 0.84%. 

The  si tuation is less clear with respect to rates of re turn on assets. Typ-  

ically, pension fund assets are not  invested for the most part  in high quali ty 

bonds, so that  the above approach is not appropriate.  Pension funds often 
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invest significant amounts  in stocks. A number  of au thors  have contended 

that  the rates  at which individual  stock prices grow (over time) are indepen- 

dent  r andom ~etriabales (e.g. Fontaine,  1990). True  or false, this does not 

really help us, as pension funds are managed  and, therefore,  stocks are not 

kept indefinitely, but  bought  and eventual ly sold. 

T he  approach  adopted  here is based on two considerations: 

(1) tha t  there  should be a dependence  between discount rates  and 

rates of re turn  on the fund 's  assets; and 

(2) tha t ,  besides the dependence  s ta ted in (1), the addit ional  random- 

ness present  in the sequence of rates of re tu rn  on assets should 

result f rom random variables which are independent  over time. 

The  idea is tha t  part  of the fund 's  assets have re turns  similar to those 

of long- term bonds,  while the rest of the fund  has ra tes  of re turn  which are 

complete ly  unpredic table .  The  rates of re turn  on plan assets are thus less 

predictable  t ha n  are discount rates.  

The  processes represent ing discount rates  and rates of re turn  on  assets 

will now be  described. The  required inputs are: 

E D S  mean  ar i thmet ic  discount ra te  

E R  mean ar i thmet ic  ra te  of re tu rn  on assets 

V A R D S  variance of geometric discount rates  

V A R O R  variance of geometlit '  rates of re tu rn  on assets 

C O R  correlat ion coefficient of geometr ic  discount  rates 

and rates of re turn  on assets. 

T h e  above parameters  are sufficient to  completely specify the two pro- 

cesses. Define: 
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D S C R  

X 

R 

Y 

H X  

H Y  

ar i thmet ic  discount rate 

geometric discount rate = log(1 + D S C R )  

ar i thmet ic  ra te  of re turn on assets 

geometr ic  rate of re turn  on assets = log(1 + R) 

mean geometric discount rate 

mean  geometric ra te  of re turn  on assets 

two independent  sequences of independent  

N(0,  1) random variables. 

Geometr ic  discount rates and rates of re turn  on assets satisfy the  following 

equations: 

X t  = H X  + A ( X t - 1  - H X )  + B . Vt 

Yt = H Y  + D ( X t  - H X )  + G .  Wt 

for t > 1. In Chapter  3 the paramete r  A will be set equal to .9. Wha teve r  

the value of X0, as t increases the average value of Xt approaches H X ,  since 

EV~ = O. ( X t )  is an AR(1) process, but  (~t~) is not. Yt is a combinat ion of 

Xf and I ~ .  The mean of Yt approaches H Y  as t increases. 

The  variances of geometric discount rates satisfy 

Var X¢ = A 2 Var X t - i  + B ~ 

and thus 

lira Vat Xt = B2/ (1  - A 2) 

lim Vat  }~ = D2B2 / (1  - A ~) + G 2. 
t--*CO 
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From now on, suppose the process (Xt) is stat ionary.  From what  has 

jus t  been said, this implies that  Xt "~ N ( H X ,  B 2 / ( 1 -  A2)), and Yt "" 

N ( H Y ,  D2B2/(1  - A 2) + G 2) for all t. Then  

Coy(X, ,  ]~) = E ( X ,  - H X ) ( Y ,  - H Y )  

= E [ D ( X ,  - H X )  2 + G .  I ' V t ( X ,  - H X ) ]  

= D Vat Xt  

and thus 

Corr(Xt,}~) = Cov(Xt, }~)/(Var X, Vat y¢)~/2 

= D(Var X , /Var  Y,) ' / '  

= D.  B / [D2B 2 + G2(1 - A2)] 1/2 

(B is chosen positive). The inputs E D S ,  E R ,  V A R D S ,  V A R O R  and COR 

completely specify the parameters  B, D, G, H X  and H Y .  The correlation 

C O R  can take any value between - 1  and +1. It is shown in Appendix 1.3 

tha t  

B = [(1 - A2)VARDS]  1/2 

D = ( V A R O R / V A R D S ) I / 2 C O R  

G = [I/AROR(1 - COR2)] 1/2 

H X  = log(1 + E D S )  - ( 1 / 2 ) V A R D S  

H Y  = log(1 + E R )  - (1 /2 )VAROR.  
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M e a n  S t a n d a r d  D e v i a t i o n  

1. Long-term US Government 
Bond Yields (nominal) 4.95% 

2. Wage Index (annual rate of increase) 4.24% 

3. Series 1 deflated by Series 2 0.71% 

4. Standard and Poor's Composite 
Composite Value Index (nominal) 9.23% 

5. Series 4 deflated by Series 2 5.00% 

2.96% 

4.31% 

4.96% 

20.10% 

20.20% 

Table 1.3. Means and standard deviations of five economic series. 
All rates are geometric. Each series covers the period 1926-1988. 
(Computed by author based on Tables 9A, l l A  and 15A of Economic 
Statistics for Pension Actuaries, 1990.) 

The "base" scenario is shown below. 

Valuation rate of interest (arithmetic) .02 

Expected long-term rate of return on plan 

assets (arithmetic) .02 

Mean arithmetic discount rate (EDS) .01 

Variance of geometric discount rate (I'ARDS) .0009 

Mean arithmetic rate of return on assets (ER) .02 

Variance of geometric rate of return on 

assets (VAROR) .0025 

Correlation between geometric discount rate and 

rate of return (COl=l) .60 

Although some guidance was sought from published statistics (see Table 1.3), 

these assumptions are not meant to portray any historical period accurately. 

As was explained previously, the mean arithmetic discount rate of 1% is 

approximately equivalent to the ~z.lues on the third line of Table 1.3. The 
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variance of discount rates  was set equal to .0009 (i.e. a s t anda rd  deviat ion of 

3%), which is smaller than  the observed value of .04962. As will be seen in 

Chap te r  3, the  volatibil i ty of pension amounts  is verb" sensitive to this param- 

eter ,  and it is plausible tha t  plan sponsors will t ry to limit the f luctuat ions 

of the discount rates used. 

Now tu rn  to rates of re turn  on assets. Many pension funds are heavily 

invested in stocks and bonds,  with other  assets playing a relat ively minor  

role. Corpo ra t e  bond yields are higher  than  those of US Government  bonds,  

while stocks have re turns  which, in the long run, clearly surpass those of 

bonds.  This  would suggest a mean  ra te  of re turn  on pension fund  assets of 

a round 3 - 4% (net of wage increases). However, to take into account  the 

"prudence"  exercised in pension fund investments,  a mean  rate  of 2% only 

was chosen. For the same reason the s tandard  deviat ion of rates of re turn  

was set at 5%, which is low considering that  stock returns  historically show 

a 20~  s t anda rd  deviation.  

The  valuat ion rate of interest  and the long-term expec ted  ra te  of re turn  

were set equal  to the mean  rate  of re turn  on assets, a l though those three are 

probably  seldom equal in practice.  

The  model  requires the correlat ion between discount rates  and re turns  on 

assets. It would have been possible to use US statistics to t ry  to es t imate  this 

parameter ;  it was quicker to use the correlation coefficient of bond  re turns  

and total  pension fund returns,  shown on p. 25 of the Report on Canadian 

Economic Statis~ic, (1990). The  value given is .61, which was rounded to 

.60. 

As a final remark on the base scenario, observe that  one of its distinctive 

features  is p robab ly  the fact that  the average discount ra te  is lower than  the 
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valuation rate of interest (1% versus 2%). The reverse situation is probably 

often seen in practice, especially when the valuation rate of interest is chosen 

conser~-atively. The base scenario assumes that the latter is a best estimate 

of the long-term returns of the fund (since it equals ER). (Of course in 

practice the actuary only has a small number of observations to work with, 

and could not estimate the long-term average rate of return with perfect 

accuracy, as is supposed here.) 

1.,4.3. Notation and mathematical analysis 

The following notation will be used throughout. 

A F W L  average future working lifetime of active 

employees 

AL actuarial liability (funding) 

AM amortization of gains and losses (expensing) 

B annum (aggregate) benefit payments (constant) 

C contributions (funding) 

COR correlation coefficient of geometric discount rates 

and rates of return on assets (see Subsection 1.4.2) 

D S C R  arithmetic discount rate (expensing) 

E pension expense 

EDS mean arithmetic discount rate (see Subsection 1.4.2) 

E L T R  expected long-term rate of return on plan assets 

E R  mean arithmetic rate of return on assets 

(see Subsection 1.4.2) 

F fund value 

H X  mean geometric discount rate (see Subsection 1.4.2) 
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HY mean geometric rate of return on assets 

(see Subsection 1.4.2) 

k 1 /AFWL 

L loss (gain if negative) during one fiscal year (expensing) 

NC normal actuarial cost (funding) 

P B O  projected benefit obligation (expensing) 

R arithmetic rate of return on assets 

SC service cost (expensing) 

URL unrecognized losses (gains) 

V sequence of independent variables used in defining 

DSCR and R (see Subsection 1.4.2) 

VARDS variance of geometric discount rate 

(see Subsection 1.4.2) 

VAROR variance of geometric rate of return on assets 

(see Subsection 1.4.2) 

VI  valuation rate of interest (funding) 

X geometric discount rate (see Subsection 1.4.2) 

Y geometric rate of return on assets 

(see Subsection 1.4.2) 

W sequence of independent variables used 

in defining R (see Subsection 1.4.2) 

Some of the equations below are given in Berin and Lofgren (1987), 

though with a different notation. 

As explained before, the population is static, and all amounts are deflated 

by increases in benefits. Annual benefit outgo is therefore constant. Assets 

are valued at year-end. Contributions and benefits are paid in totality at the 
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beginning of the 3,ear. 

Fund values f luctuate  solely because rates of re turn  on assets vary over 

time. We have 

F, = (1 + R , ) (F ,_ I  + C,_,  - B).  

Under the base scenario, gains/losses are amort ized over one year,  i.e. 

C, = N C  + A L -  F,.  

and 

F, = (1 + R , ) ( A L  + N C  - B )  

= AL(1 + s l , ) /O + vs )  

since, under  stat ic conditions 

A L  = (1 + V I ) ( A L  + N C  - B) .  

The  pension benefit obligation ( P B O )  shown in the financial s ta tement  

at t ime t is the projec ted  unit credit liability valued at D S C R ~ .  By contrast ,  

the service cost ( S C )  in the financial s ta tement  at t ime t is compu ted  at the 

beginning of the year,  i.e. at t ime t - 1. 

Unrecognized losses ( U R L )  are set equal to 0 at t ime 0. Afterwards,  

U R L  is increased with emerging losses (or decreased with emerging gains) 

and decreased by the amount  recognized in expense: 

URL~ = U R L t - 1  + Lt - A M t .  

Here 

L, = P B O ,  - P B O , _ x  + ( E L T R  - R , ) (Ft_~ + C,_~ - B )  

= P B O ,  - P B O , - 1  + F , ( E L T R  - Rt) / (1  + R,)  
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The first part of this expression is the unexpected increase of the P B O  during 

the year. In the present model this loss (gain) is entirely due to the fact that 

DSCR~ ~ D S C R ~ - I .  The second part is the interest loss on assets during 

year t - 1 to t. It is the difference between the projected and the actual fund 

at time t. One notable feature of SFAS 87 is that pension expense (a year- 

end amount) includes interest on P B O t - 1  at rate D S C R t - 1 ,  but is reduced 

by return on assets at rate E L T R .  The difference between projected and 

actual return on assets in pushed into the loss for that year, and is therefore 

not eligible for amortization until the following year. Observe that in the 

model chosen contributions and benefit payments are paid at the beginning 

of the year, and thus get a full year's interest. 

Let 

1~I = max( P B O t - a ,  Ft - l  ). 

M is the greater of the P B O  and the fund at the beginning of year 

(t - 1, t). It is this amount which is compared to unrecognized losses (also 

at the beginning of the year) in order to determine the minimum amount to 

be recognized at time t: 

AMt  = 0, 

= k(URLt_~ - 10%M), 

= k(URLt-~  + 10%M), 

if [URLt-I[<_ 10%M 

if URL~-I > 10%M 

if URLt-a < - 1 0 % M  

(see Paragraph 32 of the Statement, reproduced at the beginning of Section 

1.1). Here k is the reciprocal of the average future working lifetime of active 

employees. 

The model excludes prior service cost and transition obligation. Pension 

expense therefore consists in 
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- the service cost, 

- plus interest on P B O ,  

- minus return on assets, 

- plus recognition of part of U R L ,  if any. 

In symbols 

Ee = SC,_a(l + DSCR,_,) + DSCR,_,(PBO,_a - B) 

- E L T R ( F , _ ,  - B )  + AM, .  (1.6) 

(N.B. Benefits are paid at the beginning of the year, and thus get afull  year's 

interest. Including interest on benefits at two different rates may seem a little 

strange; see Section 3.2 for an explanation.) 

The service cost (with interest to the end of the year) is typically very 

sensitive to changes in D S C R .  The same thing can be said about the P B O .  

This source of volatility of pension expense has been widely recognized (see 

for example paragraph 182 of the Statement). The two remaining terms in 

Eq. (1.6) a/so cause volatility in pension expense. In particular, A M  may 

bring about important fluctuations (whether or not the minimum amortiza- 

tion described above is applied); this is because losses include the inexpected 

increase/decrease of the P B O ,  which can be quite large by comparison to 

other losses (mortality, terminations, etc.). 

The part of the right hand side of Eq. (1.6) which directly depends on 

the discount rate is 

Q = SC(l + DSCR) + DSCR(PBO - B). 

It is instructive to try to analyse mathematically the sensitivity of Q to 

changes in D S C R .  Of course it is difficult to do this in genera/, as the results 
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obviously depend on plan benefit and demographic profile. The remainder of 

this subsection examines three specific cases in some detail. 

First, suppose the population is stationary (as will be done in Chapters 

2 and 3). The equation of equilibrium 

P B O t _ ~  = (1 + D S C R , _ ~ ) ( P B O t _ I  + SCt_ I  - B )  

implies 

0 = (1 + D S C R t - 1 ) S C t - 1  + D S C . R t _ ~ ( P B O t _ ~  - B )  - B .  

Thus Q = B and 

Et = B - E L T R ( F t _ ~  - B )  + A M , .  

In a stationary population, service cost plus interest on P B O  (minus benefits) 

is always precisely equal to benefits. The latter quantity is not sensitive at 

all to changes in the discount rate. The sensitivities of the service cost, on 

one hand, and interest on the P B O  (minus benefits), on the other, cancel out 

completely. In this case the volatility of pension expense is entirely due to 

A M t .  

REMARK. That Q does not depend on D S C . R  when the population is 

stationary can be given another (more intuitive) explanation. Consider an 

unfunded plan with a stationary population. The cost of the plan can be 

calculated in either of two ways. First, it is simply the cost of benefits paid; 

in our model, this is (1 + D S C R ) B ,  at the end of the year. Second, suppose 

any valuation method is used. The cost (at the end of the year) is the service 

cost (with interest) plus interest on the pension benefit obligation. These two 

costs have to be equal, i.e. 

(1 + D S C R ) B  = (1 + D S C R ) S C  + D S C R .  P B O  

-: ~ B = (1 + D S C R ) S C  + D S C R ( P B O  - B) .  [] 
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As a second example, suppose that the active population conforms ex- 

actly to the life table, but that retirees are separated from the active lives. 

Use primes to denote this new situation, and no primes for the stationary 

case above. Define 

R P B O  = retirees' pension benefit obligation 

= actuarial present ",-alue of retirees' benefits. 

Then SC '  = SC,  P B O '  = P B O  - R P B O  and 

SC' (1  + D S C R )  + D S C R .  P B O '  

= SC(1  + D S C R )  + D S C R .  P B O  - D S C R .  R P B O  

= B(I + DSCR) - DSCR. RPBO. 

Now suppose r is the retirement age, and p the annum benefit paid to one 

retiree. Then 

(1 + D S C R ) ( R P B O  - B )  = R P B O  - p~rfi,. 

(this is an equilibrium equation for the retired population only; see Dufresne 

(1986a), p. 84). This implies 

D S C R  . R P B O  = (1 + D S C R ) B  - pgrfi~ 

and 

SC' (1  + D S C R )  + D S C R .  P B O '  = p~rar. 

The annuity fir is valued at rate D S C R .  Therefore, when there are no 

retirees, S C  plus interest on P B O  is very sensitive to variations in D S C R .  

As a third and final example, suppose there are no active members, only 

retirees with a population in accordance with the life table. Then there is 

no service cost, and interest on the P B O  (minus benefits) becomes 

D S C R  ( R P B O  - B )  = B - p e r a , .  
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This is very sensitive to changes in D S C R ,  but this time it is an increasing 

function of D S C R .  

Another way of analysing the problem is to consider individual service 

costs and benefit obligations. Suppose e is the entr~" age into the plan. Then 

for one member age x 

Q~ = (1 + DSCt~)SC~ + D S C R .  (PBOx - B~) 
1 

- r - e [1 + D S C R  + (x - e)DSCR](1 + DSCR)-(r-z)(gr/gr)piir ,  

if e < z < r  

= D S C R . p a z ,  if z > r .  

Since 

~, a z  = ~, E a n 

0 ( 1 - ( 1 + i )  - K )  
= 0---~ i E ,-: 

o E(1 + 
Oi 

= EK(1  + i ) -K-x  > 0 

(1.7) 

we see that Q~ is a decreasing function of D S C R  for young members and 

an increasing one for older members. (For an explanation of Eq. (1.7) the 

reader is refered to Section 5.4 of Bowers et al, 1986). 

We therefore conclude: the service cost plva interest on the pension benefit 

obligation is a decreasing function of D S C R  for a relatively young ("under- 

mature") population, and an increa.~ing function of D S C R  for a relatively 

old ("overmature') population; when the population is approximately station- 

ar v ("mature'), service cost plus interest on P B O  shows little sensitivity to 

changes in D S C R .  
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\\:hat precedes somewhat weakens (at least for mature populations) the 

claim that fluctuating discount rates produce large fluctuations in pension 

expense. Nevertheless it should be noted that fluctuations do arise in all 

cases, since unexpected variations in the PBO have to be amortized. In the 

case of a mature population, these variations can be quite large. The final 

outcome is that emphasis is shifted from the service cost to the amortization 

of gains and losses. This is explored in Chapter 3. 
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A p p e n d i x  1 .1 .  F o r m u l a  f o r  k* 

F r o m  (1.5) ,  

X , + l  = (1 + i)(1 - k)X,  + D,+I 

= q Xt + Ot+l 

where  q = (1 + i)(1 - k). T h e n  

X1 = D1 + qxo 

X2 = D2 + qDl + q2z0 

X~ = Dt + qDt-1 + q2D,-2 + . . .  + q t z0 .  (1.8) 

It can  be  shown  t h a t  X ,  will have  a l imit as t ---* o0 (in the  sense of 

conve rgence  in d i s t r i bu t ion )  as soon as Iql < 1, i.e. 

I(1 + 0 (1  - k) l  < 1 

I1 - k l  < v 

- v < k - l < v  

d < k < l + v  

(v = 1/ (1  + i) ,  d = 1 - v). It  is t he re fo re  necessary  to  pay  at  lea.st in teres t  

on Xt  in o rde r  to  o b t a i n  a meaningfu l l  s t e ady - s t a t e  response .  F r o m  (1.8) we 

get  

Vat  Xt  = a2(1 + q 2  + q 4  + . . . + q 2 t - 2 )  

= a2(1 - q2 ' ) / (1  - q:) .  

As t ---* 0% th is  app roaches  

V a r  Xo~ = a 2 t ( 1  - q : ) .  
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Since C~ = - k X t ,  we conclude that  

V~ X~ = a2/[: - (I + Q2(: - k) ~] 

v a r  c o o  = ~ 2 k = / [ :  - ( :  + i )~(1  - k)21. 

It is possible to specify the value k* below which variances axe too high. It 

is the point at which Vat Coo is a minimum, and is thus the solution of 

0 = d l k = / [ :  - (1 + i)=(: - k)2l} 
dk 

i.e. 

k* =l-v ==(l-v)(l+v) 

= d(: + v) .  

The corresponding "maximum period" m* can also be calculated: 

k" = : / a - ~  

~:~ d(1 + v) = d/(1 - v m')  

<~ : - ~ "  = :/(: + v) 

v =" = v l ( l + v )  

m" = : + log(: + v) / log(1  + i) 

= l o g ( 2  + i)/log(: + i) .  

rn" does not depend on the distr ibution of the disturbances (Dr), and is a 

decreasing function of i. A very good approximation of m* can be found as 

follows: 

m" = [log 2 + log(1 + i /2)]/ log(1 + i) 

= ( log2)/6 + log0  + i /2 ) / log(1  + i), 6 = log(1 + i) 

(log z ) f~  + .5 

since the function z H log(1 + x) is nearly linear for small values of z. 
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A p p e n d i x  1.2. Sens i t i v i ty  of  ac tua r i a l  values to  changes  in valua-  

t ion  i n t e r e s t  r a t e  

The criteria which were apphed in deriving the demographic assumptions 

given in subsection 1.4.1 are (1) simplicity and (2) that the sensitivities of the 

service cost (SC) and projected benefit obligation (PBO) be comparable to 

those which would be observed in real-life situations. The latter depend on the 

demographic profile of the plarl population; the yardstick which will be used 

here is a stationary population following the 1983 Group Annuity Mortality 

(GAM) Table. The results would be different if the population were younger 

(undermature) or older (overmat re). 

The discount rate will be represented by i. The notations d = i/(1 + i) 

and v = 1/(1 + i) will also he used. The rate of interest is net of wage 

increases, and SC and P B O  are correspondingly valued in dollars deflated by 

the wage index. By suitably choosing the constant b defining the benefit level 

(for example if there are £z member age x, each receiving a pension of 1 unit 

from age 65), we have 

SC = m 

6 4  
1 ..  

65 - 30 Z L- 6s_=la~ 
3O 

6 4  

35 
3 0  

=£65 fi6s aa--~/35 (1.9) 

To calculate P B O ,  use the equation of equilibrium 

P B O  = (1 + i ) (PBO + SC - B) 

P B O  = (B - SC) /d  
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where 
w--1 

B : Z : 
65 

is the annual benefit outgo. Thus 

= 

(These relationships are simple consequences of the stationarity of the pop- 

ulation; the reader is referred to Trowbridge (1952) or Dufresne (1988) for 

more details.) 

Observe that pre-retirement decrements do not appear in Eq. (1.9) nor 

in Eq. (1.10); hence pre-retirement decrements have no influence on the 

sensitivities of SC or PBO to changes in the discount rate. This is essentially 

a consequence of three assumptions: (i) there are no pre-retirement benefits; 

(ii) the population conforms to the life table at all ages before retirement; (iii) 

the projected unit credit method is used. The conclusion would in general 

be incorrect if any of these assumptions did not hold. 

Table 1.4 shows the sensitivities of SC and PBO for the model popula- 

tion and the 1983 GAM Table. The base rate is 2% (recall that  this rate 

is net of wage increases). The model population produces slightly smaller 

variations then 1983 GAM. For comparison purposes, two other sets of fig- 

ures are shown. The first part of Table 1.5 uses the 1983 GAM Table with 

lfz replaced with If z(1.02) -(=-85) at ages x >_ 65. The point in doing this is 

that using the same net valuation rate of interest before and after retirement 

means that benefits in payment increase at the same rate as salaries. This 

is rarely the case in practice: at best benefits in payment would get full CPI 

indexation, which is less than indexation in accordance with wage increases. 

The modified f~ function corrects this situation by supposing that benefit 
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payments are increased by the wage index minus 2%. The result is slightly 

smaller sensitivities, since benefits paid have a shorter duration. 

The second set of figures in Table 1.5 is based on the assumption that 

survival is certain up to age 81, instead of age 79 under the model population. 

Thus ..(0) = 17 (instead of 15), which is closer to 17.19 ..(0) under 1983 a65 ---- a65 

GAM. 

In conclusion, the model population produces sensitivities which are com- 

parable to (though slightly smaller than) those obtained using the 1983 GAM 

Table. 

~EMARK. Some plan features have an effect on the duration of bene- 

fits paid, for instance: pre-retirement benefits, early retirement, guaranteed 

periods for benefits in payment, joint and survivor pensions. Intuitively the 

first two should decrease duration, and the last two increase it. These plan 

features should therefore have similar effects on the sensitivities of S C  and 

P B O .  It would be interesting to try to quantify these effects. [3 
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i 

.01 

.02 

.03 

M o d e l  p o p u l a t i o n  1983 G A M  

SC PBO SC PBO 

11.767 326.58 

(25.7~) (13.6%) 

9.361 287.58 

(-) (-) 

7.549 255.82 

(-19.4%) (-11.0~) 

13.093 414.05 

(29.0%) (15.3%) 

10.151 359.14 

(-) (-) 
8.004 315.50 

(-21.2%) (-12.2%) 

Table  1.4. Service cost (SC) and projected benefit obligation 
(PBO). Relative variations from values at i = 2% are shown in 
brackets. 

i 

.01 

.02 

.03 

Modi f i ed  1983 G A M  Modi f i ed  m o d e l  p o p u l a t i o n  

SC PBO SC PBO 

10.936 330.88 

(27.7%) (14.8%) 

8.561 288.22 

(-) (-) 

6.811 254.10 

(-20.4%) (-i1.8~) 

13.207 383.11 

(26.8%) (14.0%) 
10.412 335.98 

(-) (-) 
8.325 297.83 

(-20.0%) (-11.4%) 

Table  1.5. Service cost (SG) and projected benefit obligation 
(PBO). On the left the £z function from the 1983 GAM Table has 
been replaced with l~(1.02) 65-z for x > 65. On the right qz = 0, 
x <81,  q81 = 1. 
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A p p e n d i x  1 . 3 .  F o r m u l a s  f o r  B, D, G, H X ,  H Y  

The problem is to obtain the values of B , D ,  G, H X  and H Y ,  from those 

of the inputs  E D S ,  E R ,  V A R D S ,  V A R O R  and C O R .  The parameter  A has 

been set equal to .9. Recall tha t  the process X is supposed stat ionary.  

l~'rom 

V A R D S  = Vat  X t  = B2 /(1 - A s) 

we get 

B = [(1 - A ~ ) V A R D S ]  1/2. 

Next, 

V A R O R  = Var]'~ = D e B t / ( 1  - A ~) + G 2 

C O R  = D • B / [ D 2 B  ~ + G2(1 - A2)p /2  

imply 

V A R O R / V A R D S  = [D2B 2 + G2(1 - A2)]/B 2 

D = [ V A R O R / V A R D S ]  ~/2 • C O R .  

The parameter  G can be found from 

1 - C O R  2 = G2(1 - A 2 ) / [ D ~ B  :2 + G~(1 - AS)] 

:::t. V A R O R ( 1  - C O R  2) = G 2 

=*. G = [ V A R O R ( 1  - COR~)]  11~. 

Now turn  to H X .  For any variable Z -~ N(/~, aS), 

Ee Z = eU+(l/2)o~. 
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Thus 

1 + E D S  = e x p ( H X  + ( 1 / 2 ) V A R D S )  

H X  = log(1 + E D S )  - (1 /2 )VARDS.  

Similarly 

1 + E R  = e x p ( H Y  + (a /2 )VAROR)  

H Y  = log(1 + E R ) -  (1 /2 )VAROR.  
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C H A P T E R  2 E X I S T E N C E  OF L I M I T  D I S T R I B U T I O N S  

2.1. I n t r o d u c t i o n  

This chapter demonstrates the existence and uniqueness of the limit dis- 

tributions of unrecognized losses (URL)  and pension expense (E) under the 

model described in Chapter 1. As explained below, these questions are of 

importance when building a model which will be simulated over long periods 

of time; as will he the case in Chapter 3. 

Section 2.2 first defines the concepts used: stochastic processes, Markov 

processes, stationary distributions, and embedding. The general theorem 

which will be used to prove the ergodicity of URL and E is then stated; 

finally, several relatively simple examples show the application and meaning 

of the theorem. The last two sections (2.3 and 2.4) deal with the ergodicity 

of unrecognized losses and pension expense, respectively. The rest of the 

present section is a discussion of two aspects of the problems studied later 

in this chapter: (1) the existence of a limit distribution; (2) the dependence 

of the limit distribution on initial condition~. 

Not all stochastic processes have "meaningful" limit distributions. For 

example, consider the so-called "random walk" model for rates of return. 

Under this model the deviation of the rate of return in year t from some base 

rate r is S,, with 

St =~x+'"+e, 

where (e,, t > 1) are independent and identically distributed (i.i.d.) and have 

mean zero. This model has the interesting property that 

E(S,+I [&) = S, 
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i.e. given what is known at t ime t, next year's rate (St+l + r) is "expected" 

to be this year~s rate (St + r). This model has been used in finance and 

actuarial science (e.g. de Jong, 1984). The less interesting property of the 

random walk model is that  St cannot have a limit distribution. In fact the 

probability that  St lies in the range [-100%, +100%] approches 0 when t 

becomes very large. This kind of process could not have been used for the 

purposes of the present research. 

The same thing occurs in a pension model if gains/losses are not amor- 

tized. For instance, consider 

URLt = URL~_I + L t -  AMt 

If we suppose AM, = 0 for all t, then URL, is the cumulative sum of past 

losses (gains). In this respect paragraph 184 of SFAS 87 contains the follow- 

ing sentences: 

184. The Board noted that ,  if assumptions prove to be accurate es t imates  of 
experience over a number of years, gains or losses in one year will be offset by 
losses or gains in subsequent periods. In tha t  situation, all gains and losses would 
be offset over time, and amortization of unrecognized gains and losses would be 
unnecessa~'.  

The view expressed by FASB appears to be that  

f 

- ~ L s  ~ O, 

if assumptions are correct on average and t is large enough. This is math- 

ematically incorrect: ~t0= 1 L,  behaves very much like the random walk St, 

i.e. its probable values are further  and further away from 0 as t increases. 

(The main difference between the two processes is that  the losses (Lt) are not 

independent; this does not change the conclusion). Thus, no amortizat ion of 

gains and losses implies that  there is no limit distribution for URL. 
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Now turn  to the dependence of limit distributions on initial conditions. 

The  following example will show what  can happen when a "corr idor"  ap- 

proach is adopted.  Consider a pension funding model,  with a s ta t ionary  pop- 

ulation, no inflation and constant  valuation rate  of interest i = .06. Earned 

rates of re tu rn  are independent  and have distr ibution 

R, = .065 with probabil i ty 1/2 

= .055 with probabil i ty 1/2. 

Since the popula t ion  is stationary, and there is no inflation, 

A L  = (1 + i ) (AL + N C  - B ) .  

Fund values evolve according to 

F,+a = (1 + R t + I ) ( F ,  + A M ,  + N C  - B ) .  

Subtract ing this equat ion from the previous one, we obta in  a recurrence 

relation for the unfunded liability: 

UL,+, = AL - F,+, 

-- (I + R,+x)(AL + N C  - B)  - (I + R,+,)(F, + N C  - B)  

- (1 + R , + I ) A M ,  - (R ,+ ,  - i ) (AL + N C  - B )  

= (1 + R,+I  ) ( v n ,  - A M , )  - (R ,+I  - i ) v A L  

-- (1 + R , + a ) ( U L ,  - A M , )  - v A L A R , + ~  

where AR,+I  = Rt+l - i .  Assume that  the gains/losses amort iza t ion 

payment  A M ,  is the excess of the unfunded liability over 10% of A L ,  di- 

vided by 5: 

A M ,  = .20(UL, - . I O A L ) ,  

= 0 ,  

= .20(UL, + .10AL), 

U L ,  > . I O A L  

[UL,[ < .IOAL 

U L ,  < - . I O A L .  
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First ,  suppose  IULol < .IOAL, i.e. tha t  the s y s t e m  is initially inside 

the  corr idor .  T h e n  ULt  will sooner  or  later  drift ou t  of  the  corr idor .  One 

possibi l i ty  is t h a t  ULt >_ . IOAL for some  t _> 1. Let us see w h a t  h a p p e n s  at 

t ime  t + 1: wi th  probabi l i ty  1/2,  R t+ l  = .065 and  

UL,+I = 1.065[UL~ - .20(ULt  - . 1 0 A L ) ] -  vAL(.O05) 

= 1 . 0 6 5 . . 8 0 U L t  ÷ 1 . 0 6 5 . . 0 2 A L  - .O05vAL 

>_ 1.065- .80 • . IOAL -t- 1 . 0 6 5 . . 0 2 A L  - .O05AL/1.06 

= .1018AL. 

~Vith p robab i l i ty  1/2,  R t+ l  = .055 a nd  

UL,+] = 1.055[UL, - .20(UL,  - .10AL)] + vAL( .005)  

_> 1 . 0 5 5 . . 8 0 . . I O A L  + 1 . 0 5 5 . . 0 2 A L  + .005AL/1 .06  

= . l l 0 2 A L .  

Thus ,  once U L  is above IO%AL,  it can  never b e c o m e  smaller  t h a n  t h a t  

a m o u n t  again.  

The  o the r  possibil i ty is t h a t  for some t > 1, ULt g - . I O A L .  T h e n  wi th  

p robab i l i ty  1 /2  

ULt+I = 1.065[ULt - . 2 0 ( U L ,  + .10AL)] - vAL(.O05) 

= 1 . 0 6 5 . . 8 0 U L t  - 1 . 0 6 5 - . 0 2 A L -  .005AL/1 .06  

< - . l l l 2 A L  

o r  

UL,+~ = 1.055[UL~ - .20(UL,  + .10AL)] + vAL(.O05) 

= 1.055- .80ULt - 1.055 • .02AL + .005AL/1 .06  

< - . 1 0 0 8 A L .  
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The  same phenomenon is seen to take place: if the surplus ever exceeds 

IO%AL, it can never get smaller than tha t  amount  again. 

It can be shown that  there is a limit distribution for UL~ (and therefore 

AMt),  whatever  the initial state of the system. If the system starts  in the 

region {UL >_ .10AL}, then the limit distribution is concentra ted on that  

region, since entry  into the corridor is impossible. The  existence of a limit 

distr ibution is a consequence of 

E(1  - .20)(1 + Rt+, )  < 1 

(loosely speaking, this means  that  more  than interest on UL - . I O A L  is 

fed back into the system). The  si tuation is identical if ULo < - . IOAL, 

with a limit distr ibution concentra ted on the region {UL <_ - . 10AL} .  If 

ULo is inside the corridor, then the limit distribution depends on which 

threshold (+.  I OAL or - . 1 0 A L )  is eventually reached. There  is no ergodicity; 

for example,  the empirical mean 

T 
1 

UL~ = -~ E U L ,  
t = l  

will converge to the theoretical average of one or the other limit distribution. 

These values are 

UL + = 1.06 [U--L + - .20(U--L ~ - .10AL)] 

=~ UL +o~ = 1 .06- .02AL/(1  - 1.06. .80)  

= .  1395AL 

(for the distr ibution on (.10AL, co)) and 

UL o~ = 1.06[UL oo - .20(UL ~ + .10AL)] 

:::v UL ~ = - 1 . 0 6 . . 0 2 A L l ( 1  - 1.06-.80) 

= - .  1395AL 
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(for the distribution on ( -oo , - .10AL)) .  

Could the same thing happen with the model described in Section 1.47 

The problem has to be studied, if the results of Chapter 3 are to be believed. 

2.2. Some def ini t ions ,  and  a t h e o r e m  

A stochastic process is a collection of random variables. In the present 

context, stochastic processes are indexed by the non-negative integers, that 

is to say there is one random variable for each integer 0, 1,2, . . . .  Some of 

the stochastic processes encountered in the following sections take values in 

R 2 or R 3, that is to say to each integer there corresponds a random vector 

in two or three dimensions. The distribution of a random variable X is that 

function 

rex(A)  = P ( X  e A) 

which associates to a set A the probability that X lies in A. In some cases 

a stochastic process (X] ,X2 , . . . )  has a lirni~ distribution, i.e. a distribution 

rn such that 

re(A) = lira P(X ,  • A) 
t ~ O 0  

for all relevant sets A. This does not mean that lim,_oo X, exists. Take a 

simple exa~mple: call Xt the result of throwing a die for the t th time. Then 

X, has no limit: each X, is completely unpredictable from past values. But 

the (X,) do have a limit distribution, simply the distribution common to 

all of them. Something similar happens when we simulate pension funds. 

The distribution of, say, total contributions (in real terms) may approach a 

particular distribution as time increases, though in any one simulation total 

contributions continue to fluctuate indefinitely. 
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A stochastic process is said to possess the Markov property, or to be 

markoviau, if its movement from time t to t ime t + 1 depends only on its 

position at t ime t, and not on its previous positions at times t - 1,t - 2 , . . . .  

An example is the random walk 

X t  = ex + . . .  + et 

where ( e l , e 2 , . . . )  are independent.  Here P(Xt+I  E A I X t  E B t , . . . , X 1  E 

B1) = P(Xt+I  E A [ X t  E Bt)  for all sets A, B1 , . . .  ,B t .  What  happens 

before t ime t has no effect on the transition from time t to time t + 1. 

A stochastic processes ( X a , X 2 , . . . )  is stationary if the distribution of 

any vector 

(X, , , . . . ,  Xt. ) 

is invariant under translation, tha t  is to say if it is the same as tha t  of 

(X~,+~,... ,X,.+h) 

for any h. 

The process (X t )  representing geometric discount rates (Section 1.4) 

satisfies 

X t + l  - -  H X  -~- A(Xt  -- H X )  "4- B"  Vt+l 

where A = .9 and (Vt) is an i.i.d, sequence of N(0, 1) variables. This process 

is markovian, since the transition from Xt = x to Xt+l depends only on x 

and Vt+x, which are independent of ( ( X , , V , ) , s  < t -  1). H we set X0 = z0 

(fixed), then the process X is not stationary. Nevertheless, it is known that  

if Xo "~ N ( H X ,  B2/(1 - A 2 ) )  and Xo is independent of V1, V2,. . . ,  then X 

is stationary. This m a y  intuitively be explained as follows: the distribu- 

tion N ( H X ,  B 2 / ( 1 -  A2)) is the limit distribution obtained for Xt  as t ~ ~ ,  
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whatever X0 = x0. K we give the initial condition X0 the limit distribution, 

then X1 can only reproduce that  distribution, and so on for X2, X a , . . . .  

On the contrary, the process Y representing geometric rates of return is 

no~ markovian. Recall that 

Yt+l = H Y  + D(Xt+I - H X )  + G . Wt+l. 

Thus Y*+I depends on X,+a and Wt+l. The variable I¥,+1 is independent 

"the past" (i.e. of }'*-1, }%-2,... ) but X,+I is not (since it depends on Xt, 

and Xt and }"t are dependent). 

(X,) is markovian, (}'~) is not (because of its dependence on (Xt)), but 

ihe two processes considered jointl v form a fwo-dimenstonaI marJcov process. 

Consider Z, = (X,, }~)T. (N.B. "(a, b) T'' denotes the transpose of the vector 

(a, b), that is to say the column vector with elements a and b.) Then 

z ,+,  = ( A)+' ( n x  + A(X, - n X )  + B . V,+, 
},+, ) = \ H Y  + D(X,+, - H X ) + G .  I45+, ) 

) = H Y  + D[(X, + B .  E+x] + G.  W,+I 

= g(Zt, V~+I, ~+1) .  

The variables I'~+a and 14~+1 are independent of the past (i.e. of Z,-x, Zt-2, 

• .. ). Thus the transition from Zt to Zt+l is independent of Zt-1, Z , -2 , . .  •, 

and (Zt) is markovian. 

The technique used above (looking at one variable as a component of a 

higher dimensional variable with "better" properties) is called embedding. It 

will be used to prove the ergodicity of (U/ILt) and (Et). 

Markov processes indexed by the integers are called Markov chains. The 

theorem given below concerns the ergodicity of certain types of Maxkov 
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chains. A few more definitions are required first. Th e  transition law (at 

t ime t) of a Markov chain (Mr) is the funct ion 

Qt(rn, A) = Prob(M,+ l  e A given Mt = m) 

= P ( M , + 1 6 A [ M , = m )  

where A is a subset of the space in which (Me) takes values (this space will 

be denoted  by .k4). \¥e will only consider Mazkov chains with the same 

t ransi t ion law at each step; these chains are called time-homogeneous. Let 

~: be a a-finite measure on 2*4. (Mr) is said to be ~-irreducible if, whenever 

9:(A) > 0, for every rn 6 fizf there is t > 0 such that  

P(Mt 6 A ] Mo = m) > O. 

The only case considered here is when ~0 is Lebesgue measure on the whole 

d-dimensional space lie; irreducibili ty then means tha t  any s ta te  m'  can be 

reached from any other  state rn in a finite number  of steps. The  last technical 

definition is the strong continuity of a transit ion law. Q is said to be strongly 

continuous if the  function 

z ~ q ( z ,  A) 

is continuous for each subset A of 21z/. 

The  next  theorem is taken from Tweedie (1975), Section 5. 

THEOREM. Suppose (Mr) is a time-homogeneous, go.irreducible Markov 

chain taking values in a finite-dimensional Banach space .It4, with strongly 

continuous transition law Q ( m , A ) .  Let [l" II denote the on a,,d 

h(rn) = E ( [ [ M , + I [ I -  HA/t[[ [ M, = m)  
P 

= ] q ( m ,  dm')l]rn'[[- ilmll J 
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Then (]tit) is ergodic if  there ezist strictly positive constants a and b such 

that 

(i) h (m)  is uniformly bounded if I1~11 -< a, .nd  

(ii) h(m) < - b  for all m such that Ilmll > - .  

This theorem can be interpreted as follows: a Markov chain is ergodic 

if it "drifts" consistently back to the "center" when it takes values far from 

it. (N.B.  The norm ]]roll represents the distance from the origin to m.) The 

following examples illustrate the meaning and application of the theorem. In 

all examples (et) is a sequence of i.i.d, normal variables with mean p and 

variance c~ 2. 

EzampIe 1. T h e  random walk 

St = el + . .. + et, t >__ l 

is a Markov chain. Given St = s, St+l may take any value in I t ,  since the 

variable ~t+l = St+l - S t  has a continuous distribution with a positive density 

on ( -oc ,  oc); (St) is thus irreducible with respect to Lebesgue measure. The 

transition law is normal and thus strongly continuous. Let us try to apply 

the theorem to (St). We obtain 

h(~) = E ( IS ,+ , I -  IS, I [ S, = ~ )=  EIs + e , + , l -  I~1. 

There is no a > 0, b > 0 such that  h(s)  <_ - b  if ]s[ > a. In fact it is easy to 

see that  

l i ra E I s  + ~ ,+xl  - Isl = o. Isl--o¢ 

This is consistent with the fact that  (St) does not at tain an "equilibrium" 

distribution as t increases, as was pointed out earlier. 
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Ezample 2. Consider the autoregressive process 

Xt+l = aNt  + et+l, t >_ 1, 

with ]a I < 1. Irreducibility and strong continuity are obtained as in the 

previous example. Here 

h(z )  = E ( l X t + x l -  IX, l ] X ,  = z)  

= E l ,~z  + e , + , l -  I~1 

_< E(Io, Ilzl + le,+~l) - I z I  

The conditions in the theorem are satisfied, since ( l a l -  x)lzl --+ - o ¢  as 

Izl ~ o¢. We conclude that  (X~) is ergodic. Intuitively, the fact tha t  lal < 1 

means tha t  Xt  is pulled back towards the origin, unlike the process St in 

Example 1. (N.B. Example 1 is obtained by setting a = 1.) 

Ezample $. Consider the "autoregressive process with autoregressive noise" 

(]~): 

Y , + 1 = 5 1 1 , + X , + 1  , l a l < l  

X , + a = ~ X t + e , + l  , I ~ 1 < 1  

is not markovian, but the vector Mt = ( ~ , X t )  T is. The space Ad is 

now R 2. Irreducibility and strong continuity are easily verified. Given Mt = 

(V, z) T, the transit ion from Mt to Mt+l  can be represented as 

\ mx+et+l  ./ 

It  is bet ter  not  to use the ordinary euclidean norm H(V, z)]], = (V2 + z2)~/~, 

but  rather  

II(v,x)ll = Ivl + dlxl 
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where d is a strictly positive constant such that (1 + d)Ia] < d (take any 

d > [al/(1 - ]hi)). We then get 

h(u, ~) < (1~1- 1)lvl + [(1 + d ) l o l -  dlIzt + (1 + d)E I ~,+,1, 

The conditions of the theorem are satisfied, and (Mr) is ergodic. This also 

proves the ergodicity of (}]) since Yt is a function of Mt (namely the projec- 

tion (y, z) , y). 

Ezample g. Consider a modification of Example 3: 

Y,+, = ~ 5  + ~ x , + ,  I~1 < 1 

X,+I = aY, + ¢,+i, ]~1 < I. 

The noise is now the exponential of an autoregressive process. Intuitively 

(Yt) should once again be ergodic, since basically the same si tuation prevails: 

}~ is brought back towards the origin by the constant/3,  and the noise added 

reaches an equilibrium distribution itself (since lal < 1). However, using the 

norm H' ]1 of the previous example, we get 

h(~, ~) ~ (1~1 - X)lyt + d([~l - 1)Ix[ + dEl¢,+~ I + e ~ * E e " + ' .  

It cannot be said that  h(y, x) < - b  for all (y, x) such that  [[(y, x)II is greater 

than some a > 0. This is because e az is unbounded as Ix I increases (unless 

a equals 0). The theorem given can apparently not be used to prove the 

ergodicity of (Yt) (some clever trick might do it, but  the author  was unable 

to find such a trick). (Yt) is nevertheless ergodic. This is proved by noting 

that  

Y, = e X, + B e  x ' - ~  + . . .  + ~ t - l e x '  
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has a limit distribution, since [/3[ < 1 and (Xt)  itself has a limit distribution; 

see Brandt  (1986) or Dufresne (1991, Section 3) for more details. 

The above difficulty will surface once more in Section 2.3 and 2.4. Es- 

sentially the difficulty here is that Ee "z+''+l is unbounded as a function of 

"the present"; in the pension model the same will apply to the average gain 

or loss arising in one year. 

Ezample 5. Now consider an autoregressive process with "thresholds": 

Xt+l = clr(Xt)X, -4-6t+1 

where 

~(=)=,~ if I=1>1, I,~1<1 

=/3 if I=1<1. 

The constant  i3 does not have to be smaller than 1 in absolute value. Here 

Xt  drifts back towards the origin, but  only when it is outside the "corridor" 

[--1, 1]. Vv'e find 

h ( x ) ~ < ( l ~ t - a ) [ = l + E l ~ , + l l ,  if [ z [ > l ,  

and conclude that  (X,)  is ergodic. 

Ezample 6. Consider a pension funding model with a s tat ionary population, 

no inflation and constant valuation rate of interest i. The earned rates of 

return on assets (Rt) are i.i.d, with a lognormal distribution (i.e. 1 + Rt = 

exp Et). Then (see Section 2.1) 

ULt+a = (1 + Rt+I)(ULt - AMt)  - vAL  ARt+I 
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where UL is the unfunded liability, AM is the special payment  towards 

amort izat ion of UL and ARt+I = Rt+] - i. Suppose 

AM, = k ULt 

(this was called "proport ional  control" in Chapter  1). Then,  given UL, = u, 

ULt+I = (1 + Rt+l)(1 - k ) u -  vAL ARt+I 

:=> h(u) = El(1 + R,+I)(1 - k)u - vALAR~+]I- [u I 

< [E(1 + Rt+x)(1 - k) - 1]lul + vZL.  EIAR,+xl .  

A sufficient condition for the ergodicity of (ULt) is therefore 

E(1 + R , ) ( 1  - k) < 1 

o r  

k > 1 - 1/E(1 + R,) 

= 1 - exp(- /~  -- 0"2/2) 

if 1 + Rt .~ l o g N ( # ,  a2). It can be shown that  if k < 1 - l / E ( 1  + R,) ,  then 

(UL~) does not have a limit distribution. 

The  theorem requires the distribution of Rt to be continuous and positive 

over a sufficiently wide interval (this is to satisfy irreducibil i ty and strong 

continuity).  In this example, however, other  more direct me thods  can be 

used to show that  (ULt) is ergodic as soon as k > 1 - l / E ( 1  +Rt), whatever  

the distr ibution of Rt. The  next  example is different in this respect .  

Example 7. Consider the same model, but  let 

A M t = k ( U L ~ - C ) ,  if UL~>C 

=o,  if [UL,[ <_ C 

= k(ULt + C), if ULt < - C  
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for  some C > 0. This generalizes the example given in the la t ter  part  of 

Section 2.1. Now assume UL~ = u; then 

(i) if u > C,  

UL,+I = (1 + Rt+l)[u  - k(u - C)] - v A L  ARt+I  

= (1 + R,+I)(1 - k)u + (1 + R , + ~ ) k C -  v A L  ARt+l ;  

(ii) if ]u] < C, 

ULt+I = (1 + Rt+l)U - v A L  ARt+l ;  

(iii) if u < - C ,  

UL~+I = (1 + Rt+1)[u - k(u "4- C)] - v A Z  AR~+1 

= (1 + Rt+l) (1  - k)u - (1 4- R t + l ) k C -  v A L  A R t + I .  

Then 

h(~) = m(IUL,+ ,  I ] UL,  = ~ ) -  M 

< [E(1 + .~,+~)(1 - k) - 1]l~,l + k C E ( 1  + R , + , )  + v A Z .  mJn.n,+,  J 

< - b  

for all u such tha t  ]u] is large enough, if E(1 + R,)(1 - ]¢) < 1. Observe 

that  this is the same condition as in the previous example,  i.e. the presence 

of the corr idor  does not change anything this far. But  (U~) may yet fail to  

be ergodic. In Section 2.1, the rates of re turn  on assets take the two values 

.0065 and .0055 with equal probability, and k = .2; thus 

E(1 + n , ) (1  - k) = 1.06(1 - . 2 O )  < 1. 
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Nevertheless (ULt) did not have a unique limit distribution. This is because 

the conditior~ of irreducibility was not satisfied. As was explicitly shown in 

Section 2.1, it is impossible for UL to move from the region (-oo,  - .10ALl 

to the region [+.10AL, +oo), or vice-versa. Thus the range space can be "re- 

duced" to three sets (namely ( -oo , - .10AL],  (- . IOAL,+.IOAL),  

[+.10AL, +co)), two of which are "closed" (i.e. cannot be escaped from). 

This particular distribution for the rates of return therefore violates one of 

the conditions of the theorem. The theorem will apply if the rates of return 

have a continuous distribution with a range sulilciently wide to allow UL to 

move (with positive probability) from any one point to any other one. 

2.3. E rgod ic i ty  of  unrecognized  losses (URL) 

The ergodicity of (URL,)  will now be proved, assuming the model de- 

scribed in Section 1.4. The population may be any stationary population, 

not necessarily the one adopted for the simulations; all the parameters are 

left unspecified, except that ]A] < 1 (to ensure ergodicity of discount rates 

and rates of return on assets) and 0 < k _< 1; it will be assumed that funding 

gains and losses are liquidated over one year, although the result would also 

hold for less rapid amortization. 

From Section 1.4, 

URL,+I = URL, + Lt+l - g(URLt,F,  V PBOt)  

where 

Lt+I = accounting loss during ( t , t  + 1) 

= PBOt+I - PBO,  + ( E L T R  - Rt+I)AL/(1 + VI)  
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g(URL,,  F, V PBO,)  = losses recognized in expense at time f + 1 

= AMt+I. 

Here F~ V PBO,  = max(Ft ,PBOt)  and 

e(u,  q) = o, if I ,1 < 

= k ( u - c q ) ,  i f u > c q  

= k(u + cq), if u < -cq.  

The consta~-xt c > 0 determines the width of the corridor (for example c = 

10% in SEAS 87), and the function g takes as inputs u (=  unrecognized 

losses) and q (=  maximum of fund and projected benefit obligation) and 

outputs  the minimum amount  to be recognized at t ime f + 1. 

As pointed out before, (URLt)  is not markovian; however, the vector 

( U R L t , X t , F t )  is a Markov chain; thus it is sufficient to prove tha t  this 

vector is ergodic in order to show that  URLt is ergodic. It is technically 

easier to deal with Ht = log Ft, instead of Ft itself. We have 

g,+j = H Y  + D[A(Xt - H X )  + B . V,+~] + G- Wt+~ + log[AL/(1 + VI)]. 

Consider the vector (Mr) = (URL,,  Xt,  Ht) T. Given M, = m = (u, x, h) T, 

we have 

M:+1 

L,÷,- ) 
= | H X  + A(z  - H X )  + B .  V~+x 

\ H Y  + D[A(z - H X )  + B . V,+1] + G.  Wt+l + log[AL/(1 + VI)] 

Here the function p(z) represents the projected benefit obligation valued at 

geometric rate z (so that  PBOt  = p(Xt)).  

74 



In Section 1.4 the variables (V,) and (Wt) had N(0,  1) distributions.  This 

is not required here. The  calculations below suppose tha t  each sequence is 

i.i.d, with E}I')] < oo, ElWtl  < oo. The  transition law of (Mr) will be 

strongly continuous if the distributions of Vt and IVt are continuous. Just  as 

in Example  7 of Section 2.2, irreducibility requires that  the ranges of these 

variables be wide enough to make it possible for URL to move (with positive 

probabil i ty)  from any one point u to any other  point u'  in a finite number  

of steps. 

The following norm will be used: 

I t - l l  = I I (= ,= ,h ) l l  = I=1 + I=1 + dlhl 

where d > 0 is such that  IAI + diD. A[ < 1. Let 

h ( m )  = E ( I I M , + , I I -  I IM ,  II J M ,  = rn).  

We have to show that  there exist strictly positive constants  a and b such 

that  h(m) is bounded for Ilmll -< a, and  h ( m )  _< - b  for II -'~11 > a. The  first 

condition clearly holds. In order  to check the second one, observe that  

- 9 ( ~ ,  q)  = ~ ,  i f  I~1 --- cq 

= ( 1 - k ) u + k c q ,  if u > c q  

= ( 1 - k ) u - k c q ,  if u < - c q .  

Since 0 < k < 1 and c > O, q > O, the foregoing imply 

tu - g(u, q ) l -  I=1 = 0, 

= - k ( l = l  - cq ) ,  

A more concise way of writing this is 

if lu] < cq 

if I~1 > cq. 

r ~ - 9(u,q)l- I~1 = - k ( l~ l -  cq)+ 
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where (z)+ is the "positive past of z" (i.e. z if positive, zero otherwise).  

Using the triangle inequali ty ( la  +/31 _< lal + 1/31) repeatedly,  we find 

h(m) <_ - k ( l u  [ - cq)+ + ([A[ + diD.  A[ - 1)[z[ - d[h[ + C(z )  

where q = e h V p(x)  and 

C(z)=E(ILt+]] [ Mt=m)+(1-A+dID.A])IHXJ+IHY[ 

+ (1 + dlDl)lB t . ElV,+a I + dlG]. Ell~+~ I + d I log[AL/(1 + VI)] 1. 

C(x)  depends on x only through the first te rm E(IL,+  11 [ M= = m). This 

term depends on x because 

E(ILt+ll l M, = m) = E[IPBO,+I - P B O ,  + ( E L T R -  R,+I) 

x A L / ( I  + V I ) I [ M ,  = m] 

= E l p ( H X  + A(x  - H X )  + B .  Vt+,) - p ( z )  

+ (1 + E L T R  - e x p { H Y  + D[A(x - H X )  

+ B .  V,+~] + G.  W=+I})AL/(1 + YI)[.  

V~rhen the possible range of Vt is ( - o c ,  q-c<)), x also has range ( - ~ ,  oc), and 

the  above expression is unbounded  as a function of x. We are then faced with 

the same problem as in Example  4 (Section 2.2). In order  to be able to use 

Tweedie 's  theorem to prove the ergodicity of (Mr),  the following assumption 

is made: there ezist.s C < oe  such that 

E(IL,+alIM, = m )  < C (,) 

for all m E R ~. This  assumption will be  discussed in the remarks below. 

The  proof  may now be completed. There  is a constant  Ca < oe such tha t  

h(m) < -&(lul- cq)+ -t- (IAI + d i D .  AI - 1)lzl - dlhl + Cx. 
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Let b > 0. There exist C2 < e¢ and C3 < oo such that  

I~1- ¢[~h v p(x)] > 62 ~ h(~) < -b ,  

Let 

Izt + dlhl > C3 =*, h(m)  < -b.  

c ~ = ~ -  sup [~hvv(~)] 
I~l+~lal<C, 

and suppose IImN > C= + C3 + C,. Then there are two possibilities: 

(1) Ixl + dlh I < C3 which implies (a) c[e a V p(z)] < C4 and (b) lut > 

C2 + C4 which in turn imply [ u [ -  c[e h Vp(z)[ > 6'2 and h(rn) < -b .  

(2) P:I + dihl _> C3 which implies h(m) < -b. 

The proof that (URL~) is ergodic is complete. 

REMARKS 1. The result appears plausible even without  assumption (*). 

In fact, the result can be so proved when there is no corridor (i.e. c = 0), 

see Brandt  (1986). Unfinished calculations also show that  the result might 

be proved for c > 0, without  (*), but only when 0 < A < 1. 

2. From a modelling point of view, there is no difficulty in accepting assump- 

tion (,).  The loss during one year depends on the increase in the P B O  and 

on the value of the fund at the end of the year. Most of us would accept that  

P B O  and F have natural  hmits e.g. the earth 's  total wealth, or the largest 

number the computer can handle. These hmits ensure that  (*) is satisfied. 

3. The reason why P B O  and F may take unlimited values under the model 

described in Chapter  1 is that  Xt (the geometric discount rate) and Yt (the 

geometric rate of return on assets) may take values in the whole interval 

( - e¢ ,  +~c). For most purposes this is not a problem, as the probability of 
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"very large" values of either X or Y is very small as long as their variances 

agree with historical observations. For instance, under the base scenario X t  

has a normal distribution with a mean value around/.t = .01 and a standard 

deviation of a = .03; the probability that a normal variable takes a value 

outside the interval (~ -5a, /~ + 5at) is less than 10 -6. In some cases, however, 

it might be appropriate to limit the possible ranges of X or Y. One simple 

way of achieving this would be to limit the possible values of the disturbances 

(Vt) and (Wt). This would be another way of making sure that ( .)  holds. 

4. Other ways of amortizing unfunded liabilities could be considered, for 

example (1) amortization payments equal to a fraction k' of UL, or (2) 

separate amortization of each annual gain/loss over a number of years. In 

those cases F~ would not be a function of R, alone, but would also depend on 

its own past. Proving ergodicity in these cases is possible by using a higher 

dimension vector. [] 

2.4. E r g o d i c i t y  o f  pens ion  expense  (E) 

We have (see Section 1.4) 

E, = B - E L T R  (F,-1 - B )  + AM,.  

Thus Et is a function of Ft-1,  P B O t - 1  and U R L t - a ,  which means that E~ 

may also be seen as a function of the vector (URLt-1, Xt-1, Hi-2 ) considered 

in Section 2.3. This automatically proves the ergodicity of (Et) under the 

assumptions made in that section. 
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CHAPTER 3 RESULTS OF SENSITMTY ANALYSIS 

3.1. M e t h o d o l o g y  

This chapter quantifies the variability of pension expense and unrecog- 

nized losses under the model described in Chapter 1. Chapter 2 has shown 

that the stochastic processes representing these amounts are ergodic, im- 

plying that their stationary distributions can be obtained from one "long" 

realization of the processes. The stationary, distributions obtained under dif- 

ferent sets of assumptions can be compared, showing the relative importance 

of each assumption. This section describes how the computer simulations 

were performed. The next section analyses in some detail the numbers ob- 

tained under the base scenario. The rest of the chapter presents the results 

of the sensitivity analysis conducted with respect to the following parame- 

ters: the variance of discount rates (Section 3.3); the variance of the rates of 

return on assets (Section 8.4); the width of the corridor (Section 3.5); and, 

finally, the fraction of losses recognized in each year (Section 3.6). 

A Fortran program was written to simulate the model described in Chap- 

ter 1. The program takes the parameters of the model as inputs and outputs 

the mean, variance as well as the frequency distributions of pension expense 

(E) and unrecognized losses (URL). Each simulation ran for one million 

periods. 
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Pseudo-random numbers (Ut) possessing a uniform distribution on inter- 

val (0, 1) were generated using the combined congruential method 

X, = 40014X,_1 (rood 2147483563) 

:}~ = 40692Y,_, (rood2147483399) 

Z, = (X, + Yt) (mod2147483563) 

with X0 = 33 and Y0 = 99. U, is then equal to Zt rescaled to (0, 1). This 

generator has period 2.3- 1018 (Bratley et al, 1987, p. 204). The normal 

variables ( I t )  and ( I~ )  were then obtained from the so-called Box-Muller 

transformation 

~'I = cos(2/rU2t) I - 2  log U~,_ 1 

Wt = sin(2rrU2,)X/-2 log U2t-]. 

REMARK. It is well known that using a linear congruential generator 

z ;+ ,  = ( , ,z;  + b) (rood m) 

in conjunction with the Box-Muller method produces very poor normal vari- 

ables (the pair of variables obtained are certainly not independent, for one 

thing). The combined congruential method used here avoids this problem. 

For more details, the reader is referred to Bratley et al (1987), pp. 204, 

223-224. [] 

3.2. Analys i s  of  results  under  t h e  base scenario 

The parameters chosen for the base scenario are as follows: 
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Arithmetic valuation rate of interest (VI) 

Expected long-term ari thmetic rate of return 

on plan assets (ELTR) 

Mean ari thmetic discount rate (EDS) 

Standard  deviation of geometric discount 

rate (VARDS1/2 ) 

Mean ari thmetic rate of return on assets (ER) 

Standard  deviation of geometric rate of 

re turn on assets (VAROR1/2) 

Correlation between geometric discount rate 

and rate  of re turn on assets (COR) 

Fraction of max(PBO, F) used 

for corridor (C) 

Fraction of excess of ]URL 1 over 

C. max( PBO, F) recognized in expense 

.02 

.02 

.01 

.03 

.02 

.05 

.60 

.10 

1/15 

Economic and actuarial  assumptions were analysed in Subsection 1.4.2. 

In all simulations the geometric discount rates (X)  and rates of return on 

assets axe generated from 

Xt+l = HX + .9(Xt - HX) + B .  Vt+l 

Y,+I = HY + D(Xt+I - HX) + G. II]+l 

where (1~) and (Wt) are two independent  i.i.d. N(0,  1) sequences, and HX, 

HY, B, D and G axe such that  EDS, VARDS, ER, VAROR and COR 

take the desired values. Under the base scenario the corridor used is the one 

prescribed by SFAS 87, i.e. +10% of max(PBO, F). When unrecognized 

losses fall outside the corridor, the excess, multiplied by 1/15, is included in 
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expense for that year. This corresponds to an average future working lifetime 

of active employees ( A F W L )  equal to 15 years. 

The pension plan (see Subsection 1.4.1) provides b% of salary per year of 

service. For convenience, b is chosen so that the total annual benefit outgo is 

equal to 15 units (in constant currency). This corresponds to setting '65 = 1 

in the formulas shown in Appendix 1.2. On the funding side, the actuarial 

liability and normal cost are valued using the projected unit credit method: 

AL(@ V I  = 2%) = 287.58 

N C ( @  V I  = 2%) = 9.361. 

If the discount rate is equal to its mean value, then 

P B O ( ~  D S C R  = 1%) = 326.58 

SC(@ D S C R  = 1%) = 11.767. 

Table 3.1 shows the frequency distributions of pension expense and un- 

recognized losses. Means and standard deviations are summarized in Table 

3.2. Figures 3.1 and 3.2 are graphic representations of the distribuitons of E 

and URL.  Observe that pension expense has a very large frequency around 

9.56; this is a consequence of the use of the corridor: if [URL,_I  [ < 10%max 

( F t - I , P B O , - 1 ) ,  then A M ,  = 0 and 

E,  = B - E L T R ( F , _ I  - B)  

which has a relatively small variance. Otherwise the data has three striking 

features: (1) the distributions have very wide ranges; (2) their variances are 

large, and (3) the distributions are skewed (i.e. not symmetrical). These 

points will be discussed in turn. 
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F R E Q U E N C Y  D I S T R I B U T I O N S  

Expense (E) 
Interval Frequency 

Unrecognized losses (URL) 

Interval Frequency 

- - O O  m O O  

1,154 33 
-13.13 -683.0 

1,930 13 
-10.74 -611.1 

5,621 38 
-8.35 -539.2 

13,931 89 
5.97 -467.3 

29,245 438 
-3.58 -395.4 

50,398 2,965 
-1.19 -323.5 

72,860 22,912 
1.19 -251.6 

90,715 90,111 
3.58 -179.7 

97,087 176,204 
5.97 -107.8 

94,365 201,577 
8.35 -36.0 

246,193 168,761 
10.74 36.0 

63,486 120,298 
13.13 107.8 

50,831 77,964 
15.52 179.7 

39,467 48,978 
17.90 251.6 

30,602 30,572 
20.29 323.5 

23,912 19,040 
22.68 395.4 

18,332 12,340 
25.06 467.3 

14,143 8,116 
27.45 539.2 

10,809 5,492 
29.84 611.1 

8,544 3,816 
32.23 683.0 

36,375 10,243 
OO OO 

Table 3.1. Frequency distributions of pension expense (E) and unrecognized 
losses (URL) under base scenario (one million iterations). Second column 
shows the number of times the variable took a value in the interval given in 
first column. 
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Variable  M e a n  S t a n d a r d  dev ia t ion  

Pension expense (E) 

Unrecognized losses (UT/L) 

Amortization payment (AM) 

Losses (L) 

Losses due to increase 

(decrease) in P B O  (LPBO)  

Losses due to return on fund (LF) 

Pension benefit obligation (PBO)  

Geometric discount rate (X) 

Geometric rate of return (Y) 

Arithmetic discount rate (DSCR)  

Arithmetic rate of return (R) 

9.558 

3.83 

0.01 

0.01 

0.00 

0.01 

377.97 

0.009504126 

0.018520661 

0.010003097 

0.019966476 

10.90 

197.94 

10.74 

100.60 

98.09 

14.38 

195.64 

0.029976002 

0.049982874 

0.030281651 

0.051009£02 

Table  3.2. Observed means and standard deviations of some of the 
variables, under base scenario (one million iterations). 

That the distributions of E and URL have wide ras~ges is easy to explain. 

The loss in year (t - 1,t) was defined in Chapter 1 as 

Lt = PBOt - PBO~_I + ( E L T R  - Rt)AL/(1 + VI) 

= (unexpected increase (decrease) in PBO)  

+ (loss or return on assets). (3.1) 

The P B O  is valued at (geometric) rate X = Iog(I+DSCR),  X having a nor- 

mal distribution. When X becomes very large, P B O  approaches zero. When 

X becomes large in magnitude but negative, P B O  increases without bounds. 

(Consider one unit discounted s years at geometric rate G, G a normal ran- 

dom variable; the discounted value is then exp(-$G). Since the possible 

values of G are ( -c~ ,  +c~), the possible values of exp( -sG)  are (0, +oc). 
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The same thing applies to PBO. )  Thus the range of P B O t  - PBOt -1  (and 

of Lt by way of consequence) is the whole real line. Unrecognized losses and 

pension expense therefore have values ranging from - o e  to +oc. 

Of course, just as very large values (positive or negative) of X have very 

low probabilities, the frequencies of very large values of E or URL are quite 

small (see Figures 3.1 and 3.2). Nevertheless the standard deviations of these 

amounts remain quite high (Table 3.1). The variances of E and U R L  are 

determined by the distribution of the process (Lt). The standard deviation 

of the second component of Lt (see Eq. (3.1) above) is 14.38 = Stdev(R) • 

287.58/1.02; that of the first component is 98.10 (see Table 3.2). Thus, the 

large variances of E and URL result mostly from the great variability of 

PBOt  - P B O t - 1 .  Rates of return on assets vary more than discount rates, 

but the fluctuations of the latter have far greater consequences than those 

of the former. 

The distributions of P B O t  and P B O t  - PBOt-1  are themselves of some 

importance. Figure 3.3 shows P B O  as a function of D S C R :  P B O  is seen to 

be a convex function of D S C R  (i.e. its second derivative is always positive). 

It follows that for any (non-degenerate) distribution for D S C R t ,  

Expected value of PBOt  > P B O  valued at expected value of D S C R t  

(from Jensen's inequality). This is clearly seen here, as E ( P B O , )  = 377.97 > 

326.58 = P B O ( ~ I % ) .  The P B O  is very sensitive to D S C R ,  as evidenced 

by its large standard deviation. The distribution of PBOt  is shown in Figure 

3.4; it is not symmetric. Nevertheless the distribution of P B O t  - P B O t - 1  

(not shown) is perfectly symmetric, as explained in Appendix 3.1. 
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The  au thor  was puzzled for some time by the skewness of the distri- 

but ions of E and U/~L. Intuitively, there are two reasons why one would 

expect  symmetr ic  distributions: (1) the distr ibution of Lt is dominated by 

that  of PBOt  - P B O t - 1 ,  which is symmetr ic  about  O, and (2) negative losses 

are t rea ted  the same way as positive ones: AMt is a symmetr ic  function of 

URLt-1.  Vfhat was more intr iguing is tha t  E and URL do not have sym- 

metric dis tr ibut ions even if the second term in Eq. (3.1) is removed. In this 

case the dis t r ibut ion of losses and the "system" itself (i.e. the way AM, is 

obta ined  from U R L , _ I )  are perfectly symmetric about  the origin, but  the 

ou tpu ts  E and URL still have significantly skewed distributions. The expla- 

nat ion was finally found: the variable P B O t - P B O t - 1  may have a symmetric  

dis tr ibut ion,  but  this cannot  be said of the process ( P B O , -  P B O , - I ,  ~ > 1). 

Details are given in Appendix  3.1. The  skewness of the distributions of E 

and URL ul t imate ly  results from the  skewness of that  of PBOt.  

The  skewness of some of the distr ibutions may  explain why URL is not  

precisely zero on average. On average pension expense is very close to the 

normal  actuarial  cost plus interest  (9.558 versus 9.361 • 1.02 = 9.548). This 

is not a coincidence, as will now be explained. Define 

LPBOt  = account ing loss on P B O  

= PBOt  - PBOt-1;  

LFt = account ing loss on F 

= ( E L T R  - Rt)(F,_1 + C,-1 - B) 

so tha t  

Lt = LPBOt  "+ LFt. 
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We find 

and 

LPBO, = PBO, - (I + DSCR,_~)(PBO,_~ + SC,_a - B) 

= (PBO, - PBO,_I) - [SC,_](I + DSCR,_a) 

+ D S C R , _ a ( P B O , _ x  - B )  - B] 

Thus 

LF,  = [(1 + E L T R )  - (1 + R,)](F,-1 + C,-1 - B) 

= F,_a + C,_I - B + E L T R ( F , _ ~  + C,-1 - B )  - F, 

= E L T R ( F , _ ~  + C,_a - B )  + (F,-1 - F,)  + Ct-a  - B.  

E, = SC,_](l + DSCR,_a) + DSCR,_~(PBO,_~ - B) 

- ELTR(F,_I - B) + AM, 

= (PBO, - PBO,_I) + (F,_I - F,) - L, + AM, 

+ (1 + ELTR)C,_~. 

Recalling that  

U R L ,  = U R L r - a  + Lt - A M ,  

we finally obtain 

(3.1) 

E ,  = ( P B O ,  - P B O , _ I )  + ( F , _ ,  - I;',) 

+ ( U R L , _ I  - U R L , )  + (1 + E L T R ) C , _ I .  (3.2) 

On average the three terms in brackets should equal zero. Given tha t  the  

valuation interest rate is equal to the earned rate of re turn  on assets, on 

average (1 4- E L T R ) C , - 1  is equal to 1.02.9.361 = 9.548. 
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REMARKS 1. We can now justify our including interest on benefits at 

two different rates in Eq (3.1). Failure to do so would have resulted in an 

extra term (DSCR,_1 - E L T R ) B  in Eq. (3.2). In our model this term is not 

zero on average, and Et would have been equal to 9.558+(.01-.02)15 = 9.408 

on average. In practice the treatment of interest on benefits is probably not 

a major concern, especially since benefits only get half a year's interest in 

most cases. 

2. Eq. (3.2) is the counterpart of Eq. (9) in Berin and Lofgren (1987). Those 

authors avoid the problem noted above by using the same symbol (0B1) to 

represent benefits with interest at rate D S C R  (in their Eq. (1)) and also at 

rate E L T R  (in their Eq. (2)), even though these two rates are in general 

different. [] 

3.3. Sens i t i v i t y  to the var iance  of  d i scoun t  r a t e s  

h is expected that the variability of pension expense would be signifi- 

cantly affected by changing the variance of discount rates (everything else 

remaining the same as in the base scenario). This is substantiated by Table 

3.3 and Figure 3.5. When the standard deviation of X ( =  log(1 + DSCR)) 

is close to zero, the standard deviation of E is close to 5.48. This is the vari- 

ability attr ibutable to the other source of gains and losses, namely returns 

on assets. As the standard deviation of X is increased, that of E increases 

more and more rapidly; the relationship appears more exponential than lin- 

ear. This can be explained by the fact that PBO is extremely sensitive to 

DSCR.  Table 3.4 shows the mean and variance of P B O  for Stdev(X) rang- 

ing from 0 to .05. The very large figures obtained for the higher values of 

Stdev(X) are caused by the higher probability of low values of DSCR,  which 
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S t d e v ( X )  S t d e v ( E )  

.0000 

.0025 

.0050 

.0075 

.0100 

.0125 

.0150 

.0175 

.0200 

.0225 

.0250 

.0275 

.0300 

.0325 

.0350 

.0375 

.0400 

.0425 

.0450 

.0475 

.0500 

5.480 

5.531 

5.625 

5.761 

5.944 

6.181 

6.483 

6.866 

7.348 

7.953 

8.716 

9.679 

10.902 

12.466 

14.487 

17.125 

20.618 

25.308 

31.707 

40.575 

53.054 

Tab le  3.3. Standard deviation of expense (Stdev(E)) as a function of the 

standard deviation of geometric discount rates (Stdev(X)). 
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result in a very large PBO (see Figure 3.3). The mean value is also affected; 

this is a consequence of the convexity of PBO as a function of DSCR. 

S t d e v ( X )  M e a n  S t a n d a r d  d e v i a t i o n  

.00 

.01 

.02 

.03 

.04 

.05 

326.58 

331.43 

347.16 

377.97 

433.96 

539.89 

0.00 

45.42 

102.87 

195.64 

394.09 

986.06 

Tab le  3.4. Mean and standard deviation of pension benefit obligation 
(PBO) as functions of the standard deviation of geometric discount 
rates (Stdev(X)).  The mean discount rate (EDS) remains equal to 
.02. 

3.4 .  S e n s i t i v i t y  to  t h e  v a r i a n c e  o f  r a t e s  o f  r e t u r n  o n  a s s e t s  

Table 3.5 and Figure 3.6 show the standard deviations of pension expense 

for standard deviations of rates of return on assets ranging from 0 to .09. 

When Stdev(Y) = 0, Stdev(E) ~- 8.82, which thus represents the variability 

attributable to discount rate fluctuations only. (N.B. This value, together 

with the variability attributable to rates of return only, 5.48, add up to more 

than Stdev(E) under the base scenario, i.e. 10.902. This is because the 

variables LPBOt and LFt are dependent.) 

It is plain that Stdev(Y) has a much smaller influence on Stdev(E) than 

Stdev(X) has. This is what should be expected, since LPBOt has a much 

greater variability than LFt. 
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S t d e v ( Y )  S t d e v ( E )  

.000 

.005 

.010 

.015 

.020 

.025 

.030 

.035 

.040 

.045 

.050 

.055 

.060 

.065 

.070 

.075 

.080 

.085 

.090 

8.82 

8.87 

8.96 

9.09 

9.25 

9.45 

9.69 

9.95 

10.25 

10.56 

10.90 

11.26 

11.64 

12.03 

12.44 

12.87 

13.30 

13.75 

14.21 

Table  3.5. Standard deviation of expense (Stdev(E)) as a function of the 

standard deviation of geometric rates of return on assets (Stdev(Y)). 
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3.5. Sens i t iv i ty  to  the width  o f  the corridor 

Table 3.6 and Figure 3.7 show the dependence of Stdev(E) on the width 

of the corridor, other things equal. As expected, pension expense fluctuates 

less when the corridor is wider. The dependence is perhaps not as dramatic 

as one might have thought. For instance, if there is no corridor Stdev (E) is 

equal to 12.61; when a 10% corridor is allowed Stdev (E)  becomes 10.30, a 

decrease of less than 15%. 

P e r c e n t a g e  S t d e v ( E )  

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

12.61 

11.73 

10.90 

10.13 

9.42 

8.77 

8.16 

7.60 

7.09 

6.62 

6.20 

Table 3.6. Standard deviation of expense (Stdev(E)) as a function 
of percentage used for corridor 

3.6. Sens i t iv i ty  to  the fraction o f  losses recognized w h e n  URL is 

outs ide  corridor 

The fraction k, representing the reciprocal of the average future work- 

ing hfetime of active members, has a significant effect on the variability of 
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FIGURE 3.7. Standard deviation of pension expense as a function of 
the percentage used for the corridor 
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pension expense. This is shown in Table 3.7 and Figure 3.8. 

When k = 0, there is no amort izat ion of losses (AMt  = 0) and 

Et ---- S C t - l ( 1  -4- D S C R t _ I )  + D S C R t _ ] ( P B O t - ~  - B)  

- E L T R ( F t _ ~  - B )  

= B - E L T R ( F , _ ,  - B )  

so tha t  

Stdev(Et)  = E L T R .  Stdev(Ft_ l )  

= .02. S tdev(Rt_ l ) .  A L / ( 1  + VI)  

= .02-.051 -287.58/1.02 

= .288  

(Notice tha t  U R L  has no hmit  distribution in this case.) 

Staler(E) is an increasing function of k. The dependence is nearly linear 

(Figure 3.8). This is not surprising. In Section 1.3, for the system 

X t + l  = X t  -i t- Ct + Dr+1 

Ct = - k X t  

where (Dr) are independent adn identically (i.i.d.) 

found 

disturbances,  we had 

Vat  C = 1 k---'k a2' a s = Vat Dt 

f k "~ 1/2 
=~ Stdev(C)  = a k2---~---~j . 

The graph of this function is very similar to Figure 3.8. In fact the approxi- 

mat ion  
k NL 112 

s,dov<E/ (A + 
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k = I / A F W L  A F W L  S t d e v ( E )  

0.000 

0.001 

0.005 

0.010 

0.020 

0.025 

0.033 

0.040 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

0.333 

0.350 

O.4OO 

0.450 

0.500 

0.550 
0.600 

0.650 

O.70O 

0.750 

0.800 

0.850 

0.900 

0.950 
1.000 

1000.00 

200.00 

100.00 

50.00 

40.00 

30.00 

25.00 

20.00 

10.00 

6.67 

5.00 

4.00 

3.33 

3.00 

2.86 

2.50 

2.22 
2.00 

1.82 
1.67 

1.54 

1.43 

1.33 

1.25 

1.18 

1.11 

1.05 
1.00 

0.288 

0.956 

2.18 
3.22 

4.89 

5.64 

6.81 

7.69 

8.94 

14.44 

19.13 

23.32 

27.17 

30.76 

33.05 

34.17 

37.43 

40.59 
43.67 

46.69 

49.68 

52.64 

55.58 

58.52 

61.48 

64.46 

67.46 

70.51 

73.62 

Table  3.7. Standard deviation of expense (Stdev(E)), as a function of 

amortization period allowed (AWFL), or its reciprocal (k). 
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is relat ively good for well chosen constants  A and B.  This shows tha t  the 

qual i ta t ive response of the system is not  total ly different when dis turbances 

are dependen t  and a corridor is used, compared to the  case of i.i.d, distur- 

bances and no corridor.  

Regarding the corridor approach to gains/losses amort izat ion,  one inter- 

esting quest ion is the  following: given tha t  Staler(E)  = 10.90 when k = 1/15 

and there is a 10% corridor, for what  k ~ do we get the same value for 

S tdev (E) ,  bu t  when there is n o  corridor? In this case we find k '  = .0545 = 

1/18.35. In o ther  words, as fax as variability of pension expense is concerned,  

extending the amort izat ion per iod ( A F W L )  from 15 to  18.35 years has the 

same effect as allowing a 10% corridor.  
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A p p e n d i x  3.1. T h e  skewness  o f  t h e  d i s t r i bu t i ons  of  p e n s i o n  ex- 

pense  a n d  un recogn ized  losses 

The corridor approach to gains/losses amortization operates in a sym- 

metric fashion, and the gains or losses themselves have a distribution which 

is roughly symmetric about 0. So, why do E and U R L  have significantly 

skewed distributions? The answer to this question follows. 

Under the base scenario, the major component of the loss Lt is 

L P B O ,  = P B O t  - P B O ~ - I .  

When the discount rate is a stationary normal process, as is the case in the 

present model, L P B O t  will always have a symmetric distribution. This can 

be proved as follows. Let 

p ( x )  = P B O  valued at geometric rate x 

Y ( ~ ,  =2) = p(=~) - p(=2) 

Xt = geometric discount rate at time t 

so that 

P B O t  = p ( X , )  

L P B O ,  = p ( X , )  - p ( X , - 1 )  

= . f (X, ,  X , - 1 ) .  

The notation U =d V ("U equals V in distribution") will mean that the 

variable U and V have the same distribution. K (Xt) is a stationary normal 

process, then 

(x,, x,_,) ~ (x,_~,x,). 
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This is because means and covariances uniquely determine normal distribu- 

tions. Thus 

- L P B O ,  = p(X,_~) - p (X, )  

= f ( X , - i  ,X,) 

f ( X , ,  X,_])  

= LPBO, 

i.e. P B O t - P B O , _ x  and PBO,_a - P B O t  have the same distribution, which 

therefore has to be symmetric about 0. 

The equations describing the evolution of (Et) and (URLt)  are 

E, = B - ELTR(Ft_ I  - B)  + AM, (3.3) 

URL, = URL,_a + L, - AM, (3.4) 

AM, = [excess of IURL~_xl over 10% 

× max(F,_1, PBO, -x ] .  sign(URL,_l)  (3.5) 

L, = P B O ,  - PBO,_~ + ( E L T R  - R t )AL/ (1  + VI )  (3.6) 

This system lacks symmetry in the following respects: (1) the term E L T R .  

F~_ 1 in (3.3); (2) max(F~_l ,PBOt_ l )  and URL~_I are dependent; (3) the 

distribution of E L T R  - Rt in (3.6) is not symmetric about 0. These facts 

appear relatively unimportant; indeed, E and URL are still skewed even if 

these aspects are changed to make the system completely symmetric (e.g. 

remove term - E L T R .  Ft-a in (3.3), etc). The same holds even when the 

corridor is removed. The only way the author found (by trial and error) of 

making E and URL symmetric was to replace PBOt by a normal variable 

in (3.6). This is what led to the following interpretation of the problem. 
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Consider  a sys tem 

Us = a U , - I  + Vt, [al < 1 

Yt  ~- eS ~ e t - - I  

where (e , )  is a sequence of i.i.d, r andom variables with mean  0 and variance 

1. This is a simpler sys tem than  the one described above, bu t  bo th  have one 

essential feature  in common: the disturbances (11",) are dependent  and have 

a symmetr ic  distribution. 

Suppose (Us) is s ta t ionary  (this is possible because la[ < 1). Let us 

calculate the first and third moments  of U,. Clearly EUt = O. Thus  (U,) 

cannot  be  symmetr ic  if we find tha t  EU~ ~ O. We have 

EU} = a3EUL, + 3a2EUL,V, + 3aEU,_,V} + EV} 
(I) (II) (III) 

(1) zuL,v, = m(~"u~,_. + 2~u,_.v,_, + v,t,)(~, - ~,_~) 

= - 2 a E U , _ 2 V , _ I  e,_,  - EV,2_,e,_, 
( I . )  (Ib) 

(Ia) EUs_2V~_le ,_ ]  = E U , _ ~ ( e , _ I  - es-2 ) e , - i  

= 0  

(r~) 2 E V , _ , ~ , _ I  = E ( d _ ,  - 2 e , _ l e , _ .  + d - . ) e , - 1  

= E e l _ ,  = Ee ,  3 

...) E U L ,  v, = - E ~  ~, 
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(n) E u , _ , v }  = EU,_~ ( : ,  - 2~,~,_, + ~;_,) 
= E U t _ l e ~ _  1 

= E ( ~ U , _ ~  + v,_,)~=,_, 

= EV,_, ~2,_~ 

= E(~,_, - e,_~):,_~ 

= E~_, = Ee ~, 

(III) EV} = E ( e ,  - ~ , _ 1 )  3 = 0 

...) 

In these calculation we have repeatedly used the independence assump- 

tion regarding (et), and assumed that Elet[ 3 < oo. If (Ut) is stationary, we 

therefore obtain 

E U  ~, = 3 a ( 1  - a ) E : , / ( 1  - , : ) .  

Thus Ut cannot be symmetric if et is not itself so. (However it can be shown 

that the skewness coefficient of U, will always be less than that of et.) 

Another way of viewing the problem is as follows. We have 

U, = Vt + aV,_, + a2V~_2 + . - .  

= f ( ~ )  

where ~ = (Vt, V t - l , . . .  ) and f is the function from R °° to R defined as 

(~,~,...), , f(~,,~,...) = ~'-~. 
j=l 

107 



Ut is symmetr ic  abou t  0 if, and only if, - U t  _a Ut. Here 

- U t  = - f ( ~ )  = f ( - ~ )  

Thus,  a sufficient condit ion for Ut to  have a symmetr ic  dis t r ibut ion is tha t  

-17] d 13~. (Open question: is the condition also necessary?)  In genera] this 

is not the case here, since 

---- (et - e t - l , e t - 1  - e t - 2 , . . .  ) 

- ( ]  = (et-a  - e t , e t -2  - e t - 2 , . . .  ) 

do not have the same distr ibution,  except in some special cases (e.g. if et 

has a symmetr ic  dis t r ibut ion to s tar t  with).  

The  above arguments  break down when there  is a corridor,  since (1) we 

can no longer calculate EU~ explicitly, and (2) we can not express Ut as f(lYt) 

for  some funct ion f : R °° ~ R. But  it intuitively makes sense to believe tha t  

the  same s i tuat ion prevails. 
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C H A P T E R  4 C O N C L U S I O N S  

This chapter summarizes and complements the paper. The first section 

states the main conclusions; Section 4.2 discusses the practical utility of the 

methodology presented; Section 4.3 describes how the model is to be used; 

Section 4.4 studies an alternative scenario, in an attempt to see whether the 

conclusions reached in Chapter 3 hold more generally; Section 4.5 discusses 

two points which were raised in relation to the model used in the paper: (1) 

why negative discount rates arise, and (2) the exact methodology used to 

perform the simulations; finally, Section 4.6 provides some ideas for future 

research. 

4.1. M a i n  conc lus ions  

This paper focused primarily on two aspects of SFAS 87: 

(1) the consequences of the variability of the discount rate, and 

(2) the minimum requirement for amortization of gains and losses. 

The model adopted includes a stationary population and stochastic pro- 

cesses representing discount rates arid rates of return on assets. Pension 

expense is therefore also a stochastic process, which can be studied mathe- 

matically or with the help of computer simulations. 

The four main conclusions of the paper are listed below. The first and 

second are mathematical results which hold in all cases. The third conclusion 

is based on computer simulations and, therefore, may not hold with the same 

generality as the previous two. At the time of writing the last one is still a 

109 



conjecture. 

1. When the plan population is mature, the quantity "service cost plus 

interest on PBO" is not sensitive to variations in the discount rate. This is 

proved at the end of Section 1.4. 

2. Given the stochastic processes assumed for discount rates and rates 

of return on assets, pension expense and unrecognized losses have a limit (or 

"steady-state") distribution. This is proved mathematically in Chapter 2. 

Observe that it is essential that appropriate amortization rules be applied, 

for both funding and accounting purposes. One case where this requirement 

is not met is described in Section 4.4. 

3. It is not possible to calculate explicitly the limit distribution (or even 

the moments) of pension expense. But this can be done using simulations. A 

"base scenario" was chosen, specifying the behaviour of discount rates, rates 

of return on assets, etc. (see Section 1.4). A sensitivity analysis was then 

conducted with respect to four factors: 

(a) variance of discount rates; 

(b) variance of rates of return on assets; 

(c) width of corridor; 

(d) fraction of unrecognized losses included in expense when outside the 

corridor. 

(For example, in case (a), the limit distribution of pension expense was 

computed assuming that discount rates have variance 0, then .0001, and so 

on, yielding the variance of pension expense for variances of discount rates 

in the interval [0, .0025]. The results show how important the first factor is 

in determining the volatility of pension expense. The same was done for the 

other factors, changing only one of them at a time.) 
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The first factor was by far the most important determinant of the vari- 

ability of pension expense. Even moderate fluctuations in the discount rate 

produce sizeable fluctuations in expense. The sensitivity of the variance of 

expense with respect to the variance of discount rates is very high. The sec- 

ond and third factors were not very important by comparison. In the case 

of rates of return on assets this is easily understood, since gains/losses on 

return on assets are of smaller magnitude than those caused by variations 

of the discount rate. As to the width of the corridor, it was observed that 

the 10% corridor allowed under SFAS 87 decreased the standard deviation of 

expense by 14%, when compared with the case where no corridor is allowed. 

The same thing could be achieved by slightly increasing the amortization 

period permitted (the "average future working lifetime" of active employees 

under SFAS 87). The last factor turned out to be relatively important in 

influencing the variability of expense. (This makes sense intuitively when the 

pension accounting "system" is interpreted from the point of view of control 

theory, as was done in Chapter 1.) 

The results of the sensitivity analysis relate only to the base scenario 

chosen, and, strictly speaking, it is impossible to predict what the results 

would be if a different base scenario were used. Other simulation results are 

presented in Section 4.4 

4. As was pointed out above, allowing a corridor based on 10% of the 

maximum of the pension benefit obligation and fund value does not drastic- 

ally reduce the variability of pension expense. One possible explanation is 

that  gains and losses do not "cancel over time", as some apparently believe; 

on the contrary, it appears that their cumulative sum eventually becomes 

arbitrarily large, even when actuarial assumptions are "correct on average". 
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This claim has been shown to be correct when successive gains and losses axe 

not correlated. (This was discussed in two talks recently given by the author, 

one at the International Congress of Actuaries (June 1992) and the other at 

the most recent Actuarial Research Conference (August 1992). A written 

account of these talks will appear in ARCH.) Under the model described in 

this paper gains and losses are correlated, mad a mathematical proof has yet 

to be found. The author is currently studying this problem. 

4.2. Practical utility of the methodology presented 

The paper describes how the limit distribution of pension expense can 

be computed axed then used to study the effects of some of the accounting 

rules contained in SFAS 87. It is stated in the Preface that the methodology 

may be useful in two situations: 

(a) when making accounting or funding decisions concerning a specific 

pension plan, and 

(b) when assessing the effects of new funding or accounting rules on 

pension plans at large. 

In case (a), a shorter horizon would usually be appropriate, say 10 or 20 

years. The variability of pension expense may be obtained for each future 

year within that period, for any given funding and/or accounting strategy. 

This "methodology" is not new to actuaries, since they have been performing 

pension plan simulations for a long time. The author has done a number 

of short-term simulations using the model population and base scenario. It 

appeared that the distributions of pension expense, unrecognized losses, etc., 

at duration 20 were not very different from the limit distributions, though 

initial conditions still had some importance. It is thus plausible that in some 
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specific cases an infinite horizon may be relevant, for instance if the plan 

population is initially mature and is supposed to remain so for some time. 

The methodology should be more useful in situation (b). The effects 

of alternative accounting (or funding) rules can be assessed by comparing 

the hmit distributions obtained. The fact that these limit distributions are 

independent of initial conditions now becomes an advantage. The procedure 

could be applied to the rules concerning discount rates, amortization periods, 

width of corridor allowed, etc. One restriction is that the limit distribution 

may not exist, in cases where the rules for amortizing gains/losses do not 

constitute a proper "control" of the system. This problem arises with the 

Alternative Scenario as it is initially described in Section 4.4. 

4.3. H o w  t h e  m o d e l  is to  be  used  

One should distinguish between cases (a) and (b) discussed above. 

In case (a), the following have to be determined: 

- time horizon (for example n = 20 years); 

- evolution of population and benefits; 

- economic scenario (rates of return on the various asset classes, indica- 

tors used to set the discount rate, inflation); 

- actuarial assumptions (may be "path-dependent", that is to say de- 

pendent on the evolution of the economic/financial scenario); 

- how accounting parameters (discount rate, expected long-term rate of 

• return on assets, amortization period) are determined; 

- funding method (actuarial cost method plus amortization of gains and 

losses and unfunded liabilities); 

- accounting methods (e. g. faster/slower recognition of gains/losses and 
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liabilities). 

The simulations then yield frequency distributions for the variables of 

interest (e. g. pension expense) for each of the n future years under consid- 

eration. There remains the problem of making a decision based on these n 

distributions. There is no clear-cut answer here. Many "decision functions" 

are possible, among others: 

- considering only the results of the last year; 

- averaging some the results (e. g. variances); 

- "discounting" results (i. e. giving a relatively smaller weight to more 

distant years). 

Case (b) requires similar assumptions and parameters. Choosing an 

infinite horizon is not mandatory ,  but avoids the problem of multiple distri- 

butions (since there is only one limit distributions for each variable). In this 

case all amounts have to be deflated (otherwise they grow without bounds), 

for example by expressing them as fractions of payroll. 

4 .4 .  S t u d y  o f  a n  a l t e r n a t i v e  s c e n a r i o  

After a first draft of this paper had been written, an alternative scenario 

v~,as suggested. This scenario differs from the base scenario in the following 

respects: 

1. Standard Deviation of Return on Assets: 10%, rather than 5%. 

2. Standard Deviation of Discount Rates: 0.5%, rather than 3%. 

3, Relation of Mean Discount Rate to Valuation Interest Rate: the 

former exceeds the latter by 0.25%. 

4. Funding rules: no negative contributions. 

This scenario is of great interest. Some comments follow. 
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First, the higher standard deviation for rates of return appears more 

realistic, in view of the high variability of returns on stocks (see for instance 

Table 1.3, p. 29). (I have not found American statistics on the subject, but 

according to Table 7 of the Repor~ on Canadian Economic Sia~is~ics, 192,]- 

1991, rates of return on Canadian pension plan assets showed a standard 

deviation of 8.88% over the period 1967-1991.) 

As to the third assumption, I chose to let the mean discount rate remain 

unchanged at 1%, which implies a valuation rate equal to .75%. 

There is a technical problem with the last assumption, because what the 

simulations determine is a limit distribution which does not always exist, even 

if the accounting or funding rules are justifiable in the real world. (This is 

why the paper had to include mathematical proofs for the existence of the 

limit distributions of pension expense and unrecognized losses.) If negative 

contributions are not allowed, then fund values may not have a steady-state 

distribution. I will give two justifications for this claim, one theoretical and 

the other more intuitive. 

First justification. Let us return to the theorem given on pp. 56 and 

57. The theorem says that a process (if it satisfies the other conditions 

stated) will have a limit distribution if it has the property of "reverting 

to the center of the space". If no negative contributions are allowed, the 

equation describing the evolution of the fund becomes: 

Ft+, = (1 + R , + I ) A L / ( 1  +i ) ,  if N C + A L - F t  >_ 0; 

= (1 + I:I~+I)(F: - B),  if N C  + A L  - Ft < O. 

It can be seen that when F~ is larger than N C + A L  no control is applied to 

keep it from becoming even larger. Since there is a positive probabihty that 
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Ft will become larger than NC + AL, it is certain that this will eventually 

cause the fund to grow without bounds. 

Second juslification. Consider the following example. Suppose a cer- 

tain amount of money is invested initially, and that the return on the fund 

is paid out every year (no new money is deposited into the fund after it is 

established). To keep things simple, just ignore the possibility of negative 

returns. Suppose that you simulate the operation of this fund over a long 

period. Then clearly the value of the fund will reach a stationary distribu- 

tion (if it is assumed that the returns on the fund themselves reach such a 

distribution). Every year the fund will revert to its initial value, and the 

only randomness left is the effect of the rates of return over one year. Now 

suppose that you modify the rules, and say that returns will only be paid 

out up to a certain fixed level, say 5% of the fund value (this is similar to the 

interdiction of negative contributions in pension funding). Then every time 

returns exceed 5% there will be a net addition to the fund, and over time 

the fund will get larger and larger (without bounds). Consequently, there 

will not be a limit distribution for the value of the fund. 

Disallowing negative contributions may not cause any difficulty in prac- 

tice because, among other things, 

(a) gains and losses are amortized over more than one year, which lowers 

the variability of contributions (see Dufresne, 1989); 

(b) the plan sponsor will take "contribution holidays" long enough to 

use up the surplus; and 

(c) benefits are increased, actuarial assumptions are changed, etc., 

implying that negative contributions are not very likely to occur. 

It is not possible to investigate the Alternative Scenario as it was sug- 
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gested (running the computer programs produces meaningless overflows); 

pension expense apparently does not have a limit distribution if negative 

contributions are not permitted. The author therefore decided to study two 

modifications of that scenario which do yield limit distributions: 

M o d i f i e d  A l t e r n a t i v e  Scenar io  I (MAS I) : Alternative scenario as 

described above, except for the last assumption (i. e. negative contributions 

are allowed). 

M o d i f i e d  A l t e r n a t i v e  Scena r io  I I  (MAS II) : Same as Alternative 

Scenario I, except that 

(a) funding gains and losses are amortized over 15 years; 

(b) rates of return on assets are independent. 

The scenarios are summarized in Tables 4.1 and 4.2. The first modi- 

fication does lead to a limit distribution for pension expense, but negative 

contributions occur very often, due to the large standard deviation of returns 

on assets. The theoretical probability of a negative contribution is computed 

as follows (using the data in Table 4.1 and on p. 110): 

_~ = rate of return on assets -- e Y - -  1 

P ( F  > AL + NC) = P(e r AL/(1 + ER) > AL + NO) 

P ( Y  > log[(1 + ER)(1 + NC/AL)]) 

= .3398, 

where Y is the geometric rate of return on assets. Out of the one million 

iterations performed, there were 339,679 for which the contribution was 

negative. 
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Arithmetic valuation rate of interest (VI) 

Expected long-term arithmetic rate of return 
on plan assets (ELTR) 

Mean arithmetic discount rates (EDS) 

Standard deviation of geometric discount 
rate (VARDS 1/~ ) 

Mean arithmetic rate of return on assets (ER) 

Standard deviation of geometric rate of 
return on assets (VAROR 1/2) 

Correlation between geometric discount rate 
and rate of return on assets (COR) 

Fraction of max (PBO, F) used 
for corridor (C) 

Fraction of excess of IURL I over 
C . max( PBO, F) recognized in expense 

Amortization period for funding 
gains and losses (years) 

.0075 

.0075 

.01 

.005 

.0075 

.10 

.60 

.10 

1/15 

1 

Table  4.1. Modified Alternative Scenario I. 

Under the second modification the variance of contributions is much 

lower . Out of the one million iterations performed, there were 96,840 for 

which the contribution was negative (a frequency of about 10%, which is 

significantly less than with the first modified scenario). 

REMARKS. 1. When returns are lognormal the distribution of gains has 

range ( -oo ,  +oo). Hence, whatever the way gains are amortized there is 

always a positive probability that  contributions will become negative. 

2. The present remark explains why assumption (b) was added in MAS 

II. Rates of return on assets were supposed independent because otherwise 

the average accounting gain or loss would not be zero any more. To see why 
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Arithmetic valuation rate of interest (VI) 

Expected long-term arithmetic rate of return 
on plan assets (ELTR)  

Mean arithmetic discount rates (EDS) 

Standard deviation of geometric discount 
rate (VARD S 1/2 ) 

Mean arithmetic rate of return on assets (ER) 

Standard deviation of geometric rate of 
return on assets (VAROR 1/2) 

Correlation between geometric discount rate 
and rate of return on assets (COR) 

Fraction of max (PBO, F) used 
for corridor (C) 

Fraction of excess of IU/TLLI over 
C . max( PBO,  F) recognized in expense 

Amortization period for funding 
gains and losses (years) 

.0075 

.0075 

.01 

.005 

.0075 

.10 

0 

.10 

1/15 

15 

Table  4.2. Modified Alternative Scenario II. 

this is so, consider the expression for the accounting loss (p. 33): 

Lt = PBO,  - PBO,-a  + ( E L T R  - R,)(Ft-1 + C,-i  - B). 

The first part of the loss is the increase of the PBO during the year, 

and has mean zero. When funding gains/losses are amortized over one year 

the second part  (LF~) boils down to 

( E L T R  - R,)AL/(1 + VI)  

(Eq. (3.1), p. 76) which also has mean zero. For longer amortization pe- 

rlods there is no such simplification, and the dependence between rates of 
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return and fund values comes into play. V~;ith fifteen year amortization and 

a correlation of .60 between discount rates and rates of return, there is a 

correlation of -.063 between ( E L T R  - R~) and (F~-I + Ct-~ - B). Even 

though the average value of Rt is exactly equal to ELTR,  on average L F  

is equal to -7.00, which significantly decreases average pension expense. It 

was feared that this would distort comparisons between MAS II and the 

other scenarios. The problem is avoided by making rates of returns on assets 

independent (which is achieved by setting COR = 0 in the model). [7 

Simulations were performed using the altenative scenarios. The results 

axe shown in Tables 4.3 and 4.4; the corresponding results for the base sce- 

nario are shown in Table 3.2 (p. 76). Average pension expense is higher 

than before; this is because the valuation rate of interest and rates of return 

on assets are lower, producing larger funding contributions (see Eq. (3.2), p. 

81). We nov,- have 

AL(~  VI  = .75%) = 337.70 

NC(@ VI  = .75%) = 12.486. 

The standard deviations of pension expense (E), unrecognized losses 

(URZ) and amortization payments (AM) axe higher under MAS I than un- 

der the base scenario. Nevertheless the standard deviation of annual losses 

is significantly smaller. This deserves a few words of explanation. Under 

the base scenario, the part of the loss due to the increase or decrease of 

the pension benefit obligation (LPBO) has a very large standard devia- 

tion, in fact ten times larger than under MAS I. But the losses on the fund 

(LF) have a greater variability under MAS I than under the base scenario. 

All these facts axe explained by the lower standard deviation of discount 

rates and the higher standard deviation of rates of return on assets. The 
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Var iab le  M e a n  S t a n d a r d  d e v i a t i o n  

Pension expense (E) 

Unrecognized losses (URL) 

Amortization payment (AM) 

Losses (L) 

Losses due to increase 

(decrease) in PBO (LPBO) 

Losses due to return on fund (LF) 

Pension benefit obligation (PBO) 

Geometric discount rate (X) 

Geometric rate of return (Y) 

Arithmetic discount rate (DSCR) 

Arithmetic rate of return (R) 

12.603 

0.67 

0.02 

0.02 

0.00 

0.02 

327.77 

0.009938463 

0.002408076 

0.010000618 

0.007431756 

13.37 

226.66 

13.24 

36.50 

9.89 

33.84 

22.05 

0.004996001 

0.099965752 

0.005045970 

0.1009481282 

Table  4.3. Observed means and standard deviations of some of 
the v'a.riables, under Modified Alternative Scenario I (one million 
iterations). 

reason why URL has a larger variabihty under MAS I, while annual losses 

have a standard deviation three times smaller, is that the losses on the fund 

are positively correlated, This can be seen from the expression for these 

losses, which is 

LFt ---- (ELTR - R,)AL/(1 + VI) 

when funding gains and losses are amortized over one year (see Eq. (3.1), 

p. 76). The variance of the sum of the L F ' s  is larger than the sum of the 

valances,  because of the positive correlation between the R's; thus URL 

tends to take larger vMues. This compounding effect does not occur for the 
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V a r i a b l e  M e a n  S t a n d a r d  d e v i a t i o n  

Pension expense (E)  

Unrecognized losses (URL) 

Amort izat ion payment  (AM) 

Losses (L) 

Losses due to increase 

(decrease) in PBO (LPBO) 

Losses due to re turn on fund (LF) 

Pension benefit obligation (PBO) 

Geometric discount rate (X)  

Geometric rate of re turn  (Y) 

Ari thmet ic  discount rate (DSCR) 

Arithmet ic  rate of re turn  (R) 

12.610 

0.75 

0.03 

0.03 

0.00 

0.03 

327.77 

0.009938463 

0.002408076 

0.010000618 

0.007431756 

6.18 

113.94 

5.66 

36.05 

9.89 

34.65 

22.05 

0.004996001 

0.099965752 

0.005045970 

0.1009481282 

T a b l e  4.4. Observed means and s tandard deviations of some of 
the variables, under Modified Alternative Scenario II (one million 
iterations).  

other par t  of the losses (LPBO),  because the latter partly cancel over time: 

LPBO1 + .. .  + LPBOt = PBOt - PBOo. 

It can also be seen that  the  average value of the PBO has significantly 

decreased, though  it is still larger than when it is valued at i = .01 = 

average discount rate; this is not surprising (see p. 77). 

It is also interesting to compare MAS I and MAS II. The s tandard  de- 

viations of L, L F  and L P B O  are nearly identical, but  those of E and 

UR.L are much smaller under  MAS II. This is entirely a t t r ibutable  to the 
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P e r c e n t a g e  S t d e v ( E )  

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

13.97 

13.65 

13.37 

13.10 

12.85 

12.61 

12.39 

12.18 

11.99 

11.80 

11.62 

Tab le  4.5. Standard deviation of expense (Stdev(E)) as a 
function of percentage used for corridor, under Modified Alter- 
native Scenario I. 

fact that under MAS II rates of return axe independent: the variance of the 

sum of the LF's is now equal to the sum of the variances. This is a striking 

example of the fact that in this sort of model it is not sufficient to know the 

distributions of interest rates and rates of return at each point in time. The 

correlation structure of these processes is also very important. 

Sensitivity analyses were conducted (for both MAS I and MAS II), with 

respect to the same four factors as in Chapter 3: (1) variance of discount 

rates, (2) variance of rates of return on assets, (3) width of the corridor 

and (4) fraction of excess unrecognized losses included in expense. Only the 

results concerning the width of the corridor are shown (see Tables 4.5 and 

4.6, which correspond to Table 3.6, p. 88, for the base scenario). 
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P e r c e n t a g e  S t d e v ( E )  

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

7.11 

6.60 

6.18 

5.82 

5.51 

5.24 

5.01 

4.80 

4.62 

4.45 

4.30 

T a b l e  4.6. Standard deviation of expense (Stdev(E)) as a 
function of percentage used for corridor, under Modified Alter- 
native Scenario II. 

Overall the results are very similar to those described in Section 4.1 

for the base scenario. The variance of discount rates was found to be the 

most important factor determining the volatility of pension expense. The 

last factor was found to be relatively important, while the second and third 

were relatively less important. 

Once again the effect of allowing a 10% corridor is not very great. Under 

MAS I it decreases the standard deviation of pension expense by 4.5%, while 

there is a 15% decrease under MAS II. 

4.5. Answers  to two specific questions 

This section clarifies two points which were raised in connection with 
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the model: (1) Why is it that discount rates can take negative values under 

the base scenario? (2) Describe the exact methodology used to perform the 

simulations, in enough detail to enable one to reproduce the results. 

~[.5.1. Negative discount rate~ 

In the model all amounts are deflated by wage increases; correspond- 

ingly, discount rates are net of rates of wage increase. In some years the rate 

of increase of wages is higher than the nominal discount rate, thus producing 

a negative (net) discount rate. (This possibility is mentioned on page 76.) 

Under the base scenario (Chapter 3), the probability that the discount rate 

takes a negative value can be calculated as follows: 

D S C R  = e x - 1, X ,~ N(.00950, .0009) 

P ( D S C R  < O) = P(X < 0) 

( 0-.00950"~ 
= P  Z < ~ ] ,  where Z--~N(O, 1) 

= .376. 

This probability is surprisingly high. What is even more surprising is that 

it understates what actually happened in US economic history: during the 

period 1926-1990, the annual rate of increase of the Wage Index was higher 

than annual average long-term US bond yields in 27 out of the 65 years, 

representing a frequency of 27/65 = .415 (Economic Statistics for Pension 

Actuaries, August 1991, Table l lA) .  

4.5.~. Exact  methodology used to perform ~he simulations 

All the variable names and equations, as well as a description of the 

base scenario, are given in Section 1.4 (see pp. 25-35). A Fortran program 
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simulated the operation of the pension fund and pension accounts, year after 

year. Initially the fund was set equal the actuarial liability, and unrecognized 

losses were set equal to zero. One million iterations were done (double- 

precision) for each combination of the parameters considered. The formulas 

used to generate the random numbers (including initial values) are given on 

page 70. 

4.6. F u t u r e  r e sea rch  

The author has found this subject a fascinating area of research. The 

paper goes some war" in formulating a model and answering some basic ques- 

tions, but a lot more could be done. Here are a few ideas for future work: 

(1) Sensitivity of the pension benefit obligation to variations in discount 

rates, given explicit assumptions as to salary and post-retirement benefit 

increases. 

(2) Speed of convergence of distributions to their limits. 

(3) Modelling discount rates and rates of return on assets using other 

sto- chastic processes. 

(4) Suppose URLo = 0; how long does it take before URL escapes from 

the corridor? 
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