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OPTION BOUNDS IN DISCRETE TIME WITH TRANSACTION COSTS 

by 

Phelim P. Boyle 

and 

Ton Vorst 

ABSTRACT 

Option bounds are obtained in a discrete-time framework with transaction costs. The model 

represents an extension of ,,~e Cox-Ross-Rubinstein binomial option pricing model to cover the 

case of proportional transaction costs. The method proceeds by constructing the appropriate 

replicating portfolio at each trading interval. Numerical values of these bounds are presented for 

a range of parameter values. 
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OPTION BOUNDS IN DISCRETE TIME WITH TRANSACTION COSTS 

1. INTRODUCTION 

The classic Black-Scholes option pricing model rests on perfect market assumptions. A 

replicating portfolio can be constructed consisting of a long position in the risky asset and a short 

position in bonds which is equal in value to the price of a call option. As time passes, the 

weights of this portfolio are rebalanced so that it replicates the pay-off of the option contract at 

maturity. Under perfect market assumptions this rebalancing is costless, but if we introduce 

transaction costs this is no longer the case. It is of interest to explore the implications for option 

pricing and option replication of the introduction of tr.ansaction costs. Our paper explores this 

issue in a discrete-time setting. 

The first paper to relax the assumption of no transaction costs in the context of option pricing 

was by Gilster and Lee [1984]. These authors also incorporated differential borrowing and 

lending rates in their analysis. Their basic model was developed using a continuous time 

framework but to circumvent the problem of infinite transaction costs they used discrete time 

rebalancing in their hedge construction. 

Leland [1985] also examined this problem in a continuous-time framework. He obtained a 
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modified Black-Scholes formula and develops an alternative replicating strategy to incorporate 

the impact of transaction costs. The Black-Scholes formula is modified by increasing the 

variance by a factor which depends on the magnitude of the uansaction costs. Under his 

alternative replicating strategy the pay-off on the portfolio at option expiration approximates the 

maturity value of the call option. Leland notes the difficulty of incorporating transaction costs 

in a continuous-time framework and he uses periodic portfolio revisions for his numerical 

simulations. 

An alternative and more convenient approach is to embed the problem in a true discrete-time 

framework. Merton [1990] uses this approach to explore the impact of transaction costs on 

option prices in a two-period binomial model. He assumes that the upper bounds for the option 

value is equal to the value of a replicating ponfc  ,~ which has the same value at expiration as 

the option. The portfolio revisions at the intermediate trading date allow for transaction costs. 

Menon uses this approach to determine the production cost to a financial intermediar3' of 

manufacturing a call option and _-xamines the relationship between the bid-ask spreads in the 

option market to the size of the transaction costs in the market for the underlying asset. 

Our approach is similar to Merton [1990] but we extend the analysis to an arbitrary number of 

periods whereas Merton's model just involved two periods. We employ the discrete time 

framework of Cox, Ross, and Rubinstein [1979] and obtain upper and lower bounds for the 

European call price in this framework. The upper bound is obtained by finding the cost of 

replicating a long position in the option by a dynamic hedging strategy. Proportional transaction 
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costs are incurred at each revision date upon either the purchase or the sale of shares of the risky 

asset. The lower bound is obtained, in a similar way, by finding the cost of replicating a short 

position in the option. If there were no transaction costs the (absolute) value of  these two 

portfolios would be equal. The impact of transaction costs is to drive a wedge between these two 

values: the higher the transaction costs the wider the wedge. 

These bounds stem from no-arbitrage arguments. If  an investor can create a long synthetic call 

more cheaply than she can purchase a comparable call in the market, an arbitrage opportunity 

exists. Hence, the current value of  the replicating portfolio (for the long call) provides an upper 

bound for the call price. In the same way, the (absolute) value of the replicating portfolio that 

precisely duplicates the maturity payoff to a short call position provides a lower bound for the 

call price. 

We begin with a single period model and indicate how to obtain the upper bound in this case. 

This one period model is then extended to several periods and we develop a recursive procedure 

to obtain the replicating portfolio for the upper bound. The procedure for obtaining the lower 

bound is similar but not identical. The zero-transaction costs option values lie between the lower 

bound and the upper bound, as we would expect. Furthermore, as the transaction costs tend to 

zero, the bounds converge to the Cox-Ross-Rubinstein option prices. We are able to derive a 

compact, closed-form expression for the option upper bound when the number of trading intervals 

is large. In this case, the option upper bound can be approximated by the ordinary Black-Scholes 

formula with an adjusted variance. Our variance adjustment is similar to, but larger than, that 
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derived by Leland [1985] in his paper on transaction costs. 

Shen [1990] also employs a discrete-time framework to examine the impact of transaction costs 

on option prices and obtains upper and lower bounds. His conclusions are similar to ours but 

there are distinct differences between the two approaches. Our approach differs from Shen's in 

that we derive a Black-Scholes-type approximation for the value of the replicating portfolio with 

transaction costs. In addition, we focus on some technical differences between the construction 

of the upper and lower bounds. On the other hand, Shen covers several issues that we do not 

address. These include a discussion of two types of settlements (cash or stock), option pricing 

by a risk averse dealer, and optimization of the number of trading dates in a fixed time interval. 

Hence, the two papers complement one another. 

Other authors have recently explored the impact of transaction costs on option prices in different 

settings. Hodges and Neuberger [1989] assume a continuous-time framework and derive bounds 

on option prices by assuming a particular utility function for the intermediary (or individual) 

creating the hedge. Figlewski [1989] uses simulation techniques to examine the impact of 

transaction costs on option prices and concludes that 

"transaction costs for the standard arbitrage trade, induce arbitrage bounds around 

the theoretical option values that are substantially wider than the bid-ask spreads 

observed in practice." 

Biais and Hi]lion [1990] derive a model for the bid-ask spread in option prices using a market 

micro-structure approach. 
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The layout of the present paper is as follows. In Section 2 we derive the upper bound for the 

one-period case and indicate how to extend the approach to many periods. In Section 3 we 

derive an analytical expression for the option upper bound in the presence of transaction costs. 

Section 4 develops some convenient approximations and derives a closed form Black-Scholes- 

type expression for the upper bound. In Section 5 we demonstrate how the lower bound for the 

option price can be derived. We explore the numerical properties of these bounds in Section 6. 

Section 7 concludes the paper. 

2. O P T I O N  R E P L I C A T I O N  IN D I S C R E T E  T I M E  W I T H  T R A N S A C T I O N  C O S T S  

In this section we use no-arbitrage a x  aments to establish the cost of creating a long European 

call option by dynamic hedging when there are transaction costs. This furnishes an upper bound 

for the call price. In the two-period case our model reduces to that obtained by Merton [ I990] 

when allowance is made for differences in notation and convention? We use the multiplicative 

binomial lattice employed by Cox, Ross, and Rubinstein [1979] for the asset price 

~Our notation differs from Merton's  and we make different assumptions concerning the 
transaction costs incurred at the outset and in the final period. 
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Su 

Su 2 

S Sud 

Sd 

Sd2 

where we assume that u > R > d, with R equal to one plus the one-period riskless rate? We use 

a dynamic hedging strategy to replicate the pay-off to a European call option. The replicating 

portfolio will be constructed backwards from the maturity date, i.e., if  we know the portfolio at 

the points Su and Sd in the above diagram we will construct the portfolio at the point S. In order 

to take the transaction costs into account it is not enough to know the value of the replicating 

portfolio at each node; we also have to know how much is invested in the risky asset and how 

much is borrowed. We will use the symbol A for the number of shares and B for the dollar 

investment in bonds. The following diagram gives the A's and B's  at the different points in the 

previous diagram: 

2We use essentially the same notation as Cox, Ross, and Rubinstein except that we use R for 
one plus the one-period riskless rate and they use r. 
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(AI,BI) 

(~,B~) 

(A,B) (A,,B,) 

(A2,B2) 

(As,B~) 

Table I provides values of the weights of the replicating portfolio in the case of a simple two- 

period model when there are no transaction costs. The current value of the portfolio is 17.687 

and to avoid arbitrage this must also be the price of the European call. 

Table I: Hedge Portfolio Weights- Long call, transaction costs zero. Parameters: current 
asset price = 100, strike price = 100, number  of periods = 2 ,  u = 1 . 2 5 ,  d = 0 . 8 0 ,  r = 1 . 0 7 .  

(I,-93.458) 

(0.701,-52.406) (0,0) 

(0,0) 

( l , - l O 0 )  

(0,0) 

Current value of the replicating polxfolio = I00 (0.70093) - 52.406 = 17.687. 
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To introduce transaction costs, assume that proportional transaction costs are incurred when 

shares of  the risky asset are t raded? Let k be the transaction costs measured as a fraction of the 

amount  traded. We must  select A and B so that the portfolio (A~,B~) can be bought  if the up- 

state Su occurs and (A2,B2) can be bought  if the down-state  Sd occurs. This leads to the 

fol lowing two equations: 

ASu + BR - A1Su + B I ÷ klA - AIISu (1) 

ASd + BR - A2Sd + B 2 + klA - AalSd. ~2) 

Equation (1) indicates that the value of  the portfolio in the up-state is exactly enough to buy the 

appropriate replicating portfolio corresponding to this state and to cover  the transaction costs 

incurred in the rebalancing.  Equation (2) has a similar-interpretation for the down-state.  Since 

we don ' t  know whether  the risky asset has to be bought or sold, but in both cases transaction 

costs have to be paid, we use the absolute value of  A - A~ and A - A 2. Equations (1) and (2) 

are two nonl inear  equations in A and B, and it is not obvious whether  a solution exists, and, if 

a solution exists, whether  it is unique. However,  in the appendix we prove the fol lowing result. 

3Proportional transaction costs on bonds can also be incorporated. However,  the model 
becomes much more complicated without providing new insights. 
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T h e o r e m  1. In the construction of a synthetic long European call option by dynamic hedging, 

equations (1) and (2) have a unique solution (A,B). Furthermore, for this solution the following 

inequality holds 

A 2 -< A -< A l . (3 )  

This theorem enables us to rewrite equations (1) and (2) in the following form 

ASu + BR - AISu + B t + k(A 1 - A)Su (4) 

or equiva]ently, 

ASd + BR - ~ S d  + B2 + k(A - A2)Sd, 

AS5 + BR - A,S5 ÷ B, 

(5) 

(6) 

where 

ASd + BR - AzSd + B2, (7) 

- u ( l  + k) and d - d ( l  - k). (8) 
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Thus, the theorem permits us to reduce the nonlinear equations to linear ones. These can be 

readily solved. These equations form the basis of an iterative procedure which can be used to 

obtain the composition of the replicating portfolio at inception. Working backwards from the 

boundary we can compute the explicit portfolio weights at each node of the lattice. This 

procedure makes appropriate adjustment for transaction costs each time shares of the risky asset 

have to be traded to rebalance the portfolio. We use this procedure in Section 6 to compute 

numerical values of the upper bounds. 

If we replace ia by u and d by d in equations (6) and (7) we have the familiar equations for 

discrete-time option pricing without transaction costs. Hence, one might be tempted to calculate 

the current portfolio value with transaction costs by replacing u by fi and d by a in the standard 

fol ,ula for the option price C [see Cox, Ross, Rubinstein formula (6)]. This would lead to 

C ° 
R* 

(9) 

with 

This, however, is incorrect since the right-hand sides of equations (6) and (7) no longer represent 

the values of the call in the up-state and the down-state, as in the no-transaction cost case. The 

actual value of the call in the up-state is AISu + B t instead of AtS~ + B 1 and similarly for the 
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down-state. 

Our equations (4) and (5) provide the basis for the recursive approach to determine the portfolio 

weights at intermediate trading dates in the presence of transaction costs. Apart from notational 

differences, they correspond to equation (14.2c) in Merton [1990]. We assume that the institution 

(or intermediary) creating the replicating portfolio does not have to buy the initial amount of the 

risky asset (A). Hence, we just take account of the additional transaction costs necessary to 

maintain the replicating portfolio. In our numerical examples we assume that the replicating 

portfolio at option expiration for an in-the-money call option consigts of one unit of the risky 

asset and a short position in riskless bonds equal to the exercise price. Our conventions 

correspond to those employed by Leland [1985] rather than those used by Merton [1990]." 

We can rework our earlier two-period example to illustrate the impact of transaction costs. Table 

II provides the portfolio weights required to create a long (synthetic) call option when k = 0.01. 

Note that the holdings of the risky asset are higher in Table 11 than in Table I. The current value 

of the replicating portfolio of 18.307 represents the upper bound. 

'Merton assumes that the entity constructing the replicating portfolio pays the necessary 
transaction costs to establish the initial asset position and also that the asset holdings in the 
replicating portfolio are liquidated at expiration. 
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Table II: Hedge Portfolio Weights- Long call, transaction costs 0.01. Parameters: current 
asset price = 100, s t r i k e  p r i c e  = 100, n u m b e r  o f  periods -- 2, u = 1.25,  d = 0 .80,  r = 1.07. 

(0.983,-90.950) 

(0.705,-52.156) (0,0) 

(0,0) 

(1,-100) 

(0,0) 

Current value of the replicating portfolio = I00 (0.70463) - 52.156 = 18.307. 

3. THE REPLICATING PORTFOLIO AS A DISCOUNTED EXPECTATION 

It is well-known that the value of a European call option without transaction costs can be 

expressed as a discounted expectation of the maturity value of the option, assuming that the risky 

asset price follows a certain risk-neutral binomial process. In this section we will derive an 

analogous expected value formulation for the value of the replicating portfolio with transaction 

costs. In the no-u'ansaction costs case the European call price is given by the Cox-Ross- 

Rubinstein binomial model: 
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C - 

p) '~-Jmax[0,uJd"-)S - K]]  

R" 

(10) 

where 

p - ~ _ .  R - d  

u - d  

Inside the brackets we have the expectation of max[0, u)d"-)S - K], i.e., the value of the call at 

maturity, if we assume that the call follows a multiplicative binomial process with the probability 

of the up-state equal to p and the down-state equal to 1 - p. The factor R" means that the future 

expectation is discounted for n periods at the riskfree rate. We can obtain an equivalent 

formulation for the option price in terms of an expectation as follows: Let X~ . . . . .  X, be 

independent, identical, binomial variables with possible values log~u and log,d and probabilities 

p and (1 - p), respectively. Let Y = .Y.X,. Then the term within brackets is the expectation of 

max[0,Se "~ - K] or equivalently: 

C -  Exp[(SeV-  K)Is"~K] ( l l )  
R o 

where 
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ISe) >K 

is the indicator function which has value 1 if Se v >_ K and 0 otherwise. 

We can derive a similar expression for the option price upper bound when there are transaction 

costs. From (6), (7), and (8) it follows that for a two-period discrete model 

C - AS + B - ~ [ ( I  + k)A)Su + Bz] + (I - ~ ) [ ( I  - k)A~Sd + B2] (12) 

R 

where C is the current value of the portfolio that exactly replicates the payoff  to a long European 

call posiuon (with transaction costs). This can be further simplified to 

C-AS +B 

= [~.{(i + k)~Su 2 + B 3} + ~(I - ~.)1(I - k)A, Sud + B,) + (13) 

( 1  - p ) p d { ( 1  + k)A4Sud + B,} + (1 - 5 ) (1  - ~d){(1 - k)AsSd2 + Bs}] /R  2, 

w h e r e  

R(! + k )  - 

~ - d  
and ~ ,  = 

R ( I  - k )  - 

~ - ~  

It immediately follows that 
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0<~,<~< 1. 

From (13) we see that while the right-hand side can be interpreted as a discounted expectation, 

we have a process for which the probability for a particular state depends on whether the 

previous jump was upwards or downwards. After an up-jump the probability of another up-jump 

is ~ while just after a down-jump the probability of another up-jump is 13~. 

After a down-jump the probability of another down-jump is larger than in the case of a preceding 

up-jump. This process can be formalized as follows: Let X~, X> X 3 ..... X~ be a Markov process 

with two states and values log~u and log,& The transition matrix is given by: 

(14~ 

The first column of P represents the probability distribution of Xj .~ ~ if Xj = logeu and the second 

column represents the probability distribution if Xj = log, d. The starting distribution for X, is 

given by 

- ~ ,  ( l  - ~ ) ~  

(: means the transposed vector). The following theorem can be proved by an induction argument. 
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Theorem 2. The current cost of creating a synthetic long European call option in the presence 

of proportional transaction costs can be expressed as follows: 

C - Exp[((1 + X k)Se v - K ) I s , , _ x  ] (15) 

R ° 

where n is the number of periods to option expiration, 

Y - ~ X,, and X,  - 1 if X, - log u and X - -1 if X, - log d. 
l - |  

Apart from the ~ factor, the portfolio value is the discounted expectation of the call value at 

maturity. However, in this case the expectation is based on a different stochastic process from 

that used in the no-transaction cost case. For a standard call option without transaction costs the 

binomial process can also be visualized as a Markov process, but one with identical columns. 

This reflects the fact that the distribution of Xj .  t doesn't  depend on Xj. Expression (15) also 

shows us that the cost of replicating a long call position with transaction costs is greater than the 

cost of replicating a call without transaction costs. Since after an up-jump the possibility of 

another up-jump is larger, there is a higher probability of a whole sequence of up-jumps leading 

to a higher probability for a high value of Y. The same holds for downward moves leading to 

a higher probability for low values of Y. Hence, the variance of Y is much larger than that of 

the Y for a call without transaction costs. The higher variance leads, in turn, to a higher price. 

It is convenient to define the constants and matrices 
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I'l 0 - Rk A - (1, - I ) ,  and P -  (1, 1). 
~ - a '  -~ 1 -~ 

(16) 

We have the following matrix identity: 

~ - e  1 "  1 - ~ + 8  
P + O A .  

(17) 

We see that the difference between our stochastic Markov process and a process with 

independent increments is given by the matrix OA. With no transaction costs, i.e., k = O, this 

matrix is also zero and we are back to the standard case. 

4 .  AN APPROXIMATION FOR THE OPTION PRICE UPPER BOUND WITH 
TRANSACTION COSTS WHEN THE NUMBER OF PERIODS IS LARGE 

For numerical computations of the option price upper bound with transaction costs, it is 

convenient to use the recursive formulae given by equations (6) and (7) and work backwards 

through the lattice to obtain the explicit portfolio weights at each node. Equation (15) is less 

useful for practical computations, but it does have certain other advantages. In particular it can 

be used as a springboard to develop an accurate and very convenient closed-form approximation 

to the option price upper bound in discrete time when there are transaction costs. In this section 

we sketch the derivation of the approximation. It turns out that the approximation formula 

383 



corresponds to the Black-Scholes formula with an adjusted variance. 

To develop this value for large n, we f'n'st have to define a binomial  tree. We will use the 

standard binomial  tree as in Cox and Rubinstein [1985] with parameters s u, d, and R given by 

u - e a':b, d - e -*'~', R - e r~ (18) 

where h = T/n, o is the volatility of the risky asset, and r is the riskless continuous interest rate. 

We assume that the t ime to maturity of the option, T, is exactly one year. 

In deriving the approximation formula it is necessary to make some approximations. However,  

we will show in the next section that the approximation formula is very, accurate for the 

parameter  values that are likely to be of  interest. 

If we consider the Markov process described in the previous section, we have the following 

result. 

L e m m a  1. The variance of  the random variable Y of  Theorem 2 has the following behaviour 

for large n and small k 

~Clearly the parameters  u, d, and R depend on n. We suppress this dependence for 
convenience.  
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V a t ( Y ) - a :  1 + --~-v/-n "- +.  "~'n " (19) 

This result is proved in the appendix. 

It is easy to show using the same method as in the proof of Lemma 1 that p (and also ~) tends 

to 0.5 as n becomes large. In particular, this implies that without transaction costs the probability 

of an up-jump tends to one-half for large n. When there are positive transaction costs the 

probability of an up-jump depends on whether the previous jump was an up-jump or a down- 

jump. If the previous jump was an up-jump the probability of an up-jump is } * 0. As n gets 

large ~ tends to 0.5 while for the range of parameter values we consider that O is a positive 

number. For finite n, 0 is less than one-half. This means that with transaction costs, if the 

process has an up-jump, the probability of moving to the up-state in the next period is greater 

than the probability of moving to the down-state. 6 The opposite holds in the case of a down- 

jump. If the process has just had a down-jump the probability of the subsequent jump being 

downwards is greater than one-half. Because of this property the process has a tendency to push 

more of the probability weight out towards the tails of the lattice. 

The next stage of the approximation is to replace (15) by 

6Some specimen numerical values may help illustrate this point. We use parameter values 
in line with those used for our numerical computations in Section 5. Assume that k = 0.005, 
= 0.2, n (the number of periods) = 250, and the riskless rate = 10% p.a. With these values p = 
0.5119, ~ = 0.5007, 0 = 0.1417, Pu = 0.6424, and 1 - Pd = 0.6410. If the process has just had 
an up-jump, the probability of the next jump being an up-jump is 0.6424. However, after a 
down-jump the probability of the next jump being a down-jump is 0.6410. 
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C -  Exp[(SeV- K)ls"~K] (20) 

R" 

Hence, we omit the factor (1 + )~k). This omission does not mean that we neglect the impact 

of transaction costs. The influence of transaction costs arises mainly from the previous (n - i) 

realizations of the stochastic process rather than from this last factor. Furthermore, the factor (1 

+ X,k) does not differ much from 1 provided that k is small. ~ In expression (15) the impact of 

this factor is negligible compared with the influence of the underlying stochastic process on the 

call price. 

The next step is to establish that the asset price process is risk-neutral under the new Markov 

process. To do this we compute an expression for the expected value of Y in Lemma 2. It turns 

out that it is convenient to have the expression for the variance of Y from Lemma 1 available 

in performing this derivation. That is why we derived the expression for the variance of Y first. 

Lemma 2. The expected value of the random variable Y of Theorem 2 has the following 

behaviour for large n and small k: 

"This restriction is !mportant to ensure that equation (20) gives an accurate approximation 
for the option upper bound. As a practical matter k will be small: of the order of 1% or less. 
The approximation works very well for such values of k. 
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E(Y) - r - l [ v a r ( Y ) ]  + O I , (21) 

where Var(Y) is given by equation (19). This lemma is proved in the appendix. 

For large n the distribution of the random variable Y tends B to a normal distribution with mean 

and variance given by Lerrtmas 1 and 2. Hence, the distribution of the asset price tends to the 

corresponding lognormal distribution. We can use the standard Black-Scholes methodology to 

compute expression (20). This leads to the following theorem. 

Theorem 3. For large n and small k the initial value of the hedge portfolio under a dynamic 

portfolio strategy that replicates a long call option at the maturity date and is self-financing 

inclusive of transaction costs, is equal to the Black-Scholes value but with modified variance 

given by 

o:f)' 
(22) 

where T is the time to option maturity. 

~See Billingsley [1979] Example 25.5 and Theorem 27.5 for the justification of using this 
limit. 
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Theorem 3 provides a very convenient method to compute the upper bound. As noted above we 

will illustrate the accuracy of the approximation formula in Section 6. We can compare our 

formula with that of Leland. In Leland's approach the dynamic portfolio strategy is not self- 

financing since he uses a continuous model with discrete revision times. Leland also derives a 

Black-Scholes-type formula with modified variance. The two expressions for the variance are 

very similar, but where Leland has a factor of ",/(2/~) we have unity. Since ",/(2/~) = 0.8, our 

model leads to higher option values than Leland's. This is to be expected since our discrete 

model involves no residual hedging errors. 

In the analysis thus far we have concentrated on dynamic hedging strategies that exactly replicate 

the payoff to a long position in a European call option. The current value of the replicating 

pc folio represents the cost of creating a synthetic option with the same terminal value to an 

economic agent facing proportional transaction costs k. As such, it provides an upper bound for 

the option price. We now examine the lower bound. 

5. LOWER BOUNDS FOR THE OPTION PRICE 

In this section we explore the derivation of  a lower bound for the option price in a discrete-time 

model when there are proportional transaction costs. 9 To obtain the lower bound we compute 

the cost of  creating a self-financing replicating portfolio which has exactly the same value at 

9 We are grateful to Fischer Black for suggesting we examine this issue. 
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expiration as a short position in a European call. The dynamic hedging slrategy takes account 

of the transaction costs incurred at each trading date. The intuition corresponds closely with that 

behind the derivation of the upper bound, However, there are some important technical 

differences. 

First consider a one-period model. Note that if we are replicating a short position in a call option 

the replicating portfolio at expiration will consist of a short position in the asset plus a long 

position in the risky asset (or else zero shares of each security). If the call is in the money at 

expiration the value the replicating portfolio at expiration will be negative. The replicating 

portfolio at the start of the period also involves a short position in the risky security. 

We assume the same notation as in Section 2 and derive some arbitrage bounds that will be 

useful in the sequel. Assume an investor purchases one share of the risky asset at the start of 

the period and sells it at the end of the period. The initial amount required is S(l+k) and if the 

up-state occurs the net proceeds upon sale arc Su(1-k). If the initial amount were invested in 

the riskless asset the proceeds would be SR(I+k). Since the maximum return from the risky 

strategy must exceed the risk]ess return we have 

u(1 - k) > R(1 * k). (23) 

In the same way if we consider the short sale of the risky asset we obtain: 
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R(1 + k) > d( l  + k). (24) 

From these two equations we note that 

u(1 - k) > d(1 + k). (25) 

Now the recursive equations for the replicating portfolio which has a payoff equal to the short 

position in the call option are exactly the same equations as (1) and (2). One difference is that 

the sign of  the holdings in the risky asset is now negative (or zero) on the boundary. 

Corresponding to Theorem 1 we have 

T h e o r e m  4. In the const, .ction of a synthetic short call position by dynamic hedging there is 

a unique solution to equations (1) and (2) provided that equation (25) is satisfied, 

The proof is given in the Appendix. It is insmacdve to compare this result with Theorem 1 for 

the long call position. There are some important differences. First, note that we require equation 

(25) to hold for Theorem 4 to be valid. No such requirement was needed to prove Theorem 1. 

Hence, we would expect Theorem 1 to be valid for a wider range of parameter values than the 

present theorem. We will f'md this to be the case in Section 6. Second, in the present case the 

number of  shares of  the risky asset at successive nodes on the expiration boundary satisfy 
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Aj.  1 > A j, 

where Aj is the number of shares at node j and ~ .  I is the number of shares at the node (j + 1) 

just below it. The asset price at node j is higher than the asset price at node (.j + 1). It is not 

necessarily the case that the number of shares to be held one period earlier at the node from 

which both j and (j + I) can be accessed lies in the interval [z~,Aj,. i]. This contrasts with the 

situation in Theorem 1 where the number of shares held at a given node always lay in the 

interval spanned by the number of shares held at the two adjacent nodes one period later. 

However, we can still compute the numerical values of the risky asset and bond holdings at each 

node to replicate the maturity payoff to a short call option. This is again accomplished by 

solving equations (1) and (2) recursivley. There are two changes with the earlier case. First, the 

boundary, values will be exactly the negative of those for the long call position. Second, we have 

to be more careful at each step of the iteration to ensure we have obtained the correct holdings 

of the risky asset at each node in the correct region. We know from Theorem 4 that there is a 

unique solution but we cannot guarantee that it is in the region spanned by the holdings at the 

two adjacent next-period nodes. It is easy adapt our numerical algorithm to ensure that we have 

the correct solution in the appropriate region. 

As noted earlier the current value of the replicating portfolio that generates the synthetic short 

call position provides (the negative of) a lower bound for the call option price. We provide some 

numerical estimates of the lower bounds obtained in this way in the next section. We also know 
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that the value of a European call cannot be less than the difference between the current asset 

price and the present value of the strike price (or zero if this expression is negative). We can 

use this lower bound for those parameter values for which the approach suggested here breaks 

down. 

It is instructive to illustrate the procedure involved using our earlier two-period example. Table 

III provides the portfolio weights at each node when we replicate the payoff to a short call 

position. These weights were obtained by f-mding the (unique) solution to equations (1) and (2) 

at each node of the lattice. The current portfolio value of - I7 .031 represents (the negative) of 

the option's lower bound. The weights of the risky asset holdings in Table III illustrate the 

second remark made after the proof of Theorem 4. 

Table  HI:  H e d g e  Port fo l io  Weights -  Short  call, transact ion costs  0.01. Parameters :  current  
asset price  = 100, s tr ike  price = 100, n u m b e r  of  periods  = 2, u = 1.25, d = 0.80, r = 1.07. 

(-1.018,96.054) 

(--0.696,52.524) (0,0) 

(0,0) 

(-1,100) 

(0,0) 

Current value of the replicating portfolio = 100 ( -  0.69555) + 52.524 = - 17.031 
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In the case of the upper bound we were able to develop a compact expression for the long call 

and ultimately a Black-Scholes-t)pe approximation to its value. In the present case the nature 

of the result in Theorem 4 suggests that we cannot write down an algebraic expression for the 

value of the lower bound corresponding to equation (15). The problem arises because the 

number of shares of the risky asset, t~, sometimes lies within the interval [At,~.z] and sometimes 

outside this interval. The portfolio weights in Table III illustrate this behaviour. In the topmost 

mangle, -1.018 lies outside the interval [-1,0], whereas the asset portfolio weights for the other 

nodes lie within their appropriate intervals. 

If we could assume that A alway~ lay within the interval [At,th] then equations (1) and (2) for 

the lower bound would be structurally the same as equations (6) and (7) for the upper bound 

except that -: replaces k. Were this the case, we could develop the analogue of (15) by 

replacing k with -k. This in turn would justify a Black-Seholes-type approximation for the lower 

bound with the variance given by equation (22) with -k  replacing k. This procedure of replacing 

k by -k  and using the corresponding formula for the upper bound produces answers that are 

often quite close ~° to the accurate lower bounds even though the procedure lacks a rigorous 

justification. 

~0 We investigated the accuracy of the lower bound results obtained by this procedure by 
comparing them with the accurate values obtained from solving (1) and (2) recursivley. The 
agreement was generally very good. To conserve space we do not report the detailed results here. 
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6. N U M E R I C A L  C A L C U L A T I O N S  

In this section we compute  option price bounds for a range of parameter  values. It In addition 

to il lustrating the comparat ive statics, n These computat ions form a basis for comparison with 

the approximation we introduced earlier. For all our simulations we take the current price of the 

risky asset to be 1(30, the time to option expiry one year, and the (effective) t~ interest rate to 

be 10% p.a. For our base case assumptions the standard deviation of the return on the risky asset 

is 20% p.a. We examine the impact on the option bounds of variations in the strike price and 

of variations in the transaction costs. The zero transaction cost case corresponds to the Cox- 

Ross-Rubinstein case and is used as a benchmark.  

Our approach is to present the results for the upper bound case first. " able IV provides the 

option upper bounds for a range of  transaction cost and strike price assumptions.  The first panel, 

corresponding to k = 0, contains the zero-transaction cost benchmark  prices. The impact of 

transaction costs on the upper bound is most transparent if we subtract these reference prices 

from the option upper bounds. These differences are tabulated in Table IVa. As we would 

expect the influence of the transaction costs increases with the frequency of trading and also with 

the magni tude of  the costs. As the swike price increases, the size of  the upper bound spread 

" O u r  parameter  values correspond to those assumed by Leland. 

t: Many of  the comparat ive statics for the upper bound case were also observ 
Leland(1985).  

~3 This means  that one dollar invested for one year at the riskless rate accumulates to $1.10. 
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increases, reaches a maximum, and then decreases. The upper bound spread is highest when the 

current asset price is equal to the discounted strike price. This corresponds to the case when the 

option's time value is highest. In a discrete-time model we can see the intuition behind this 

result. Consider a call which is very deep in the money so that there is no chance TM it will 

mature out of the money. The dynamic replicating portfolio in this case is certain to consist of 

a long position in the underlying asset and a short position in the discounted strike price. If this 

portfolio is maintained throughout the lattice there will be no transactions required. At the other 

extreme, consider an option which is so far out of the money that there is zero chance that it will 

end up in the money. In this case the option value at expiration will be zero so that the hedge 

portfolio is degenerate consisting of no risky asset and no bonds. To maintain such a portfolio 

throughout the lattice costs nothing and so transaction costs have no impact on the call 's  price 

(of zero). As the strike price move away from either of these extremes the ~mportance of 

transaction costs increases, reaching a maximum when the option's time value attains its 

maximum. 

Tables V and Va examine the impact of the asset return variance on the call price upper bound 

when there are transaction costs. We know from the benchmark case that as the variance 

increases, the option price increases. Table Va shows that the upper bound spread generated by 

the inclusion of  transaction costs also increases with the asset return variance. 

~*This can occur in a true discrete-time binomial model. In the standard continuous-time 
model with lognormal asset returns there is always some chance that the call will not end up in 
the money. 
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In Table VI we compare the option price upper bounds produced by our exact discrete-time 

model with those of Leland for corresponding parameter values. In our model where the trading 

strategy is self-financing, the transaction costs exceed those of Leland's model, is As the 

magnitude of the transaction costs increases, the difference between the prices generated by the 

two models increases. 

In Table VII we compare the upper bounds generated by our exact discrete model to the 

continuous-time approximation given in Theorem 3. We see that the approximation formula is 

very accurate and that the accuracy increases as the number of trading intervals increases. RecaU 

that our maintained assumption is that the true asset return process follows a multiplicative 

binomial process as in Cox-Ross-Rubinstein. This table shows the Black-Scholes-type formula 

from Theorem 3 yields very close approximations to the true upper bounds. 

The comparative statics for the lower bound case are very similar to those for the upper bound 

case. Table VIII provides lower bound values for the same set of parameters as Table IV. The 

lower bound spread increases with the frequency of trading and also with the size of the 

transaction costs. However, for certain parameter combinations the necessary conditions for the 

validity of Theorem 4 are violated and we cannot use our recursive procedure to compute the 

lower bound. These combinations are denoted with an asterisk in Table VIII. They correspond 

~SRecall that Leland used a discrete set of revision intervals to approximate a continuous-time 
model and that even if the stock follows the assumed (continuous) process there will be a 
hedging error at option maturity. A similar hedging error arises in the no-transaction cost case 
if the true stock return process has a continuous (lognormal) distribution and we approximate it 
by a multiplicative binomial process. The first panel of Table VII illustrates this point. 
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to situations where both k and n have higher values. For each of these combinations the 

inequality in equation (25) is violated. In these cases we have used the theoreticaP ~ lower 

bound values. 

The final table, Table IX, presents combined information on the magnitude of the spread between 

the upper and lower bounds as a percentage of the no-transaction costs benchmark price. An 

example will illustrate how the figures in this table were obtained. Suppose that the strike price 

equals 100, the number of revisions is 52, and the transaction cost parameter k = 0.00125. For 

these parameter values the upper bound is 13.256 (from the second panel of Table IV) and the 

lower bound is 12.637 (from Table VIII). The benchmark option price in this case (k = 0) is 

12.953. Hence, the lower bound-upper bound interval measured in terms of differences from the 

benchmark price is [---0.316,0.303]. We can express this range in terms of percen' ge deviations 

from the benchmark price as [-2.44,2.34]. This is the format we use in Table IX. Table IX 

illustrates that these deviations are not quite symmetrical. These (percentage) spreads increase 

with increases in the strike price even though the dollar amount of the spreads increases and then 

decreases as the strike price increases. 

~¢'The theoretical bound is the maximum of zero and the difference between the current asset 
price and the present value of the strike price. 
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7. CONCLUSIONS 

This paper derived a procedure for computing option price bounds in a discrete-time model when 

there are proportional transaction costs. The upper bound corresponds to the current value of a 

portfolio which exactly replicates the payoff to a long call. The corresponding lower bound can 

be established by finding the cost of replicating a short call position. We explored the numerical 

values of these bounds and concluded that the impact of transaction costs can be substantial 

especially if the number of revision times is large. 

While our analysis just dealt with European call options it can be extended to cover European 

put options. We could derive the corresponding recursive equations for the put case and develop 

an algorithm for the multi-period case. It is lore convenient to derive the put values from put- 

call parity. 

We also demonstrated that the upper bound can be expressed as a discounted expectation under 

a new Markov process. This lead to an approximation for the upper bound in terms of a 

modified Black-Scholes formula. This modification involves increasing the variance as described 

in Theorem 3. The accuracy of the approximation increase with the number of trading intervals. 

We noted some interesting asymmetries between the properties of the upper bound and the lower 

bound. 

Our approach assumes that the frequency of transactions is specified exogenously. To derive the 
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bounds we have assumed within our discrete-time model that the replication is exact and that 

there will be no hedging errors at maturity. To ensure this, trading occurs at each trading date. 

Risk-averse economic agents will be willing to tolerate less than perfect hedging for a reduction 

in transaction costs. This leads to the possibility of determining the transaction frequency 

endogenously and some progress in this direction has been made in recent papers. ~ 

tTFor example, Hodges and Neuberger [1989] and Shen [1990] consider this problem in an 
option context while Dumas and Luciano [1989] examine optimal portfolio revision policies in 
the presence of transaction costs. 
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Tab le  IV: E u r o p e a n  call option u p p e r  bounds.  Opt ion  uppe r  bounds  c o m p u t e d  in d iscre te - t ime setting 
using recurs ive  p r o c e d u r e  based  on equat ions  (6) a nd  (7). P a r a m e t e r s :  asset pr ice  = 100, s t a n d a r d  
deviat ion = 20% p.a., t ime  to expi ry  = 1 year ,  interest  r a te  = 10% p.a. effective. 

Strike Price 

OPTION PRICE UPPER BOUNDS 

Number of revision times 

13 52 250 

k = 0 %  

80 27.703 27.701 27.665 27.675 

90 19.821 19.740 19.667 19.674 

100 12.655 13.093 12.953 12.984 

110 8.129 8.026 7.972 7.965 

120 4.216 4.427 4.548 4.551 

k = 0.125% 

80 27.735 27.747 27.753 27.876 

90 19.894 19.842 19.865 20.103 

1(30 12.770 13.248 13.256 13.630 

110 8.254 8.205 8.324 8.715 

120 4.329 4.595 4.882 5.269 

k = 0.5% 

80 27.837 27.894 28.047 28.574 

90 20.113 20.149 20.453 21.346 

100 13.106 13.699 14.111 15.339 

I10 8.618 8.721 9.3O0 10.649 

120 4.663 5.084 5.820 7.161 

k = 2 %  

80 2K297 28.563 29.409 31.568 

90 20.983 21.346 22.643 25.524 

100 14.358 15.333 16.966 20.413 

110 9.965 10.555 12.469 16.192 

120 5.926 6.859 8.950 12.750 
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Tab le  IVa:  Di f fe rence  be tween  option price uppe r  bounds  and  zero t r ansac t ion  cost pr ices for same 
p a r a m e l e r  va lues  as T ab l e  IV. Opt ion  u p p e r  bounds  with t ransac t ion  costs c o m p u t e d  in discrete- t ime 
set l ing using recurs ive  p r o c e d u r e  based on equa t ions  (6) and  (7). P a r a m e t e r s :  asset price = 100, s t anda rd  
devia t ion  = 20% p.a.,  t ime  to expi ry  = 1 year ,  in teres t  r a te  = 10% p.a. effective. 

Strike Price 

LrPPER BOUND SPREAD 

Number of revLsion lames 

6 13 52 250 

k = 0.1259~ 

80 0.032 0.046 0.089 0.201 

90 0.073 O. 102 O. 198 0.429 

100 0. I 15 0.155 0,30,t 0.646 

110 0,124 0.179 0,352 0,750 

120 0,113 0.168 0.334 0.718 

k = 0.5% 

80 0.134 0.193 0.383 0.900 

90 0,292 0.408 0.786 1.672 

100 0.452 0.606 1.158 2.354 

110 0.489 0,695 1.328 2.684 

120 0,4,:1.7 0,657 1,272 2,610 

k = 2 %  

80 0.594 0.862 1.744 3.893 

90 1.162 1.606 2.976 5849 

100 1.703 2.240 4.013 7.429 

1 I0 1.836 2,529 4.497 8.227 

120 1,710 2.432 4.402 8.199 
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Table V: European call option upper bounds with transaction costs for different volatility assumptions. 
Option upper bounds with transaction costs computed in discrete-time setting using recursive procedure 
based on equations (6) and (7). Parameters:  asset price = 100, s tandard deviation = 10%, 20%, 30% p.a., 
time to expiry = 1 year, interest rate = 10% p.a. effective. 

Standaxd deviation in % 

OF'TION PRICE UPPER BOUNDS 

Number of revision times 

6 13 52 250 

k=0% 

I0 9.772 9.960 9.936 9.954 

20 12.655 13.093 12.953 12.984 

30 16.009 16.677 16.435 16.480 

k = 0.125% 

10 9.852 10.073 10.155 10.424 

20 12.770 13.248 13.256 13.630 

30 16.131 16.841 16.757 17.169 

k = 0.5% 

I0 10.089 10.406 I0.785 I 1 7(30 

20 13.106 13.699 14.111 15.339 

30 16.490 17.320 17.677 19.034 

k = 2% 

10 11.005 11.646 12.927 15.475 

20 14.358 15.333 16.966 20.413 

30 17.844 19.087 20.839 24.788 
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T a b l e  Va:  D i f f e r ence  be tween  op t ion  p r i c e  u p p e r  b o u n d s  a n d  z e r o - t r a n s a c t i o n  cost p r i ces  for  s ame  
p a r a m e t e r  va lues  as  T a b l e  V. O p t i o n  u p p e r  b o u n d s  wi th  t r a n s a c t i o n  cos ts  c o m p u t e d  in d i sc re te - t ime  
se t t ing  u s i n g  r e c u r s i v e  p r o c e d u r e  b a s e d  on  e q u a t i o n s  (6) a n d  (7). P a r a m e t e r s :  asset  p r i ce  = !00 ,  s t a n d a r d  
dev ia t ion  = I 0 % ,  2 0 % ,  3 0 %  p.a . ,  t ime  to  e x p i r y  = 1 y e a r ,  in te res t  r a t e  = 1 0 %  p .a .  effective.  

Sm,~dard devotion in % 

UPPER BOUND SPREADS 

Number of revtsion tames 

6 13 52 250 

k = 0.125% 

10 0.079 0.113 0.218 0.470 

20 0.115 0.155 0.304 0.646 

30 0.122 0.164 0.323 0.689 

k = 0.5% 

10 0.317 0.446 0.849 1.746 

20 0.452 0.606 1.158 2.354 

30 0.481 0.643 1.242 2.554 

k = 2 %  

10 1.233 1.685 2.991 5.522 

20 1.703 2.240 4.013 7.429 

30 1.83,5 2.411 4.405 8.308 
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T a b l e  VI:  C o m p a r i s o n  o f  op t ion  u p p e r  b o u n d s  g e n e r a t e d  by o u r  d i s c r e t e . t i m e  mode l  a n d  those  o b t a i n e d  
f r o m  L e l a n d ' s  mode l .  O p t i o n  u p p e r  b o u n d s  c o m p u t e d  in o u r  mode l  u s ing  r e c u r s i v e  p r o c e d u r e  based  on 
e q u a t i o n s  (6) a n d  (7). P a r a m e t e r s :  asset  p r i ce  = 100, s t a n d a r d  dev ia t ion  = 2 0 %  p.a, ,  t i m e  to  e x p i r y  = 1 

year,  interest rate = 10% p.a. effective. L = Leland,  BV = Ours.  

Strike Price 

6L 6BV 

k =0% 

80 27.675 27.703 

90 19.675 19.821 

100 12.993 12.655 

110 7.966 8.129 

120 4.555 4.216 

k = 0.125% 

80 27.698 27.735 

90 19.728 19.894 

100 13.075 12.770 

110 8.062 8.254 

120 4.647 4.329 

k = 0.5% 

80 27.771 27.837 

90 19.887 20.113 

100 13.317 13.106 

110 8.344 8.618 

120 4.916 4.663 

k = 2% 

80 28.091 28.297 

90 20.515 20.983 

100 14.225 14.358 

110 9.388 9.965 

120 5.926 5.926 

Number of ~v~ion ames 

52L 52BV 

Absolu~ Absolu~ 
Diff~cncc Difference 

0.028 27.675 27.665 0.010 

0.147 19.675 19.667 0.008 

0.338 12.993 12.953 0.040 

0.16,:1 7.966 7.972 0.006 

0.339 4.555 4.548 0.007 

0.037 27.745 27.753 0.008 

0.167 19.831 19.865 0.034 

0.305 13.232 13.256 0.024 

0.192 8.246 8.324 0.077 

0,318 4.822 4.882 0.060 

0,066 27.974 28.047 0.073 

0,227 20,296 20.453 O. 157 

0.210 13.915 14.111 0,196 

0.274 9.035 9.300 0.265 

0.254 5.582 5.820 0.238 

0.206 29.026 29.409 0.383 

0.468 22.052 22.643 0.592 

0.133 16.253 16.966 0.714 

0.577 I 1.659 12.469 0.809 

0.000 8.172 8.950 0.7'78 
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Table VII: Comparison of  accurate option upper bounds based on our discrete-tlme model with the Black- 
Scholes type approximation used in Theorem 3 of this paper. Accurate upper bounds with transaction 
costs computed using recursive procedure based on equations (6) and (7). Parameters: asset price = 100, 
standard deviation = 20% p.a., time to expiry = 1 year, interest rate = 10% p.a. effective. BV = Our 
discrete model, A = Approximation value (Theorem 3). 

Number of revision times 

6BV 6A 52BV 52A 250BV 250A 

Smke Absolute Absolute Absolute 
Price Difference Difference Difference 

k~ -0% 

80 27.703 27.675 0.028 27.665 27.675 0.010 27,675 27.675 0000 

90 19.821 19.675 0.147 19.667 19.675 0.008 19,674 19.675 0.0()0 

100 12.655 12.993 0.338 12.953 12.993 0.040 12984 12.993 0.008 

110 8.129 7,966 0.164 7.972 7,966 O.0(k5 7,965 7.966 0000 

120 4.216 4.555 0,339 4.548 4.555 0.007 4,551 4.555 0004 

k = 0.125% 

80 27.735 27.705 0.031 27.753 27,764 0.010 27.876 27.876 0.000 

19.894 19.741 0.153 19.865 19.870 0.006 20,103 20.102 0001 

i00 12.770 13.096 0.326 13.256 13.292 0.036 13.630 13.636 0 ~ e ,  

110 8254 8.086 0.167 8.324 8.316 0.008 8.715 8714 0.001 

120 4.329 4.670 0.341 4.882 4.889 0.007 5,269 5.272 O(X~ 

k = 0.5% 

80 27.837 27.797 0.040 28.047 28,056 0.009 28,574 28.572 0002 

90 20.113 19.940 0.173 20.453 20.451 0.002 21,346 21.342 O.(Y)4 

I(X~ 13.106 13.397 0.291 14.111 14.135 0.023 15,339 15.340 0.00I 

110 8,618 8.438 0.180 9.300 9.286 0.014 10,649 10.645 0004 

120 4.663 5.006 0.343 5,820 5.826 0.006 7.161 7.162 0002 

k = 2 %  

80 28.297 28.207 0.090 29.409 29.398 0.011 31,568 31.549 0.019 

90 20.983 20.724 0.260 22.643 22.603 0.040 25,524 25.498 0.025 

100 14.358 14513 0.155 16.966 16.941 0.025 20,413 20,389 0.024 

I10 9.965 9.715 0.250 12.469 12.418 0.050 16.192 16.166 0.026 

120 5,926 6246 0.320 8.950 8,933 0.017 12,750 12.733 0017 
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T a b l e  VIII :  E u r o p e a n  call  op t ion  lower  b o u n d s .  O p t i o n  lower  b o u n d s  c o m p u t e d  in d i sc re t e - t ime  set l ing 
us ing  r e c u r s i v e  p r o c e d u r e  b a s e d  on e q u a t i o n s  ( I )  a n d  (2). P a r a m e t e r s :  asset  p r i ce  = I00 ,  s t a n d a r d  
dev ia t ion  = 2 0 %  p,a, ,  t ime  to exp i ry  = I y e a r ,  in te res t  r a t e  = 10% p,a,  effect ive.  

Strike Price 

OPT/ON PRICE LOWER BOUNDS 

Number of l'~vision times 

13 52 250 

k =  0% 

80 27.703 27.701 27.665 27.675 

90 19.821 19.740 19.667 19.674 

1<30 12.655 13.093 12.953 12.984 

110 8.129 8.026 7.972 7.965 

120 4.216 4.427 4.548 4.551 

k = 0.125% 

80 27.671 27.656 27.582 27.502 

90 19.749 19.638 19.469 19.246 

100 12,538 12.935 12.637 12.286 

110 8.003 7.843 7.604 7.136 

120 4.102 4.256 4.202 3.773 

k = 0.5% 

80 27.582 27.534 27.383 27.273 

90 19.531 19.333 18.889 18.221 

100 12.168 12.445 11.597 9.684 

110 7.614 7,269 6,374 3.647 

120 3.75.4 3.726 3.077 0,879 

k = 2 %  

80 27.327 27,276 27.273" 27,273" 

90 18.697 18.281 18.182" 18.182" 

100 10.323 10.115 9.091" 9.091" 

I 10 5.845 4.311 0.0" 0.0" 

120 2.266 1.266 0.0" 0.0" 

"signifies that inequality (25) is violawxl for these parameter values. 
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T a b l e  IX:  U p p e r  a n d  lower b o u n d s  exp re s sed  as  a p e r c e n t a g e  dev i a t i on  from the  b e n c h m a r k  no- 
t r a n s a c t i o n  cos t s  case.  P a r a m e t e r s :  asse t  p r i ce  = 100, s t a n d a r d  dev ia t ion  = 2 0 %  p.a. ,  t ime  to expir.~ = 1 
y e a r ,  in te res t  r a t e  = 1 0 %  p .a .  effect ive.  

Number of revision umes 

13 52 250 

Strike Price 

k = 0.125% 

80 [-0.16, 0.17] [-0.30, 0.32] [-0.62, 0.73] 

90 [-0.52, 0.52] [-1.01,101] [-2.18, 2.18] 

1(30 [-1.21, 1 .191 [-2.44, 2.34] [-5.38, 4.97] 

110 [-2.28, 2.23] [--4.62, 4.41] [-10.41, 9.41] 

120 [-3.86, 3.80] [-7.60, 7.341 [-17.10, 15.77] 

k - 0.5% 

80 [-0.61, 0.70] [-1.02, 1.38] [-1.45, 3.25] 

90 [-2.06, 2.07] [-3.95, 4.00] [-7.39, 8.50] 

leo [--4.95, 4.63] [-10.47.8.94] [-25.42, 18.13] 

110 [-9.43, 8.66] [-20.04. 16.66] [-54.21, 33.70] 

120 [-15.84, 14.85] [-32.34, 27.981 [-80.68, 57.34] 
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A P P E N D I X  

P R O O F  O F  T H E O R E M  1 

We prove Theorem 1 by backward induction. By induction we may assume that A4 < A~ < z~ 3 

and A 5 _< A 2 _< A 4. Thus, A 2 _< Av Subtracting (2) from (1), transferring everything to the right- 

hand side, and introducing the function f(A) we get 

f(A) - AS(u - d) - A,Su + AzSd - B, + B z - klA - A, ISu + klA - A:[Sd (A1) 

-- 0 .  

The function f(A) is continuous and piecewise linear, i.e., it is a linear function, on ( -  ,,,,, A,z), (A:, 

A~), and (A~, ~o) with constant derivatives on each interval with values [(1 + k)u - (1 + k)d]S, 

[(1 + k)u - (1 - k)d]S, and [(1 - k)u - (1 - k)d]S, respectively. Since all of these numbers are 

strictly positive, f(A) is a monotonically increasing piecewise linear function. Hence, it has a 

unique zero. This proves the first claim of Theorem 1. For the second part it is enough to show 

that 

f(A 2) < 0 and f(A,) > 0 (A2) 

since this implies that A ~ [A 2, At]. Now 

f ( ~ )  - (a~ - A , ) S u ( 1  + k)  - B,  + B 2 (A3) 
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f(Aa) - (A 2 - A1)Sd( I  - k) - B t + B: .  (A4) 

De f ine  

g(t)  - (A 2 - AI)St  - B z + B: .  (A5) 

g is a d e c r e a s i n g  l inear  func t ion  o f  t. S ince  by induc t ion  A4 -< A~ _< '~3, w e  k n o w  that  one  o f  the 

e q u a t i o n s  f rom wh ich  A~ has  been  d e d u c e d  reads  as fo l lows:  

A1Sud + BIR - A4Sud + B 4 + k(A I - A , )Sud .  (A6) 

Simi lar ly ,  s ince  A~ < A 2 _< A, we have:  

A~Sdu + BzR - A4Sdu + B 4 + k(A, - A2)Sdu.  (A7) 

Sub t rac t ing  (A6) f rom (A7)  and  d iv id ing  by R g i ve s  

( A  2 - A , ) S d u  k [ ( A ,  - A2) - (A ,  - A , , ) ]Sdu  
+ B= - Bs - (A8)  

R R 

In case  A t = A2, we  m u s t  h a v e  that  A,  = A t = A: and  h e n c e  B: = B v T h u s ,  A = A~ and  B = Bt /R 

is the  u n i q u e  so lu t ion  o f  (1) and  (2) w h i c h  m e a n s  that  A~ = A = A 2. Hence ,  w e  m a y  a s s u m e  f rom 

n o w  on  that  A s > A  2. 
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First ,  we remark  that  1(,5, - ~ )  - (A~ - A4)I _< A~ - A 2. We  cons ider  the two cases  (A, - A 2) - 

(A1 - A4) >- 0 and (A,~ - A z) - (A~ - A,,) _< 0. In the first case we know that g(du/r)  > 0. Hence ,  

f(A,) - g(d(1 - k)) -> g(du/R)  _> 0.  

Fur ther  

f ( @  - g(u(1 + k)) 

< g / d u ( 1  ÷ 
R" k)) 

( _ ~ )  k ( ,  - A,)Sdu 

= g  + R 

k[ (~°  - A~) - (A, - A , ) lSdu  

R 

-<0 .  

kfA: - A~)Sdu 
+ 

R 

T h u s  we have  p roved  (A2) in this case.  If  (A4 - A2) - (A~ - A4) < 0 the p roo f  goes  s imilar ly .  

To  start the induc t ion  we cons ide r  the opt ion at matur i ty .  At  matur i ty  there  are two poss ib le  

por t fo l ios :  A = 1 and B = - K, if  the asset  pr ice  is a b o v e  the  exerc i se  pr ice  and A = 0 and  B = 

0, if  the asset  pr ice  is be low the exerc i se  price. Hence ,  at matur i ty  we a lways  have  A~ _> A 2 in 

the no ta t ion  o f  this  appendix .  One  per iod  before  matur i ty  there are three  d i f fe rent  cases.  First,  

A~ = A 2 = 1 in which  case  A = A~ and B = - K/R is the unique  solut ion,  wh ich  indeed  has ,5 2 < 

A .<_ A~. Second ,  A] = A~ = 0, in which  case A = 0 and B = 0 is the unique  solut ion which  indeed  
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h a s A  2 - < A < - A  1. Finally,  A t = 1, A 2 = 0 .  In this case the unique solution is 

A - (S~ - K) 

( S t  - Sd) 

Hence ,  A 2 = 0 < ,5 < 1 = A t. This  comple t e s  the first  steps o f  the induct ion proof.  

P R O O F  O F  L E M M A  1 

To calculate  the var iance  o f  Y we first  in t roduce the vec tor  v r = (log, u, log,d). It fo l lows for 

proper t ies  o f  t ransi t ion mat r ices  like f '  that: 

EX, - v r P  i - ~ (A9~ 

° 

° 
= V "r~J cU 

EXiX'  "J log,,d P" 
(AIO) 

Hence ,  

C o v ( X e X i .  j) - EXiX i . j - EXlEX i . j 

In 
p.  

(A11) 
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Since 

r o,.u ° 
(A12) 

and PA = 0 we can reduce ( A l l )  to 

ICo: o 1_ 
vT(OA) j u log,d P "  

0)_ 
log d 

~ L - I ~ V  T 

(AI3) 

p 

If we denote 

~ i - I f )  . ( p , ,  1 - p i )  T 

we find that 

Cov(X~,X~.j) - p~(1 - p)0J2J(log u - log d) 2 (A14) 

To calculate Vat(Y) = Var(~X~) we simply have to add all the covariances, i.e., ZVar(X,) + 

2EZCov(X,,X i + j). We thus find as the total variance 
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( log u - l o g , d ) :  p,(1 - p )  (20)  j - 1 - 
L , - t  .~ 

I~ IE ] ( l o g , u  - l o g , d ) :  pi(1 - p,) 2 ,1 - (20)  . . . .  I _ 

, 1 7 ~  

F u r t h e r m o r e ,  

'/1. 
(A15)  

(P  + A O ) ' - i ~  

i -  1 

( 0 A ) J P '  - ' - it3 
j ° 0  

i -  ! 

j o l  

0~2 j "  ~(2~ - I )  * 
) o l  

't ¸ (, 

(A16)  

w h e r e  w e  h a v e  u s e d  that  

P A  - 0 and  PIb - ~ .  

H e n c e ,  
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P,(l - P,) - 

(A171 

Substituting (A17) in (A15) and simplifying the resulting expression leads to” 

(A181 

To prove Lemma 1 we remark that 

(logcu - log,d)* - y. (AI91 

The next step is to examine each of the terms in expression (A 18) to determine their dependence 

on n. At this stage we do not require assumptions concerning the magnitude of k. (Later on we 

assume k to be small.) In expression (A18) the major contribution will arise from the first term 

in square brackets: 

“A detailed derivation is available from the authors. 
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g - o  
1 - 2 0  

e '~' - ¢ ~ r ~ ( l  - k )  - e ' t ' k  

e " ~ ' ( 1  + k )  - e - " ' ~ ' ( l  - k)  - 2e '~ 'k  

( l  - k ) [ 1  * r/n ÷ O ( l / n * ) ]  - (1 - k ) [ 1  - o / ~ h - ,  o = / 2 n  ÷ O ( 1 / n f ~ ) l  

t l  + k ) [1  , o . / f n -  + ~2 /2n  , O ( 1 / n v " n " ) l  - (1 - k ) [ l  - er/,/-fi- + a :P2n , O ( 1 / n v ~ - ) ]  - 2 k [ l  ÷ r/n ,- O ( I / n : ) ]  

. ( I  - k)(Ylv/~ - + ( t  - k ) ( r  - ( r2/2) In + O ( I / n V ~ - )  

2 o / ¢ ~ -  - 2 k ( r  - o2 /2 ) /n  + O ( I / n ¢ ~ - )  

1 - k ( r  - c2/2) l~ fn  ÷ O ( 1 / n )  

w h i c h ,  i f  l e s s  p r e c i s i o n  is  r e q u i r e d ,  c a n  b e  w r i t t e n  a s  

÷ 

I - ~  - O  
1 - 2 0  

l _~ -e  
1 - 2 e  

, ~  + 

(A21) 
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or, again depending on the required precision, 

1 + 2 0  

1 - 20 

(1 + k)e °l~* - (1 - k)e -°j~n + 2ke '~ 

(1 + k)e °j~° - (1 - k)e -°1~* - 2ke '~ 

4k + 2cs/V~- + O(1/n) 

2g/ fn ' -  + 2k(~2/2 - r)/n + O(l/nv/-n -) 

2kv/-n-/o + 1 + 0(1/7~-)  

1 + k(~2/2 - r)/(wt-n + O(1/n) 

2k¢~- 1 2k2(cz/2 - r) a + - a 2 + 0 / ~ n n  / 1 

(A22) 

or, again depending  on the required precision, 

+ O  1 

Finally,  
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o ,11~2o_,1 
1 - 2 0  4 1 - 2 0  

1 1 + 2 0  2 0  

1 - 2 0  1 - 2 0  1 - 2 0  

O 1 

(A23) 

(A24) 

1 - 2 0  

- - k  + ( l  + k)(1 - k)(r - o212) 

, 1 
(A25) 

depending on the required precision. Also, 

! 

2*k *c ' I 
1(20) '1-  e~v.{( 1 + k) - (1 - k)e-~/~*} .1" 

(A26) 
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The expression on the right-hand side of (A26) can be shown to be less than 

e re-[e - I05.(I * e ) l ~ a  

where 

( 1  - k ) c r ( 1  - ~) a - 

From this last inequality we see that we can skip all terms with a factor of (20)* in expression 

(A18) if we want to calculate the limit behaviour of (A18) for n ----> ,~. Substituting (A20)-(A25) 

in what remains of (A18) and using alternatives in (A20)-(A22) depending on the required 

precision we derive 

2 { n i l -  k2"~-n I2k + 1 6k=(r - 02/2) + O(1"~ 
4~ ~, 4 ) ~,o "~--n + a2v~- t n ] j  ÷ 

( c--''zl ~ 1 - k2"~2k2 ~-~-n 1 } f 43~ko~ ~'~'n 1}} 
q n ) [ - I.-----~--- ~..-~- + + ( vr~ )2 + 1 

- o ' v ~ - ( l -  kZ)[-~-+ [1 + 6k2(r-c2,2)/o 2 -2k2/o: + 3 k ' , ( l ~  - k~,o 2 

If k is small the expression simplifies to 

4 1 9  



This completes the proof of Lemma 1. 

P R O O F  O F  L E M M A  2 

We use the same type of  approach here as was used in establishing Lemma 1. From equation 

(A9) and the definition of E(Y) we have 

E(Y) - L v ' r # i - l ~  
i - |  

I I ' l l  - v T 0 1 - ( 2 0 7 - '  ( 2 ~ -  1) + 
, . ,  i - ~  -1 

- (log u - log d ) ~ l  e .1 - (2e) ' -1  7 - ' ~  2p - 1) + [ p l o g u  + (1 - ~ ) l o g d ]  
- i - 1  

1 - 2 8  - 1 - 2 0  ) 

+ n~log u + n(1 - ~ ) log ,d  

c,-~oj ~-t,-~ojt,-~oj < ' ~ I ~ )  ' - ~  
. r ~ - ' b , r ; -  ~ r  o ¥ ~ _ , ]  

t.1 - 2 0 7  vn ~ t i  - 20Jr.1 - 201 

, / ;  t 1 - 2 e ) j  
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E- ( I]E o o/ l] - k (1 - k2)(r - o'2/2) + 0 ~ - k + 

-~[1 2k~/'n'-] k211 -~1 I~n-nl - r -  + + - r +  + O  1 

- r - 1 V a t ( Y )  + kZll -  r + -~1+  O(.~n-n;, 

where we have used the results of Lemma 1. When k is small we have 

1 
E(Y) .. r - _" Vat(Y). 

2 

This completes the proof of Lemma 2. 

P R O O F  O F  T H E O R E M  4 

First we show that if a solution exists it is unique. Then we establish existence. 

Recall equations (1) and (2): 
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A S u  + B R  - AISu  + B 1 + k lA - A l l S u  ( I )  

A S d  + B R  - A2Sd ÷ B 2 + k l A  - A.21Sd. ( '2) 

S u b t r a c t i n g  (2) f r o m  (1) a n d  t r a n s f e r r i n g  e v e r y t h i n g  to the  r i g h t - h a n d  s ide ,  

f (A) - A S ( u  - d)  - A t S u  + A2Sd - B 1 + B 2 - k l A  - A l l S u  + k l A  - A.21Sd 

- 0 .  

T h e r e  are  t w o  p o s s i b l e  c a s e s :  A t < ,52 a n d  A 1 > A:. 

W h e n  A t _< A 2, f (A)  is a l i n e a r  f u n c t i o n  on  (---,=,,At), (A1,,5,2), a n d  (A:,oo), w i t h  c o n s t a n t  d e r i v a t i v e s  

o n  e a c h  i n t e r v a l  w i t h  v a l u e s  

(1 + k ) S ( u  - d ) ,  [(1 - k ) u  - (1 + k ) d ] S ,  a n d  1 - k ) ( u  - d ) S ,  

r e s p e c t i v e l y .  I f  ( l  - k )u  > (1 + k)d ,  all o f  t h e s e  d e r i v a t i v e s  a re  p o s i t i v e ,  a n d  f fA)  is an  i n c r e a s i n g  

f u n c t i o n .  

W h e n  A t > A2, f (A)  is  a l i n e a r  f u n c t i o n  on  (--00,A2), (A2,AI), a n d  (At,*"),  w i t h  c o n s t a n t  d e r i v a t i v e s  

on  e a c h  i n t e r v a l  w i t h  v a l u e s  

(1 + k ) S ( u  - d ) ,  [(I  + k ) u  - (1 - k ) d ] S ,  a n d  (1 - k ) ( u  - d ) S ,  
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respectively. All of these derivatives are positive, and therefore, f(A) is an increasing function. 

Thus, f(A) is a monotonically increasing function. Hence, if f(A) has a zero, it has a unique zero, 

i.e., the system has a unique solution. 

We now prove that a solution to equations (1) and (2) always exists. 

Select Ao~ such that 

031 - B2) ÷ (1 + k)S(Alu - A~d) 
Aol < and Ao, _< min{A,,A=}. 

(1 ÷ k)S(u - d) 

Select A0z such that 

031 - B:) ~- (1 - k)S(Alu - A2d) 
A°2 > (1 - k)S(u  - d) and A0~ _> max {A z, A2}. 

It is easy to show that f(Ao~)< 0 and f(Ao2) > 0. Since f(A) is a continuous function, there exists 

a A, (Ao~ < A < Ao2), such that f(A) = 0. This completes the proof of Theorem 4. 
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