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Abstract

Consider a portfolio of insurance policies where the mean frequency of claims for each policy may vary.
This heterogeneity in the portfolio may be modeled as a distribution function F(}) that mixes the
mean frequency A. Using the observed claim frequencies of this portfolio, we present a continuous
semiparametric estimator of the mixing distribution F{A) that has some unbiased moments and
converges uniformly. The estimator that we investigate is a mixture of gamma distributions whose

parameters are calculated by considering the determinants of certain moment matrices.

Keywords

Mixing distribution, moment matrices, semiparametric estimator, uniform consistency.

131



1. [ntroduction

Suppose that the number of claims N for a policy can be modeled with the Poisson probability
density function (pdf)

pin| Xy = 2 an (1.1)
n!
where )\ > 0 is the mean frequency and n=0,1.2.... In a heterogeneous population the mean {requency is
distributed according Lo some unknown distribution F(X). We will assume throughout the discussion
that the mixing distribution F(A) is continuous and that F(0)=0. Moreover. we will assume t.'hal. the
mixing distzibution is uniquely determined by its moments.

Hossack, Pollard and Zehnwirth (1983) gave an asymptotically consistent estimator of F(A) under
the assumption that it belongs to a Gamma class of distributions. Willmot (1987) also gave a
consistent estimator when F()) belongs to an Inverse-Gaussian class of distributions. Obviously, these
estimators will be asymptotically biased if the true distribution is not in these parametric classes.
Lindsay (1989) constructed a discrete estimator that has some unbiased moments and is consistent
when F{X) is uniquely determined by its moments and F(0)=0. Expanding on Lindsay’s result, we will
present a continuous estimator F()) that has some unbiased moments and converges uniformly when
F(A) belongs to the class of continuous distributions that are uniquely determined by their moments
and F(0)=0. In section 2 we will show how to calculate this estimator while in section 3 we will present

some of its asymptotic properties.

2. A Semiparametric Estimator

The semiparametric estimator of F(A) that we will investigate will have the following form

) P A
=Y x, [ fwa (21)
=1 Q
where
f3) = 32 91 exp(~3,y) [ T(a). (2.2)
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Note that the pdf of the estimator in (2.1} is simply a mixture of Gamma densities but this does not
mean that the unknown distribution F{A) has this form. Moment estimates of the parameters 3] and
T, for this mixture are given in Titterington. Smith and Makov (1985). but these estimates do not
necessarily satisfy parameter constraints such as 3, > 0. We now show how to estimate p, a. 3,....5,
and 7,....7, 50 that all parameter constraints hold.

Suppose we observe the frequencies &, for 1=1,...,T where T is the number of policies in some

insurance portfolio. Also suppose that N|.V,.... are independent and identically distributed random
1472

variables with a common pdf equal to

p(n) = J pin|X) dF(X) (2.3)
(0,00)

where p(n|}) is given in (1.1). To calculate the integer p >0, we need to estimate the moments

msz(,\“) for k=1,2.... A consistent and unbiased estimator of m is

OC
= Y a(n=1)-(n—k+1) §(n) (2.4)
n=0
where
T
Blm) = L 3 H¥=n) (2.5)
T =1

Using the moment sequence iy, m,,... we define }f{u={]], Mo'z{rix]) and for &=1,2,... we define the

moment matrix

1 my Ty
My = ﬁf‘ m’ 'h"_“ (2.6)
M Mgy o Ty
and the shifted moment matrix
my My Mgy,
= ﬁf’ ™3 'ﬁ“f’ @10
Tgpr Mgay 0 Mgpgg
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I'sing M, and M} for £=0,1,... we define p as follows

p=1+ sup{lc : det(fll) > 0 and det(!lzl") >0 Vi=0... k}

[ o calculate the rest of the parameters, we define

re = my [ (alat 1) (at+k-1)

for &=1.2.... Next., we define Ry={1}, Rj={r )} and for k=1.2.... we define

1
Ry=|
Tk
and
n
Rp=|
Tkl

Using R, and R} for k=0,1.... we define ¢(a) as follows

ola) =1+ sup{l‘ : det(R,) > 0 and det(R*) > 0 v::o.“..k}.

n

2

T+l

"2

3

Tk42

We can now define @ > 0 as any value that satisfies the inequality

¢la) >

Let us calculate the parameters J=(J,,.. .,dp)r. Couasider the polynomial

P(t) = det

P+l

p-1 1
" 4
I

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)



Let b, >0 for j=1.....p denote the distinct real roots of P(1). We set 8, >0 equal to 1/b . Finally, let

us calculate the parameters z=(x,,.. ..xp)T. Consider the matrix

1 1 1
b b b
r=| ' 7 4 (2.15)
- - -1
bf 1 bg i bﬁ
and the vector g:(l,rl,...,rp_l)r. Then 1 is equal to
r=T'r. (2.16)

Let us apply the result to some motor vehicle data given in Johnson and Hey (1971). In this data we
find that T=421,240 and that
pO) = 879337 p(1) = 110495
p(2) = .009341 5(3) = .000753 (2.17)
F(4) = 000066 $(5) = .000007.

Using (2.4) we find that

my, =.131735 m, = .024132
mq = .006522 m, = .002424 (2.18)
g = .000840 g = .000000.

Using (2.8) we find that p=2. Using (2.13) we find that any o greater than J is satisfactory. For this
example we let a=15. Using the polynomial in (2.14) we found that ,=.023485, 4,=.007188 and that
3,=42.58, 3,=139.12. Finally, using formula (2.16) we found that r,=.0978, *,=.9022. Figure 1 shows
a plot of the pdf of the semiparametric estimator in (2.1} and the pdf of the Gamma estimator given in
Hossack, Pollard and Zehnwirth (1983). This graph and all the necessary calculations were made with

the statistical computing language called GAUSS.
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1

Figure |
A Plot of the Density of the Semiparametric Estimator

and the Density of the Gamma Estimator
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3. Asymptotic Consistency
Let M;={1} and for k=1.2,... let M, be equal to the matrix in (2.6) with s, replaced with m, for

i=1...2k Also let MJ={m,} and let M be equal to the matrix in (2.7} with m; replaced with m; for

1=1.....2k+1. Lindsay (1989) called M, the kth moment matrix of F()) while M was called the kth
¥ }

shifted moment matrix of F(1). Using a strong law of large numbers we know that m, %% m, as T—oo

for k=1.2.... Thetefore del(M,‘) % det(M,) and dcl(.‘.l:) 2 det(M}) as T—oc because the
determinants are continuous functions of the moments. Consulting Shobat and Tamarkin (1943) we

find that if F{0)=0 and F(}) is continuous then det{M;} >0 and det{ M) > 0 for k=0,]... Using these

facts along with the definition of p given in (2.8), we get the following resulit.
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Lemma 1. If T—xc then p = oc. a]

Let y=okry where r, is defined in (2.9). then My— my as a—oc. Let A be equal to Afy with s,
replaced by 7, and let M} be equal to M with m, replaced by m,, then det(},)—det(M,) and
del(.xl,:)—-det(‘f!,:] as a—x. Let § be equal 1o (2.8) with Mk replaced by M, and M: replaced by M.
then 3o such that 3 > p Ya 2 oy According to Lindsay (1989) there exists a discrete distribution with
P distinct atoms of mass T,at e, > 0 for j=1,...,5 whose moments are equal to ™, for k=1....,2p-1.
Now, consider the discrete distribution with  atoms of mass 7 at a,/a for =1....,p. The moments of
this discrete distribution are equal to r;. According to Shohat and Tamarkin (1943), this means that
det(R,) > 0 and det(R}) >0 Vk=0.....5—1 and det(R;)=0 and det(R‘!,):O where R, and R} are defined
in (2.10) and (2.11), respectively. Therefore ¢{a)=p where () is defined in (2.12). We summarize the
result as follows.

Lemma 2. There exists ag > 0 such that ¢(a) > p for all a > a,. a

Using our notation we will restate some resuits given in Lindsay (1989). Note that a version of the first

result in the following lemma was used to prove Lemma 2. For the ensuing discussion we will assume

that a > a.

Lemma 3. a) If det(R;) >0 and det(R}) > 0 Y&=0,....p—1, then there exists a distribution with p
distinct atoms of mass ™, >0at b’ > 0 for /=1....,p whose moments are equal to r;
for k=1,....2p—1.

b) Let F(t) be equal to the polynomial given in (2.14), then P(bJ)=0 for y=1,...,p.
c) Let T be equal to the matrix given in (2.15) and let F(l,r,,....ro_l)rand

g:(xl.‘mxp)T, then z=T"1r. a
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We wili now give some asymptotic results for the semiparametric estimator F{)) given in (2.1). To

prove these results we will use certain approximation theorems found in Serfling {1980).

x5
Theorem 4. a) Let ﬁlk:[ A¥dF(A) for &=1.2..... then my=m, for k=1....2p-1
o}
and for any k=1,2,... we must have rh, = m, as T—x.
b) Let ¢{A) be a bounded and continuous function for all A > 0,

oc

then J g\ B &Y J M) dF()) as T—x
0 0

) If T—xc, then sup | F(A)—F(A)! 2 0.
A>0

d) Let r >0, then F| F(A)-F(A}["—0 and E(F(A)) —(F(2))" as T—oc.

Proof: a) Let k=1.....2p~1 and let § =1/3,. Using Lemma 3 and the definition of F(A)in (2.1
and the definition of r; in (2.9). we find that
o
rﬁkzz g (alo+l ) {e+k-1) )/3":
=1
alo+)1 {a+k-1 Zr b“_a a+l)--(a+k=1) rp=my.
Using Lemma 1 we ﬁnd that for any k=1.2,... there exists T such that forall T> T,
1, =my. Therefore, by a strong law of large numbers M, %% m; as T—oo.
b) This result follows immediately after applying a theorem by Frechet and Shohat
that is given in Setfling (1980), p. 17.
¢} This result follows immediately after applying Polya’s theorem in Serfling (1980), p. 18.

d) This result follows immediately from standard theorems in Serfling (1980), pp. 11-15. O
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