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Abst rac t  

Consider a portfolio of insurance policies where the mean frequency of claims for each policy may vary.  

This heterogeneity in the portfolio may be modeled a.s a distribution function F(,~) tha t  mixes the 

mean frequency A. Using the observed claim frequencies of this portfolio, we present a continuous 

semiparametr ic  es t imator  of the mixing distribution F(A) that  has some unbiased moments  and  

converges uniformly. The est imator tha t  we investigate is a mixture of g a m m a  distributions whose 

parameters  are calculated by considering the determinants of certain moment  matrices. 
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1. Introduction 

Suppose that the number of claims N for a policy can be modeled with the Poisson probability' 

density function (p<t 0 

p(nlA~ = e -'~ An (I.1) 
n[ 

~here .X > 0 is the mean frequency and n=0,{..2 .... In a heterogeneous population the mean frequency is 

dLstribtited according to some unknown distribution F{A). We will assume throughout the discussion 

that the mixing distribution F(A) is continuous and that F(0)=0. Moreover. we will assume that the 

mixing distribution is uniquely determined by its moments. 

Hossack, Pollard and Zehnwirth (1983) gave an asymptotically consistent estimator of F(A) under 

the assumption that it belongs to a G a m m a  cLass of distributions. Willmot (1987) also gave a 

consistent estimator when F(A) belongs to an Inverse-Ganssian class of distributions. Obviously, the~e 

estimators will be asymptotically biased if the true distribution is not in there parametric clas,s~. 

Lindsa', (1989) constructed a discrete estimator that has some unbiased moments and is consistent 

when F(A) is uniquely determined by its moments and F{0)=0. Expanding on Lindsay's result, we will 

present a continuous estimator F(A) that has some unbiased moments and converges uniformly when 

F(A} belongs to the class of continuous distributions that are uniquely determined by their moments 

and F(0)=0. In section 2 we will show how to calculate this estimator while in section 3 we will present 

some of its asymptotic properties. 

2. A Semiparametric Estimator 

The semiparametric estimator of F(A) that we will investigate will have the following form 

where 

I J=l 0 

(2.1) 

(2.2) 
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Note tha t  the pdf  of  the es t imator  in (2.1) is s imply a mix ture  of G a m m a  densities but  this does not 

m e a n  tha t  the unknown distr ibution F(,~) has this form. Moment  es t imates  of the pa ramete r s  3 j  and 

=j for this mix tu re  are given in Ti t ter ington.  Smith and Makov (1985), but these es t imates  do not 

necessarily satisfy pa rame te r  constraints such as 3 j  > 0. We now show how to es t imate  p, a ,  31 . . . . .  3p 

and 7r~ . . . . .  ~rp so t ha t  all pa ramete r  constraints hold. 

Suppose we observe the frequencies ?,', for s--1 . . . . .  T where T is the number  of policies in some 

insurance portfolio. Also suppose tha t  Nx,?,' 2 . . . .  are  independent  and identically d is t r ibuted random 

variables with a c o m m o n  pdf  equal to 

v(n) = [ v(nl,X) dF(~) (~.3) 
(o,~) 

where p(n I A) is given in (1.1). To  calculate the integer p > 0, we need to es t imate  the momen t s  

mk=E(A k) for ~---1,2 . . . .  A consistent and unbiased es t imator  of  m k is 

where 

~c 
r~ k - -  ~ n ( n - l ) . . . ( n - k + l ) f ( a )  (2.4) 

n----O 

T 
= I ~ I ( N , = . ) .  

f(u) T ,=t 
(2.51 

L'sing th . . . .  ent  sequence m t , ~  . . . . . .  define ~1~/'0--{1}, "~/~--{mt) and for 1"--1,2 . . . . . .  define the 

m o m e n t  ma t r ix  

and the shifted m o m e n t  ma t r ix  

"3 
1 rfi~ . . .  rfik / 

J 
~Ii ~ - "  n~.k+ l 

( 2 . 6 )  

I r~ l r/~ " '~k+t ] 
• m2 ,/1-3 ' ' ~ ' + 2  

"~= ! i : " 
ink+ I r~q.~ .-- r~,~+ I 

(~.7) 
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I s i n g  .~/'k and  ,~I~ for k-=O,1 . . . .  we def ine  p as follows 

p : ~ + ~up{~ : de~(S1,1 > 0 a.d de , lSq)  > 0 V,=O ..... ~}. (28 )  

1o ca lcu la te  the rest of the  p a r a m e t e r s ,  we define 

r k = m ~ / ( o ( c , + l ) . . . ( o + k - [ ) )  (2.9) 

for k : l . 2  . . . .  Next ,  we define Ro={1},  P ~ = { r l )  and  for k-=-l,2 . . . .  we define 

al ld 

I 1 r 1 - ' -  r k ] 

rl r2 ' ' '  rk+ 1 1 
R~ = 

: i i 

r k r~+ I " '"  r2k 

RT,= 

r I r 2 --. rk+ l | 

J r 2 r 3 .-- r k ~ .  2 

rk+l  rk+2 . . .  r2k+l  

(2.t0} 

(2.11) 

Using R k a n d  R~ for k'=0,1 . . . .  we define 4~(ck) as follows 

¢(a) = I + su~k:__ det(R,) :> 0 and det(R,') > 0 V=0 ..... k}. (2.12) 

We can  now def ine  o > 0 as a n y  va lue  t h a t  satisfies the inequa l i ty  

¢(o)  > p .  (2.13) 

Let: us ca l cu la t e  the p a r a m e t e r s  3--:(~31 . . . . .  ~3p)T Consider  the po lynomia l  

P(t)  = det  

1 r I ... rp_ I l 

r I r 2 ..- rp 

ro ro+t "'  r2p- 1 to 

(2.14) 
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Let bj > 0 for ]=1 ..... p denote the distinct real roots of P(t). We set ~3j > 0 equal to 1/bj. Finally, let 

us calculate the parameters  x= [x  t ..... n'a)T. Consider the matrix 

1 1 

b I b 2 
T =  

~ - ,  bV' 

and the vector r '= ( l , r  1 . . . . .  to_t) T.. Then x is equal to 

' "  1 

• ,- b a 
(2.15) 

= T - ]  r. (2.16) 

Let us apply the result to some motor  vehicle da t a  given in Johnson and  Hey (1971). In this da t a  we 

find tha t  T=421,240 and that  

Using (2.4) we find tha t  

p(0) = .879337 ~(1) = .110495 

~(2) = .009341 ~(3) = .000753 

~(4) = .000066 p(5) = .000007. 

(2.17) 

ml = .131735 r / ~ =  .024132 

~ =  .006522 m4 = .002424 

ms = .000840 m6 = .000000. 

(2.18) 

Using (2.8) we find tha t  p=2.  Using (2.13) we find that  any a greater than  3 is satisfactory.  For this 

example we let o--15. Using the polynomial in (2.14) we found that  b1=.023485, b2=.007188 and tha t  

L~1=42.58, /32=139.19. Finally, using formula (2.16) we found that  ~r1=.0978, r2=.9022.  Figure 1 shows 

a plot of the pdf of the semiparametric estimator in (2.1) and the pdf of the G a m m a  est imator  given in 

Htwosack, Pollard and Zehnwirth (1983). This graph and all the necessary calculations were ma*:le with 

the statist ical  comput ing language called GAUSS. 
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Figure l 

A Plot of the Density of the Semiparametric Estimator 

and the Density of the G a m m a  Estimator 

F 
<i 
~I I \ 
,,, "~ 

\ 

0 01 O~ 
- j  . . . . . . . . .  i 

0 3  0 4  

m e a n  f r e q e n c y  

3. Asymptot ic  Consistency 

Let Mo={1 } and for k==l,2 . . . .  let M k be equal to the matr ix  in (2.6) with r~, replaced with ra i for 

z=l ..... Ok. Also let M~={m~l and let Mt~ be equal to the matrix in (2.7) with mi replaced with m i for 

i=l  ..... 2k+I .  Lindsay (1989) called M~ the kth moment  matr ix  of F(A) while M~ was called the kth 

shifted moment  matr ix  of F(A). Using a strong law of large numbers we know tha t  rh~ t:3. mk as T~z~  

for k-=-l,2 . . . .  Therefore det(Mk) a=L det(Mk) and det(.~t~) a-2" det(M~) as T ~ o c  because the 

determinants  are continuous functions of the moments. Consulting Shohat and Tama tk in  (1943) we 

find that  if F[0)=0 and F()Q is continuous then det(M~) > 0 and det(M~) > 0 for k=0,1, . . .Using these 

fa<ts along with the definition of p given in (2.8), we get the following result. 
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Lemma 1. If T ~ c  then pt2- ~ .  F1 

Let Fnk=ol%k where r k is defined in (2.9). then ~ k ~  rhk as o ~ c .  Let AI k be equal to A't k with mt 

replaced by ~k and let ~I~ be equal to .(I~ with rh t replaced by ~k, then det(~/t)~det(M,~ ) and 

det(A'l~)--det(,~l~) a.s ct--3c. Let ~ be equal to (2.8) with ,~I k replaced by 3-t k and M~ replaced by ~ ,  

~hen ~a 0 such that  ~ >_ p Vo > c, o. According to Lindsay ([989) there exists a discre~.e distr ibution with 

distinct a toms of mass r: at a~ > 0 for 3=1 ..... ~ whose moments  are equal to ~ t  for k-:-i . . . . .  2"~-1. 

Now, consider the discrete distribution with ~ a toms of mass r j  at  %/a for 3=1, . . . ,~ .  The moments  of 

this discrete distribution are equal to r~. According to Shohat and Tamarkin  (1943), this means that  

det(R~) > 0 and det(R~) > 0 Vk-=0,..., '~-1 and d e t ( ~ ) = 0  and dee(R-p)=0 where R t and R~ are defined 

in (?A0) and (2.11), respectively. Therefore ~(~)=~ where ~(a)  is defined in (2.12). We summarize  the 

result as follows. 

Lemma 2. There exists % > 0 such that  ~(o) _> p for all a _> % .  [3 

Using our notat ion we will restate some results given in Lindsay (1989). Note tha t  a version of the first 

result in the following lemma was used to prove Lemma 2. For the ensuing discusaion we will assume 

that  c~ _> o O. 

Lemma 3. a) If det(R/c ) > 0 and det(R~) > 0 Vk:::0 ..... p - l ,  then there exists a distr ibution with p 

distinct a toms of mass xj  > 0 at b; > 0 for .r=l ..... p whose moments  are equal to r k 

for ~'=l . . . . .  2 p - 1 .  

b) Let /:~t) be equal to the polynomial given in (2.14), then P(b.~)=0 for F : I  . . . . .  p. 

c) Let T be equal to the matrix given in (2.15) and let r= (1 , r  1 .. . . .  rp_l )Tand 

~ = ( ~  ..... ~p)T, then ~ = T  -1 r, 71 
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X*$'~. ~i11 now give some asymptot ic  results for the semiparametric estimator ,k(A) given in (2.l).  To 

pro~e these results we will use certain approximation theorems found in Serfling (1980). 

~Iheorem 4. a) Let m i = f  AICdF(A) for k:-[,2 ..... then rhk=rh ~ for k-:--I ..... 2p-1 
0 

any k=l ,2  . . . .  we must have rh~ a-d. m k as and for T ~ .  

b) Let ¢()~) be a bounded and continuous function for all ,~ > 0, 
oc z¢ 

then I f 
o o 

c) If T~z¢ ,  then sup [ ,/-(AI-F[A) I e:Z 0. 

d) Let r > 0, then El J~(A)-F(A)[ r ~ 0  and EI.klA))~(F(A))~ as T~<x~. 

Proof: a) Let k=-I ..... 2 p - I  and let b j = l / 3 j .  Using Lemma 3 and the definition of / ' (A)  in (2.1) 

and the definition of r~ in (2.9), we find that  
p Z 3 ) =  

)=I p 

ol o ÷ l/-..(o+~-1) ~ -?~=o(o+ 11...(o+ k-11 ~=mk. 
j = l  

Using Lemma 1 we find that for any  k=l ,2 ....  there exists T k such tha t  for all T >  T k 

r~k=rfi k. Therefore, by a strong law of large numbers ~k ~d,- m~ a.s T- .c~ .  

b) This result follows immediately after applying a theorem by Frechet and  Shohat 

tha t  is given in Settling (1980), p. 17. 

c) This result follows immediately after applying Polya's  theorem in Settling (1980), p. 18. 

d) This result follows immediately from standard theorems in Serfling (1980), pp. 11-15. n 
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