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1 Introduction

Many different types of interest rate models have been proposed. This paper concentrates
on the models which use diffusion processes to model rates and proceed to set up a partial
differential equation for the price of a unit discount bond. Such models were reviewed by
Sharp(1990).

One of the earliest and most commonly used diffusion models is that of Brennan and
Schwartz (1979). A derivation of this model is presented as Appendix A. The model uses
diffusion processses for two rates, the instantaneous zero-term (“short™) rate and the “long”
vield on a consol (irredeemable) bond. The short rate is arrived to drift towards a value
related to the current long rate.

In Section 2 of this paper is discussed the solution of the second order partial differential
equation which results from the above model. It is demonstrated that although the analytic
solution has not been determined, it can be shown to have a character which could be
regarded as unrealistic.

In Section 3 is discussed the predictive power of the term structure. One might expect
that if the yield curve is strongly upwards sloping, then Treasury bill rates would tend to
increase. Indeed this behaviour would be in line with the form assumed for the drift of the
short rate under the model of Brennan and Schwartz(1979).

The data available in 1979 was not inconsistent with such a drift. However it is shown

that with the addition of data from the 1980's there is little evidence of any power of the
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terin structure to predict future Treasury bill rates.

2 A Characteristic of the Brennan and Schwartz Model

It is useful to consider an interesting feature of the Brennan and Schwartz (1979) model
which has hitherto not been mentioned in the literature despite its importance. The model
is described in Appendix A.

Consider (A.26) for small values of u; (e.g. 0.00 < 1; £ 0.25) and moderate values of u,
(e.g. 0.25 < u, < 1) Note that at the w; = 0 boundary there is by (A.27) and (A.33) a
discontinuity at 7 = 0. The numerical results confirm that 8b/du, reaches very high values as’
this discontinuity is propagated, and the dominant terms in (A.26) in the region considered
are

w__[(l_u,)[l__]i_ (2.01)

Then (2.01) is an advective equation by which a disturbance is propagated with speed given
by the coeflicient of 8b/3w;. Equations of this type are discussed by Vemuri and Karplus

(1981, p. 159). The initial condition for (2.01) is just before bond maturity

=1 12u>0
b{u,,w, 04)

i
=]

ue=0
This shape is propagated into the u; > 0 region as a Heaviside function. Neglecting the other

terms in (A.26) or equivalently (A.23) one can show through consideration of the speed of
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propagation £(a} +  —r) that the time taken for the discontinuity of the Heaviside function

to travel from infinity to the point v, 1 s

2 _ .
() = ——1n (“”" ’) (2.02)

of—r {

In the limit 62 —r —+ 0, 7y (02, f) = 1/¢. It is emphasized that this discontinuity is a genuine
solution of (A.26) and is not a product of the numerical methods.

The propagation of the Heaviside function is actually modified by the terms found in
(A.26) in addition to those found in (2.01). Nonetheless, the effect is seen in Appendix
B which gives the price P(r(20),¢(20),20) of a unit discount bond 20 years from maturity
as produced by a hopscotch finite difference algorithm (Gourlay and McGee, 1977). The
parameter values used are looscly based on those of Brennan and Schwartz (1979) and are
intended as examples for demounstration purposes. Only a 9x9 subset of the 101 x 101 matrix
of values is shown. but one can see the propagation of the very low bond values from the
£ = oc,r = 0 corner. The values given by equation (2.02) are verified. At o, = 0.0866.» =
0,7 = 20 the inversion of equation (2.02) gives { = 0.0463, and it can be seen that the
disturbance has indeed reached approximately this point. It should be noted in verifving the
position of the disturbance that the bond values are already reduced from 1 by the operation
of the other terms in (A.26), so that the best estimate of the position of the disturbance is
not where the bond value is one half.

A similar disturbance results from the 9b/du, term in (A.26), but its impact is not so

great as that resulting from the 8b/dy; term.

436



Thus this unusual behaviour of the solution leads to unusual values for the bond price.
Considering a fixed timme to maturity, eg 20 years. Then the bond price is close to zero over
much of the plane of interest rate values, as in Appendix B. The boundary region over which
the price rises to significant values is very small. This type of behaviour is not what one

would expect to arise from a fully realistic model of interest rates.

3 Predictive Power of the Term Structure

One view of the term structure is based on variations of the “expectations hypothesis™.
Typically, forward rates are thought to be estimators of future short rates where the estimator
has an upward bias because of investors’ risk aversion. This view has been investigated eg by
Fama (1984) who used U.S. interest rate data and regression techniques. He found that bond
vields did give some information about movements of short rates up to about five months in
the future.

The method now described is based on nonparametric techniques. An advantage is that
no assumption need be made, for example, about any change or lack of change over time of
the level of the random fluctuations.

Appendix C presents monthly tender rates t(z, j) of Canadian Treasury bills where 1
represents the calendar year and j the month. Appendix D presents monthly data m(z7, j)
on yields to maturity of 1 to 3 year Canadian government bonds. A test was devised of

the hypothesis that in each calendar vear i the “spread”™ m(i,1) — r(7. 1) at the start of the
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calendar vear has some power to predict the increase r{7,12) — r(r. 1} in Treasury bill rates
during the year. The choice of calendar year periods is made for the sake of convenience.
Appendix E illustrates the operation of the test. Within the N = 41 year period 1949
- 1989, ranks v,(¢), 1 to 41 are assigned to the January spreads. Ranks v.(¢) are assigned
separately to the eleven month increases in Treasury bill rates within the calendar year.
Then, denoting the beginning and ending calendar years by y; and yx. a calculation is

made of the statistic

E

bJI*—‘

D=§:(vs<i)~vc(i)) TINNHDEN +1) ): (3.1)

=y 1=y
where the equality is not exact in view of the possibility of tied ranks.
Under the null hypothesis of independence of the ranks. the expectation of D is given

(Lehmann, 1975) by

]\"3 N
6

Ey, (D) =

and the standard deviation can be approximated by

NYN +1)3(N - 1)) 12

(Vary,(D)) = ( =

For the period I, 1949 - 1989 one finds the following:

D! = 11,416
En (D)) = 11,480
(Varg,(D)M? = 1,815.15
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Thus the statistic 27 is only 0.0352 standard deviation from its expectation under the null
hypothesis of independence of the spreads and the changes in Treasury bill rates. Thus there
is no evidence of the power of the interest rate spread to predict Treasury bill movements
over the period 1949-1589.

One might speculate that the predictive power may have been present in a stable period
such as II: 1958 - 1974. The choice of upper limit could correspond to the oil price shock
of 1974. However, the prime motivation for choice of this period was to repeat the test ove
a period where it appears from Appendix E ranks that the test may vield a positive result.
Thus this unfairly chosen period could be regarded as giving an indication of the predictive

power under the optimum circumstances. The results for 1958 - 1971 are:

DM = 494
En (D) = 816
(Varg, (D" = 20

Thus, this 1.58 o result is very weak evidence of some predictive power over the period

1958 - 1974. In considering this result, the method of choice of period should be kept in
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4 Conclusion

The solution behaviour demonstrated in Section 2 must be considered a disadvantage of
the Brennan and Schwartz(1979) model. The behaviour is related to the fact that model
is not of the general equilibrium and arbitrage - free class described by Cox. Ingersoll and
Ross (1985a and 1985b). In addition, the short rates drift towards the long rate under the
Brennan and Schwartz (1979) model must be viewed somewhat skepticallyv in light of the
results of Section 3. Nonetheless. the model continues to be one of the more practically

useful and comprehensive description of the complicated behaviour of the terns structure
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APPENDIX A

Ito’s Lemma

A generalized form of Ito's lemma is given (Malliaris and Brock, 1982, p. 85). Let u(X(t).1) :
[0, T] x R* — R* denote a continuous nonrandom function such that its partial derivatives
Dufot OufOX (i =1,2,---,d) and D*u/OX.0X; (1,5 < d) are continuous. That is. u is now
considered to be a k-vector and X a d-vector. Suppose that X(#) = X{t.w)  [0. T} xQ — K*

is a process with stochastic differential
dX (1) = fIN{1), 1)dt + o(t)dz(1) (A.01)

Suppose also that o(t) = o(t.w) : [0,T] x ! — R? x A™ is a nonanticipating (d x ) matrx
valued function and that z(1) = z{t.w) : [0,T) xQ — ™ is a m-dimensional Wiener process.

Let Y {2y = u(t. X (1)), Then Y'(¢) has a differential on [G. 7] given by

.2u
LY 6_\9_@_\_} (X(0),0)[e(t)e' (1)), dt

du

tox

(X (1), )o( X (). t)d=(1)
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_Jou  Qu 1 , du A 5
_{—87+§Xf+§tr {u,\',\' 00]} dl+ﬁ0d~ (A0~)

where uy x is the (d x ) matrix with ¢, jth element the k-vector #*1/dX,0X,.

Partial Equilibrium Development

There are in the literature several interest rate models where the price of a pure discount
bond is assumed to depend on one or two state variables which are expressed in terms
of Wiener processes. In this Appendix the models are summarized in a general framework
corresponding to that of Buser, Hendershott and Sanders (1988) and Hull and White (1988).
The common thread linking the models is that the use of Ito’s lemma and an arbitrage
argument lead to a partial differential equation for the bond price. Tn a few cases a closed
form solution can be found while in other cases a numerical solution is necessary.

We are interested in the price of a pure discount (zero coupon) bond which matures at
$1 at time 7 vears hence (so dr = —dt). It is assumed that this bond is one of at least n + 1
traded securities B,,7 =.2.---n + 1 the prices of which are functions of n state variables

X,.1=1.2,---.n. The state variables are assumed to follow the joint diffusion process
dJY, = ﬁ.-dt-l»r},»dz,' 1= 1,2,"-,71 (A03)

The drift and instantancous variance rates 3; and 7, are functions of time and of all the

Xi.i=1.2,---n. The dz are standard Wiener processes such that E(dz,) = 0, E(d=?) = dt
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and E(dz;dz;) = p;;dt where p,; is the instantancous correlation between the ith and jth
Wiener processes.

Now we apply Ito’s lemma (A.02) to the price B;(X,, -+, X,, 1) of the jth security and
find

dB,
- = dt+z s,; dz; J=12,-n+1 (A.04)

] =1

where the p; and s,; are functions given by

n 9B B' ‘
= 9 ..
; a,‘, ‘Z;kzlaxax, Mk = 22| i =1.2, §+1 (A.05)
1 0B,
8 = {3\,77] J= 12, n+l (A4.06)

In the above the y, is the instantaneous expected rate of return on security B, and s,; is the
portion of the instantaneous standard deviation of B, which is produced by its dependence
on X;.

Now an arbitrage argument can be developed. Since there are n 4+ 1 securities and n
Wiener processes a self financing (no cash injection required) portfolio can be formed which
will be instantaneously riskless; that is its instantaneous rate of return can be predicted with

certainty. Denoting the portfolio value by I and the nominal quantity held of security B, by

y, we have
n+1
I=5% y;B; ‘ (A.07)
=1
Consider the instantaneous change in I,
n4l n+1
dl =Y y; dB;+ ) B;dy,
=1 1=1
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y,dB; (A.08)
1

<
1

where the second term in the expression for dI is zero because of the self-financing nature

of the portfolio (Ingersoll, 1981). Now using (A.04) in (A.08) we have

n+1 nt+l n
dI =5 yu;Bidt+ Y. 3 y; s, By dz (A.09)
y=1 i=1 =1

We can choose the y, to produce an instantaneously riskless portfolio by setting equal to zero
the second term in {A.09). Then our riskless portfolioc must by arbitrage arguments have a
return equal to the riskless rate of interest », often treated as being well approximated by
the overnight inter-bank rate or the rate on Treasury bills. Thus d7 = Irdt and hence from

{A.07) and (A.09) we have the set of equations

n+1
> oy B, ~r)=0 (A.10)
1=1
n+1
> y,Bjs;=0 i=12--\n (A1)
=1

By a well known result in linear algebra, this set of n + 1 homogeneous equations for n + 1
unknowns y; (or equivalently y; B;) has a non-zero solution iff for a set Ay, A,,--+, A, of

variables which depend only on the state variables and time we have

n
py—r=3 As;  j=1,2-,n+l (A.12)

i=1
Then (A.12) is an asset pricing model where the A; express the extra return demanded by

investors to compensate for the volatility of the ith state variable X,. For most choices of
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state variables (e.g. interest rates) the s;; from (A.06) will be negative, hence the X, will be
negative. A, is often referred to as the (negative of) the market price of risk.

By choosing one particular security B out of the By, B,, - - -, B,,, and substituting (A.05)
and (A.06) in (A.12) we derive the important equation

1
3 2

n n
=1 k=

aB 0B
XX, 8X i Tk P«k+z X, —/\.'n.)—a—r—rB=0 (A.13)

1 =1

This equation (A.13) comprises a partial differential equation for the bond price. It was not
derived from general equilibrium arguments, and the functional forms of the prices of risk A,
are left unspecified. This is in contrast with the Cox, Ingersoll and Ross {1985a and 1985b}

general equilibrium model which effectively specifies relationships between the A,, 3, and 7,.

Partial Equilibrium Model

Special cases of the pricing model (A.13) have been derived by several sets of authors.
Brennan and Schwartz (1979) point out that a single parameter model, such as one based
on the spot rate of interest, will be unable to reproduce observed yield curves. The riskless
or “spot” rate is the limit as the term tends to zero of the yield on a risk-free bond. It is
observed that at different dates this rate may be identical while the rest of the yield curve
differs. This is a result of such factors as differences in investors’ expectations about future
changes in the inflation rate. If it is anticipated that the inflation rate will increase in the
future, then long rates will exceed short rates by a greater margin than would otherwise be

the case. Brennan and Schwartz develop a model in which the riskless and long rates follow
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a joint stochastic process. Thus account can be taken of information about the future course
of the riskless rate which is contained in the current value of the long rate. A disadvantage
of the model is that two exogenous variables are required, the riskless and long rates, rather
than only the riskless rate.

Brennan and Schwartz again use the riskless rate r as being one of their variables, while
the other state variable is the long rate . Then r and { follow the process corresponding to
(A.03)

dr = 8, dt + 7, dz, (A.14)
d[ = ,81 dt +1]1 dZ( (A15)

where the forms of 5,,8,1, and 7, are yet to be specified and in general the two Wiener
processes are correlated. They assume that a consol bond (infinite term bond) of value V()

exists which pays a continuous coupon of §1 per annum, so that { is defined by
, 1

Now considering equation (A.13) for the consol bond we notice that 8V//dr = 0 and that,
in view of the infinite maturity, 0V/d7 = 0. Substituting 8V/8l = —1/1* and 8*V/OF = 2/,
and adding a term 1 to the left hand side of (A.13) to allow for the coupon payment per

annum, we find

Mty = =T+ (8= B+ )/ (A1T)

Thus we are left with only one utility dependent function A, (r,1,1).
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Substitution of (A.17) into (A.13) gives the partial differential equation for a bond of

arbitrary maturity

1 8B , B 1 8°B , 6B
352 T Ga s E =)
8B (n? B
+—a‘j‘ (nTI + 12 -—7‘1) - %‘r. —Br=0. (Ald)

It will be noted that this important partial differential equation contains neither A; nor 3.
the drift parameter for the long rate . In general, B,n,,n. p... 8. and A, are functions of .1
and t.

Equation {A.18) has no known analvtic closed form solution, and Brennan and Schiwart

use numerical methods in order to solve it.

Specialization of the Brennan and Schwartz Model

The Brennan and Schwartz iwo state variable model (A.18) is probably the model which has
secn the widest use because the number of parameters is less than that of most two state
variable models. Since the price of a security, the consol bond, can be expressed in terms
of one of the state variables, the long rate, the number of parameters is reduced as shown
in the derivation of (A.18). In this Appendix, which owes much to Brennan and Schwartz
(1979), the specialization of (A.18) and the transformation of the semi-infinite ranges of the

short and long rate state variables are described. Then the boundary conditions are derived.
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Equation (A.18) was specialized by Brennan and Schwartz (1979). They assumed that

ne(r,1,t) = ro, (A19)

and

mir, ,t) = loy {A.20)

which ensures for 8, > 0 and 8; > 0 that r and ! cannot become negative, and corresponds
with a view that interest rate fluctuations will be on a proportionate basis. They assumed
that the short rate r drifts towards the long term rate ! modified by an offset parameter p.
50

dinr=allnl-Inp~Inr]ldt+odz:, r>0 (A.21)

and hence by Ito’s lemma

Bo(r00) = 1 | In(l/pr) + %03] . (A4.22)
Then substituting (A.19), (A.20) and (A.22) in (A.18) Brennan and Schwartz find
% %ig- rzaf+g:—g rl pn o, m+%%2-§ I’af+%—? r[aln (pir) +%af—/\rdr]
+%:?1 o +1-7] —%—?—Br:O. ‘ (A.23)

In order to handle numerically the possibilities I — oo and r — co, the transformations are

made

(A.24)

449



1

405
1+nl (4.25)

u =

and b{u,,u;, 7) is substituted for B{r,{,7). Then (A.23) becomes, with the addition of a

term in ¢, the coupon per unit face value,

1 &% 9% 1 ai L
3 o ul{l —u)ol + Bu.u, (1 —u )} — w)puo,.op + 5 3a wi(l — ) o}
ab 1 u, (1 ~ )
— u, (1 —u, 2(——,)— In| —+——=1 + A0, A2
+6u,u( U, ) [a, 5 U an[pu((l—u,) + A0 (A.26)
ab , 1 1 o (l—w)
+6—u[ ll}(l*l[(’[—ll(d’l —n—w(l—u[)+nur(l—uf)] —a—r"b nu. +(]—0

It is required to solve (A.26) numerically.

The boundary conditions on (A.26) are important, and are derived by Brennan and
Schwartz (1979). The condition at maturity of the bond b(w,.u;.7) is that it be worth the
be at which it is redeemed:

bluy, u,0) = by (A2T)
By multiplving (A.26) by nu, and letting u, — 0 and »; — 0 the boundary condition is
obtained
5(0,0,7) =0, >0 (A28
which is intuitively reasonable in view of the diccrunting 1 « future maturity value at an
infinite interest rate.

Another boundary condition results from multiplying {A.26) by nu, and letting v, — 0

to obtain
b

E (0, uy, THu(l —uy) — 80,2y, 7) = 0. (A.29)
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Solving (A.29) gives

w du'
0=y o[} i
oy wl(l—u))
_ w(l —up) A.
b(0,u,7) mITR— (A.30)

where u is some value of w; chosen as an origin. We always have a finite non-negative bond
value since the value cannot exceed the sum of the total future coupons and the maturity
value of the bond. Thus consideration of {A.30) for the case u; = 1 leads to the conclusion
that

b0, u.7)=0, 7>0, 0<wuy<Ll (A.31)

By dividing (A.26) by Inw; and letting w; — 0 one finds

ab

au (1 —u,) é—J—(u,,O,T) =0. (A32)

r

Thus, in view of (A.28). another boundary condition is
b(u,,0,7) = 0, >0, 0<u, <1. {A.33)

In other words, (A.31) and (A.33) state that if either the short or long interest rates r and
| are infinite, then the bond value is zero.
If one sets u, = 1 and u; = 1 in (A.27) one finds

gg (1,1,7) =0 (A.34)

and hence from (A.27) one has the boundary condition

b(1,1,7) = b + g, T >0. (A.35)
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This is not surprising since by (A.22) and (A.19) a zero short rate r will remain at zero.

For the case u, = 1, terms involving differentiation by u, drop out and (A.26) becomes

1 8% ab 1
250 (Lu,r)ud(l —w)of + Bu, (1, u, 7wl — w) | ~wof — o (1 —w)
0b
+<I"(‘97 (1,U1,7)=0' (A36)

Thus b(1,u;, ) is the solution of {A.36) subject to the boundary conditions (A.27), (A.33)
and (A.35).
For v — 1, (7.2.08) is dominated by the In(1 — u;) term so
au,(1 - u,.)a—aullr (4,1, 7)=0. (A.37) -

Thus solving (A.37) subject to (A.35), the final boundary condition is

b(u,,1,7) = b + 79, 726, Ou, < 1. (A4.33)
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APPENDIX B - UNIT DISCOUNT BOND 20 YEARS FROM MATURITY

r values - .-
I values

0.00000
0.02500
0.03750
0.05833
0.07917
0.10000
0.13125
0.22500

o

0.

1.00000
0.98565
0.79889
0.24756
0.04087
0.00555
0.00029
0.00000
0.00000

0.02500 0.03750 0.05833 0.07917 0.10000

1.00000
057777
0.50031
0.32148
0.12586
0.03413
0.00370
0.00001
0.00000

1.00000
0.51902
0.44710
0.31281
0.14925
0.04985
0.00703
0.00002
0.00000

1.00000
0.44900
0.38348
0.28626
0.16953
0.07389
0.01494
0.00009
0.00000

Diffusion Parameters

o, = 0.2550
o, = 0.0866
g, = 0.3747
o = 0.0701
A = 0.0355

= 1.06173

g = 0.01 (spacing of u,)

h = 0.01 (spacing of u;)

1.00000
0.39772
0.33743
0.25789
0.17325
0.09161
0.02472
0.00028
0.00000

1.00000
0.35744
0.30171
0.23274
0.16784
0.10192
0.03480
0.00066
0.00000

Grid Parameters

n = 40

453

0.1313

1.00000
0.31005
0.26023
0.20178
0.15363
0.10624
0.04755
0.00172
0.00000

0.2250

1.00000
0.21807
0.18117
0.14091
0.11262
0.08945
0.05903
0.00865
0.00000

o]

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000



1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
18972
1973
1974
1875
1976

1977

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

Note: The source for this data is Statistics Canada CANSIM series B14001:

Treasury bill tender rate (monthly average).

APPENDIX C

CANADIAN TREASURY BILL RATES 1946 - 1989

JAN
041
0.51
0.63
0.89
135
1.85
0.99
2.58
3.70
3.54
3.34
4.81
3.20
3.08
3.82
3.76
3.78
461
4.83
5.94
6.36
7.80
4.59
3.29
3.79
6.28
6.65
8.5¢
8.08
7.14
10.80
13.54
16.77
14.46
9.53
9.73
9.52
10.02
7.70
8.42
11.15

FEB
0.41
0.51
0.70
0.90
1.46
1.75
0.90
2.50
3.76
2.99
3.70
4.69
3.05
3.08
3.68
3.81
3.72
4.68
4.62
6.57
6.31
7.70
4.51
3.48
3.92
6.11
6.34
8.70
7.67
7.24
10.78
13.56
16.87
14.54
9.39
9.77
10.56
11.55
7.32
8.31
11.42

MAR
0.44
0.51
0.75
0.93
1.51
1.62
113
261
3.7
2.44
416
387
3J.21
3.12
3.63
3.88
3.7
487
4.26
6.90
6.62
7.32
3.30
3.51
4.29
6.28
6.29
9.04
7.61
7.62

10.90

14.35

16.64

1488
9.21

10.32

11.08

10.49
7.00
8.43

11.99

APR
0.49
0.51
0.75
0.97
1.53
1.58
1.23
2.83
3.72
1.67
4.52
3.40
3.30
3.08
3.58
3.75

713
6.54
8.97
7.55
8.18
10.84
15.64
16.92
15.07
9.21
10.56
9.92
9.14
7.52
8.75
12.29

MAY
0.50
0.51
0.75
101
1.57
1.60
1.24
2.84
3.77
1.56
4.98
2.87
3.19
3.36
3.3
3.66
3.84
5.10
412
6.96
6.75
6.51
3.06
3.68
5.08
8.24
6.90
8.94
7.26
8.13

10.84

12.54

18.61

15.08
9.12

11.27
9.56
8.33
8.05
8.88

12.20

JUN
0.51
0.51
0.75
1.06
1.69
1.57

8.24
10.82
11.15
18.83
16.11

9.24
11.74

9.35

8.60

8.30

9.20
12.06
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9.27
12.07

8.77
11.32
10.21
20.85
14.41

9.34
121

9.01

8.33

8.95

9.62
12.15

SEP
0.51
0.61
0.86
1.12
1.91
1.21
1.77
3.06
3.94
2.02
5.73
1.91
242
5.03
3.69
3.81
411
5.03
4.50
562
7.75
5.44
3.93
3.57
6.41
9.03
8.37
8.97
7.09
9.02
11.57
10.63
19.70
13.15
9.26
12.08
8.95
8.32
9.22
10.26
12.20

oCT
0.51
062
092
119
193
1.18
207
3.30
3.84
248
5.14
265
253
4.54
357
3.70
4.14
513
491
564
768
5.25
3.79
3.57
6.51
8.60
831
9.07
719
9.52
12.86
11.57
1819
11.54
9.22
11.74
8.58
8.32
8.72

- 10.29

1220

NOV
0.51
0.62
0.92
1.21
1.90
1.17
2.33
3.39
3.66
3.00

9.34
10.79
8.72
8.27
8.24
10.60
12.23



APPENDIX D

CANADIAN 1-3 YEAR BOND RATES 1949 - 1989

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1949 1.63 1.62 1.69 1.68 168 1.67 1.68 1.60 1.58 1.61 1.61 1.70
1950 1.7 1.71 1.73 1.73 1.72 1.7 1.75 1.75 1.80 1.83 2.04 2.13
1951 2.18 2.23 2.72 2.52 2.38 2.48 2.48 2.45 2.43 2.39 2.39 2.33
1952 2.47 2.43 2.53 2.54 2.55 2.72 2.89 3.01 3.03 317 3.22 3.19
1953 3.04 3.09 3.12 312" 313 3.06 3.29 3.42 3.36 3.35 3.26 3.26
1954 3.02 2.75 2.72 217 2.19 2.01 2.01 1.91 1.85 1.92 1.85 1.79
1955 1.55 1.65 1.59 1.72 1.84 1.91 2.21 2.32 2.48 2.60 317 3.25
1956 3.01 3.01 310 3.56 336 3.06 3.40 3.80 3.90 4.09 4.39 4.54
1957 4.77 4.18 4.20 4.27 4.70 4.79 4.71 4.84 4.87 4.46 3.92 3.84
1958 3.63 3.55 3.18 3.00 2.80 3.14 2.37 2.69 3.09 335 4.00 4.52
1959 4.32 4.66 4.72 4.95 5.06 5.21 5.33 5.54 5.75 5.04 4.78 4.96
1960 4.89 4.81 4.21 4.14 4.30 4.06 3.69 2.98 3.07 3.50 3.92 3.99
1961 3.78 3.59 3.84 4.00 4.20 3.58 3.42 3.22 3.57 3.26 3.24 3.35
1962 3.50 3.40 3.20 345 3.91 5.49 5.63 5.37 5.12 4.22 3.99 4.12
1963 4.14 4.29 4.38 4.38 3.97 3.81 4.26 4.45 4.22 4.12 4.22 4.28
1964 4.38 4.33 4.49 4.50 4.30 4.33 4.45 4.55 4.40 4.44 4.49 4.21
1965 4.01 4.31 4.10 4.09 4.19 4.29 4.49 4.75 4.86 5.01 5.03 5.11
1966 4.99 5.19 5.27 5.20 517 5.16 5.44 5.91 5.49 5.54 5.7 5.43
1967 4.92 5.05 435 4.47 4.92 5.34 5.40 5.49 5.80 5.79 5.80 6.16
1968 6.35 6.51 6.69 6.58 6.71 6.63 6.17 5.87 5.94 6.16 6.13 6.71
1969 6.71 6.82 7.00 7.22 7.54 7.53 7.77 7.69 7.86 7.73 7.94 8.07
1970 795 7.66 7.08 6.83 6.78 €.52 6.44 6.52 6.47 6.36 §.37 4.89
1971 5.05 5.05 4.7% 4.88 4.97 5.31 5.51 5.33 5.26 4.41 4.1 4.42
1972 4.76 5.18 5.51 5.73 5.96 5.86 5.87 5.97 5.85 5.66 5.03 5.15
1973 5.48 5.45 5.77 6.24 T.15 6.94 7.08 7.27 6.94 6.61 6.57 6.92
1974 6.75 6.58 7.55 8.83 8.93 9.29 9.18 9.30 8.87 747 6.98 6.66
1975 5.91 6.22 6.56 7.23 7.09 7.35 7.90 8.37 8.76 8.21 8.48 8.36
1976 8.13 8.36 8.63 8.46 8.25 8.40 8.44 8.45 8.30 8.35 8.01 7.50
1977 7.57 7.42 7.46 7.56 7.33 7.31 7.37 7.36 7.43 7.52 7.60 7.59
1978 7.70 T2 8.28 N8 8.58 8.60 8.63 8.63 8.77 9.48 10.07 10.14
1979  10.08 10.07 10.10 9.76 9.76 9.87 10.06 10.89 11.17 1278 1241 12.24
1980 1279 13.62 1427 1235 1085 1048 11.11 11.98 1269 13.11 13.08 12.95
1981 13.06 13.66 1404 1578 1622 16.19 1877 1882 1894 1733 13.57 1522

1982 1595 15.03 15.43 18 1471 16,50 1569 13.53 12.75 11.57 10.80 10.24
1983 10.28 10.23 1018 [EEavs] 9.75 10.08 1038 1086 10.10 988 1003  10.39
1884 1023 1074 1150 1176 1282 1288 13.02 1238 12.04 1144 10+7 10.44

1985 10.27 11.69 11.14  10.59 1016 10.02 10.06 9.79 9.88 9.44 9.26 9.10
1986 9.88 9.66 9.36 8.82 8.98 8.83 9.07 9.02 9.10 8.99 8.7 8.63
1987 7.85 8.01 7.7 423 9.33 9.11 9.73 9.88 10.61 9.46 9.65 9.69
1088 9.04 8.83 8.99 9.32 9.46 9.40 9.67 10.38 10.17 9.80 10.36 10.58
Y89 10.58 11.30 1160 1101 1061 1019 1005 1063 10.52 1024 1099 1084

Note: The source for this data is Statistics Canada CANSIM series B14009: Government

of Canada bond yield average, 1 to 3 years.
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APPENDIX E

TEST OF PREDICTIVE POWER 1949 - 1989

Year Spread  Rank Bill Rate Change Rank

t m(i,1) - 7(,1)  ve(1,) r(1,12) — r(1,1) ve(1)
1949 1.220 35 0.100 17
1950 1.200 34 0.120 18
1951 1.550 38 0.270 20
1952 1.580 39 0.410 23
1953 1.690 40 0.530 25
1954 1.170 33 -0.490 8
1955 0.560 25 1.600 34
1956 0.430 20 1.030 30
1957 1.070 32 -0.050 14
1958 0.090 10 -0.080 13
1959 0.980 31 1.680 35
1960 0.080 9 -1.200 6
1961 0.580 26 -0.380 10
1962 0.420 19 0.800 28
1963 0.320 15 -0.110 12
1964 0.620 27 (0.090 18
1965 0.230 14 0.670 26
1966 0.380 17 0.460 24
1967 0.090 11 0.900 29
1968 0.410 18 0.020 15
1969 0.350 16 1.420 33
1970 0.150 12 -3.330 2
1971 0.460 21 -1.340 5
1972 1.470 36 0.370 21
1973 1.690 41 2.590 38
1974 0.470 22 1.040 31
1975 -0.740 3 1.930 36
1976 -0.460 7 -1.180 11
1977 -0.510 6 -0.900 7
1978 0.560 24 3.290 41
1979 -0.720 4 2.830 40
1980 -0.750 2 2.770 39
1981 -3.710 1 -1.960 3
1982 1.490 37 -4.210 1
1983 0.750 29.5 0.210 19
1984 0.500 23 0.400 22
1985 0.750 29.5 -0.440 9
1986 ~-0.140 8 -1.810 4
1987 0.150 13 0.750 27
1988 0.620 28 2.520 37
1989 -0.570 5 1.060 32
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APPENDIX F

TEST OF PREDICTIVE POWER 1958 - 1974

Year Spread Rank Bill Rate Change Rank

i m(1,1) = r(5,1)  v,(i) r(1,12) = r(,1)  vc(d)
1958 0.090 2 -0.080 6
1959 0.980 15 1.680 16
1960 0.080 1 -1.200 3
1961 Q.580 13 -0.380 4
1962 0.420 10 0.800 12
1963 0.320 6 -0.110 5
1964 0.620 14 0.090 8
1965 0.230 5 0.670 11
1966 0.380 8 0.460 10
1967 0.090 3 0.900 13
1968 0.410 9 0.020 7
1969 0.350 7 1.420 15
1970 0.150 4 -3.330 1
1971 0.460 11 -1.340 2
1872 1.470 16 0.370 9
1973 1.690 17 2.590 17
1974 0.470 12 1.040 14
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