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1 I n t r o d u c t i o n  

Many different types of interest rate models have been proposed. This paper concentrates 

on the models which use diffusion processes to model rates and proceed to set up a partial 

differential equation for the price of a unit discount bond. Such models were reviewed by 

Sharp(1990). 

One of the earliest and most commonly used diffusion models is that of Brennan and 

Schwartz (1979). A derivation of this model is presented as Appendix A. The model uses 

diffusion processses for two rates, the instantaneous zero-term ("short") rate and the "long" 

yield on a consol (irredeemable) bond, The short rate is arrived to drift towards a value 

related to the current long rate. 

In Section 2 of this paper is discussed the solution of the second order partial differential 

equation which results from the above model. It is demonstrated that although the analytic 

solution has not been determined, it can be shown to have a character which could be 

regarded as unrealistic. 

In Section 3 is discussed the predictive power of the term structure. One might expect 

that if the yield curve is strongly upwards sloping, then Treasury bill rates would tend to 

increase. Indeed this behaviour would be in line with the form assumed for the drift of the 

short rate under the model of Brennan and Schwartz(1979). 

The data available in 1979 was not inconsistent with such a drift. However it is shown 

that with the addition of data from the 19S0's there is little evidence of any power of the 
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term structure to predict future Treasury bill rates. 

2 A C h a r a c t e r i s t i c  o f  t h e  B r e n n a n  a n d  S c h w a r t z  M o d e l  

It is useful to consider an interesting feature of the Brennan and Schwartz (1979) model 

which has hitherto not been mentioned in the literature despite its importance, The model 

is described in Appendix A. 

Consider (A.26) for small values of ul (e.g. 0.00 < ul _< 0.25) and moderate values of ur 

(e.g. 0.25 __< ur _< 1), Nolo, that at the ul = 0 boundary there is by (A.27) and (A,33) a 

discontinuity at r = 0. The numerical results confirm that Ob/Oul reaches very high values as  

this discontinuity is propagated, and the dominant terms in (A.26) in the region considered 

a r c  

1 __(')b _ u t ) [1  - uz ]_0b ( 2 . 0 1 )  
0.~ (1 . ,  0T 

Then (2.0]) is an advective equation })y which a disturbance is propagated with speed given 

by the coefficient of Ob/Out. Equations of this type are discussed by Vemuri and Karplus 

(1981, p. 159). The initial condition for (2.01) is just before bond maturity 

b(u,,ut,O+) l = 1 1 > u~ > 0 

I = 0  u t = O  

This shape is propagated into the ut > 0 region as a Heaviside function. Neglecting the other 

terms in (A.26) or equivalently (A.23) one can show through consideration of the speed of 
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propagation [(cr~ + [ - r) that tile t ime taken for the discontinuity of the Heaviside funclion 

to travel from infinity to the point r,l is 

rH(r,l) = 1 ( l+cr~--r)  

In the limit cr~ - r -+ 0. rn(a~,  g) = 1/g. It is emphasized that  this discontinuity' is a genuine 

solution of (A.26) and is not a product of the numerical methods. 

The propagation of the [/eaviside function is actua]ty modified by" the terms found in 

(A.2(i) in addition to those found in (2.01). Nonetheless, the effect is seen in Appendix 

B which gives the price P(r(20), g(20), 20) of a unit discount bond 20 years from maturity 

as produced by a hopscotch finite difference algorithm (Gourlay and McGee, 1977). The 

parameter  values used are loosely based on those of Brennan and Schwartz (1979) and are 

intended as examples for demonstrat ion purposes. Only a 9x9  subsel of lhe 101 xl01 matrix 

of values is shown, but one can see the propagation of the very low bond values from the 

t e = :x:,r  = 0 corner. The  values given by equation (2.02) are verified. A1 a¢ = 0.0866. r = 

0, r = 20 the inversion of equation (2.02) gives g' = 0.046a, and it can be seen that the 

disturbance has indeed reached approximately this point. It should be noted in verifying the 

position of the disturbance that  the bond values are already' reduced from 1 by the operation 

of the other  terms in (A.26), so that  the best est imate of the position of the disturbance is 

not where the bond value is one half. 

A similar disturbance results from the Ob/Ou, term in (A.26), but its impact  is not so 

great as that resulting from the Ob/Ou~ term. 
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Thus this unusual behaviour of the solution leads to unusual values for the bond price. 

Considering a fixed time to maturity, eg 20 years. Then the bond price is close to zero over 

much of the plane of interest rate values, as in Appendix B. The boundary region over which 

the price rises to significant values is very small. This type of behaviour is not what one 

would expect to arise from a fully realistic model of interest rates. 

3 P r e d i c t i v e  P o w e r  o f  t h e  T e r m  S t r u c t u r e  

OJw view of the term structure is based on variations of the "expectations hypothesis". 

Typically, forward rates are thought to be estimators of future short rates where the estimator 

has an upward bias because of investors' risk aversion. This view has been investigated eg by 

Fama (1984) who used U.S. interest rate data and regression techniques. He found that bolld 

yields did give some information about movements of short rates tip to about five months in 

tile future. 

The method now described is based on nonparametric techniques. An advantage is that 

no assumption need be made, for example, about any change or lack of change over time of 

the level of the random fluctuations. 

Appendix C presents monthly tender rates t(i , j) of Canadian Treasury bills where i 

represents the calendar year and j the month. Appendix D presents monthly data rr~(i,j) 

on yields to maturity of 1 to 3 3'ear Canadian government bonds. A test was devised of 

the hypothesis that in each calendar year i the "spread" re(i, 1) - r(i, 1) at the start of the 
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calendar year has some power to predict the increase r(i,  12) - r(r ,  1 ) in Treasury bill rates 

during the year. The choice of calendar year periods is made for the sake of convenience, 

Appendix E illustrates the operation of the test. Within the N = 41 year period 1949 

- 1989, ranks t,,(i), 1 to 41 are assigned to the January spreads. Ranks vc(i) are assigned 

separately to the eleven month increases in Treasury bill rates within the calendar year. 

Then,  denoting the beginning and ending calendar years by Yl and Yx, a calculation is 

made of the statistic 

D= ~'~ (v,( i)-vc(i)) ~- A'(N + I)(2N + I)-2~_,,,( i)v~(i) (3.1) 
i= l t l  ,=1'  

where tile equality is not exact in view of the possibility of tied ranks. 

Under the null hypothesis of independence of the ranks, the expectation of D is given 

(Lehmann,  1975) by 

N 3 - N 
EIto (D) = 

and the standard deviation can be approximated by 

(Varlto(D))- (A"(N + I ) ' (N-1 ) )  ' / '  
36 (3.2) 

For the period I, 1949 - 1989 one finds the following: 

D t = 11,416 

EHo(D t) = 11,480 

(VarHo(D)) l/~ - 1,815.15 
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Thus the statistic D l is only 0.0352 standard deviation from its expeclat ion under th,' n1111 

hypothesis of independence of the spreads and the changes in Treasury bill rates. Thus tl,cr¢' 

is no evidence of tile power of the inlerest rate spread to predict "Ireasury bill m~J~'m~'nl~, 

over the period 1949-198!). 

One might speculate that  the predictive power may have been presen/ in a stable period 

such as II: 1958 - 197,1. The choice of upper limit could correspond to the oil price stl<~ck 

of 197,1. tIowever, the prime motivation for choice of this period was to repeat the l~'sl ~,x~'i 

a period where ii appears from Appendix F, ranks that the test may yield a i~osiiive r~'sul~. 

Thus this unfairly chosen period could be regarded as giving an indicatit~ii ~t tll~' pr~,dicti~~, 

power under the opt imum circumstances. The  results for 1958 - 197.t are: 

D rl = 49.1 

Eflo(l) H) = S16 

(I'arHo(DH)) 1/2 --'- 201 

Thus, this 1.58 ~r result is very weak evidence of some predictive power ov<,r lhe pe'ri,.] 

195S - 1974. In considering this result, the method of choice of period should be kept in 

mind. 
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4 C o n c l u s i o n  

The solution behaviour demonstrated in Section 2 must be considered a disadvantage of 

the Brennan and Schwartz(1979) mode[. The behavi()ur is related to thc' facl t}la! mod¢,l 

is not of the gel~eral equilibrium and arbitrage" - free class described by (:ox. Ing~'rsoll a~d 

Ross (1985a and 1985b). In addition, the short rates drift towards the long rat('und~,r tt~e 

t:lrem/an and Schwartz (1979) model must I~e view('d son~('what skeptically ill lighl ~)fthe 

results of Section 3, Nonetheless. t},(' model continues to b(' on(, of tl~¢, nit,l-c, i)ract i( ally 

,s~,f~d amt coi~q)r('h('nsive d~'scripti,~tt of tl~e complicated t~'havi~ur of Ih~* I('~H: sl ru<t~rc 
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A P P E N D I X  A 

I t o ' s  L e r n n l a  

A genera l ized  h) rm of l to ' s  l e m m a  is given (Mall iar is  and Brock,  1982, p. 85). Let u ( . \ ' ( t  ), t) : 

[0, T] x R e ---, H a d e n o t e  a con t inuous  n o n r a n d o m  func t ion  such t h a t  its par t ia l  der iva t ives  

i.)u/Ot, [')u/OXi(i = 1 , 2 , . - - ,  d) and  O~u/OXiOX3 ( t , j  < d) are con t inuous .  Tha!  is. u is now 

cons ide red  to be a k vec tor  and  .\" a d-vec tor .  Suppose  t h a t  X ( / )  = X(t,..,) : [(], 1] x tt -~ 1~ ~ 

is a process  wi th  s t o c h a s t i c  different ia l  

dX( t )  = f ( . \ ( t ) ,  t)dt + o(t)d:(t) ( A.O 1 ) 

S u p p o s e  also t h a t  a ( t )  = a(t, ¢~,) : [0, T] x f~ ~ fi 'd x R "  is a n o u a n t i c i p a t m g  (d x 7n) mat r ix  

valued ful~ction and tha t  z(t) = :(1, u,) : [0, T] x l't --, li ''~ is a 7n-din:c::sional  \Vi,.mu proce,.~. 

Let t ' ( t )  = u ( f , X ( t ) ) .  T h e n  t ( t )  has a different ial  on [0, T] givcn by 

Otl . c %  
d$ t ) =  i~:-( . \ ( t ) , t )+~x(X(t) , t ) f (X(t) , t )  

i 02u } 

+ b-~ (x (~), t)~,(x(o, t)d=(t) 
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= ~ + ~  f +  tr {uxx aa'] d t + ~  adz (A.02) 

where uxx is the  (d x d) matr ix  with i , j t h  e lement  the k-vector 02u/OX, OXj. 

Partial Equilibrium Development 

There  arc in the l i tera ture  several interest  ra te  models where the price of a pure discount 

bond is assumed to depend on one or two s ta te  variables which are expressed in terms 

of Wiener processes. In this Appendix  the  models are summar ized  in a general f, 'alnework 

corresponding to that  of Buser, t l ender sho t t  and Sanders (1988) and thd l  and \Vhitc  (1988). 

The  common th read  linking the  models is t ha t  the  use of Ito 's l emma and an a rb i t rage  

argument  lead to a part ial  differenlial equat ion for the  bond price. In a few cases a closed 

form solution can be found while in o ther  cases a numerical  solution is necessary. 

We are interested in the  price of a pure discount  (zero coupon) bond which matures  at 

$1 at t ime r years hence (so dr = -dt) .  It is assumed tha t  this bond is one of at least , + 1 

t raded  securities 13:,j = , 2 , . . . n  + 1 the  prices of which are funct ions of 7~ s ta te  variables 

X., i = 1 , 2 , . - - ,  n. The  s ta te  variables are assumed to follow the  joint  diffusion process 

dXi = ~idt or rlidzi i = 1 , 2 , ' " ,  n (A.O3) 

The  drift  and ins tan taneous  variance rates fl, and rli are funct ions of t ime and  of all the  

X,, i = 1 , 2 , . . - n .  The  dzi are s t anda rd  Wiener  processes such t ha t  E(dz,) = O, E(dz2,) = dt 
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and E(dzidz j )  = p,)dt where p,j is the instantaneous correlation between the ith and j th  

Wiener processes. 

Now we apply Ito's lemma (A.02) to the price B j ( X I , . " , . \ ' , ,  r) of the j t h  security and 

find 

n 

dBj = #~dt + ~ ,  s 0 dzi j = 1 ,2 , . . -  n + 1 (A.04) 
Bj i=! 

where the #~ and si: are functions given by 

"' N 0 ~ , ~ ' + 5 , : , , _ - ,  = OX, O.¥k rl~rlaPi~ - Or J j = 1 ,2 , . . .  n + 1 (A.05) 

I fOB, 1 
s 0 = ~ [ O ~ ,  ] ,  j = 1,2,--" n + l  (,4.06) 

In the above the p: is the instantaneous expected rate of return on security Bj and s,j is the 

portion of the instantaneous standard deviation of B; which is produced by its dependence 

on Xi. 

Now" an arbitrage argument carl be developed. Since there are n + 1 securities and n 

Wiener processes a self financing (no cash injection required) portfolio can be formed which 

will be instantaneously riskless; tha~ is its instantaneous rate of return can he predicted with 

certainty. Denoting the portfolio value by I and the nominal quantity held of security Bj by 

y: we have 

~t+l  

I = ~_, yjB~ 
.7--1 

Consider the instantaneous change in I, 

~+1  n + l  

dl = Z y~ eB~ + E B~ dy~ 
j = l  J = l  

(A.07) 
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n+l 
= ~ y,d& (A.0S) 

.,=1 

where the second term in the expression for dl  is zero because of the self-financing natu le  

of the portfolio (Ingersoll, 1981). Now using (A.04) in  (A.08) we have 

n+l n+l k 
dI = ~ y, lajB,dt + ~ yj s,: Bj dz, (A.09) 

5=1 j=l i=l 

We can choose the y: to produce an instantaneous]y riskless portfolio by setting equal to zero 

tile second term in (A.09). Then our riskless portfolio must by arbitrage arguments have a 

return equal to the riskless rate of interest r, often treated as being well approximated l~v 

the overnight inter-bank rate or the rate on Treasury, bills. Thus dI = Irdt and hence fi'om 

(A.07) and (A.09) we have the set of equations 

n+l 
,v, B , 0 , ~ - ~ )  = 0 (,-~.10 

j=l 

n+l 
y: B: si5 = 0  i =  1 , 2 . . - . , n  (A.11 

2=1 

By a well known result in linear algebra, this set of n + 1 homogeneous equations for n + 1 

unknowns !6 (or equivalently 9"j Bj) has a non-zero solution iff for a set )~1, X2 , . " , )% of 

variables which depend only on the state variables and time we have 

I~., - r = ~7~ )~' s o  j = 1 , 2 , . . - ,  n + 1 (A .12)  
i=1 

Then (A.12) is an asset pricing model where the )q express the extra return demanded by' 

investors to compensate for the volatility of the ith state variable Xi. For most choices of 
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state variables (e.g. interest rates) the si: from (A.06) will be negative, hence the X, will be 

negative. A, is often referred to as the (negative of) the market price of risk. 

By choosing one particular security B out of the Bl, B2 ,  " ,  B,+1 and substituting (A.05) 

and (A.06) in (A.12) we derive the important equation 

1 ~-~ L 02B ~ O. OB 
,=1 k=l OXiOXk qir/k p ik+ i= l  ~ ( f l i - X i r / i ) - ~ - r B = 0  (A.13) 

This equation (A.13) comprises a partial differential equation for the bond price. It was not 

derived from general equilibrium arguments, and the functional forms of the prices of risk A, 

are left unspecified. This is in contrast with the Cox, Ingersoll and Ross (1985a and 1985b) 

general equilibrium model which effectively specifies relationships between the A,, 3, and r/,. 

P a r t i a l  E q u i l i b r i u m  M o d e l  

Special cases of the pricing model (A.13) have been derived by several sets of authors. 

Brennan and Schwartz (1979) point out that a single parameter model, such as one based 

on the spot rate of interest, will be unable to reproduce observed yield curves. Tile riskless 

or "spot" rate is the limit as the term tends to zero of the yield on a rlsk-free bond. It is 

observed that at different dates this rate may he identical while the rest of the yield curve 

differs. This is a result of such factors as differences in investors' expectations about future 

changes in the inflation rate. If it is anticipated that the inflation rate will increase in the 

future, then long rates will exceed short rates by a greater margin than would otherwise be 

the case. Brennan and Schwartz develop a model in which the riskless and long rates follow 
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a joint, stochastic process. Thus account can be taken of information about the future course 

of the riskless rate which is contained in the current value of the long rate. A disadvantage 

of the model is that  two exogenous variables are required, the riskless and long rates, ratt~er 

than only the riskless rate. 

Brennan and Schwartz again use the riskless rate r as being one of their variables, while 

the other state variable is the long rate I. Then r and l follow the process corresponding to 

(A.03) 

dr = fir dt + ~ dz, (A.14) 

dl = fit dt + ~t dzl (A. 15 ). 

where the forms of/3, ,3t ,  r/v and r h are yet to be specified and in general tile two Wiener 

processes are correlated. They' assume that a conso] bond (infinite term bond) of valm. I ( / )  

exists which pays a continuous coupon of 81 per annum, so that l is defined by 

1 
V(l) = 7" (A.16) 

Now considering equation (A.13) for the consol bond we notice that OV/Or = 0 and that.  

in view of the infinite maturity, OV/Or = 0. Subst i tut ing OV/Ol = - 1 / l  ~ and 02 V/Ol 2 = 2/ l  3, 

and adding a term 1 to the left hand side of (A.13) to allow for the coupon payment  per 

annum,  we find 

~,t(,', l, t) = - - ~  + (~t -- l ~ + ?'l)/rl l . (A.17) 

Thus we are left with only one utility' dependent function )~(r, l, t). 
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Subst i tut ion of (A.17) into (A.I3) gives the partial differential equation fo~ a t)omt of 

arbi trary matur i ty  

t 

2 

c3: B O: B 1 02 B 2 

)o. 
+ - - ~  + - r l  - ~ r  - B r = O "  (A.15) 

It will be noted that this important  partial differential equation contains neither ~ nor ;t~,. 

the drift parameter  for the long rate l. In general, B, rl~, r h, P~t, ~ and ~ are functions of 7. l 

and t. 

Equation (A.18) has no known analytic closed form solution, and Brennan and S(hwarlz 

use numerical methods in order to solve it. 

Specialization of t he  B r e n n a n  and  Schwar tz  Mode l  

Tile Brennan and Schwartz two state variable model (A.18) is probably the model which has 

seen the widest use because the number of parameters is less than that of most two state 

variable models. Since the price of a security, the consol bond, can be exl)ressed in terms 

of one of the state variables, the long rate, the number  of parameters is reduced as shown 

in the derivation of (A.18). In this Appendix, which owes much to Brennan and Schwartz 

(1979), the specialization of (A.18) and the transformation of the semi-infinite ranges of the 

short and long rate state variables are described. Then the boundary conditions are derived. 
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and 

Equation (A.18) was specialized by Brennan and Schwartz (1979). Tile 3" assumed that 

r/,(r, l , t)  = rat  (A.19) 

~z(r, l, t) = la~ (A.20) 

which ensures for fir _> 0 and fll -> 0 that r and 1 cannot become negative, and corresponds 

with a view that interest rate fluctuations will be on a proportionate basis. They assumed 

that  the short rate r drifts towards the long term rate l modified by an offset parameter p, 

SO 

d i n  r =c~[ln l - ] n  p - l n  r ]d t+a~dz~ ,  r > 0  (A.21) 

and hence by Ito's lemma 

f l r (r , l , t )  = r [a ln( l /pr)  + ~a~] . (A.22, 

Then subst i tut ing (A.19), (A.20) and (A.22) in (A.18) Brennan and Schwartz find 

10~B 2 2 0~B 1 O~B OB [ ( / )  1 2 ,L~,) 

OB [ ?  - r] OB +--~-I ( r ,  + l - ~ - B r  = 0. (A.23) 

In order to handle numerically the possibilities I ---* oc and r ~ ~ ,  the transformations are 

m a d e  

1 
u, = ~ (A.24) 

1 + n r  
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1 

l + n l  

and b(u,,ul,  r) is substi tuted for B(r , l , r ) .  Then (A.23) becomes, with tile addition of a 

term in q, the coupon per unit face value, 

1 a~b ,,~ (1 2 2 02b 1 i)21, ¢,~(1-uz)2cr? 
-2 --o,d - ' ' )  °" + ~ ,,,~,~(1 - , , , ) (1 - ,~ )p ,~ ,~ , ,  + -~ ~ 

Ob u,(1 [ (1 u,) [ u , ( l : u , ) ]  + ] 
[puz(1 - u,)J 

Ob [ ~ ] Ob b(,-.,) 
+g~, ,,,(1 - , , , )  -,,,,,~ 1---(1 ,,,1 + (1 ,,,) N ,~,,, . . . . .  +q=O. 

r Y u  l 

It is required to solve (A.26) numerically. 

The boundary conditions oil (A.26) are important ,  and are dcrived by Brenna~ and 

Schwartz (1979). The condition at matur i ty  of the bond b(u,,ul ,  r) is that  it be worth the 

b0 at which it is redeemed: 

b(u~,ut,0) = bo. (A.27) 

By multiplying (A.26) by nu~ and letting u~ ~ 0 and ut ~ 0 the boundary condition is 

obtained 

b(0,0, r)  = 0, r > 0 (A.2S) 

which is intuitively reasonable in view of the di . . . .  rating ,.I ,~ future maturi ty  value at an 

infinite interest rate. 

Another  boundary condition results from multiplying (A.26) by nu, and lett ing u, ~ 0 

to obtain 

Ob 
Ou---~z (O, ut,r)ut(1 -uz)- b(O, ut ,r)  = O. (A.29) 
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Solving (A.29) gives 

[z l b(0, ~,, , )  = b(0, ~0, T) exp ~'" 

u,(1 - u~ )) (m.30) = b(O'u°'r) u°(1 - u ~ )  

where u ° is some value of ut chosen as an origin. We always have a finite non-negative bond 

value since the value cannot exceed the sum of the total future coupons and the maturi ty  

value of the bond. Thus consideration of (A.30) for the case uz = 1 leads to the conclusion 

that  

b(0, u l , r )  = 0, r > 0, 0 _< U~ < 1. (A.3i)  

By dividing (A.26) by In ut and letting ut --* 0 one finds 

Ob 
au,(1 - u,) --~---(u,,0, r )  = 0. (A.32) 

ou,- 

Thus, in view of (A.28), another boundary condition is 

b(u~,0, r ) = 0 ,  r > 0 ,  0 _ < ~ _ < l .  (,4.33) 

In other words, (A.31) and (A.33) state that if either the short or long interest rates r and 

l are infinite, then the bond value is zero. 

If one sets ur = 1 and ul = 1 in (A.27) one finds 

Ob 
0-7 (1, 1 , r )  = 0 (A.34) 

and hence from (A.27) one has the boundary condition 

b ( 1 , 1 , r ) = b o +  rq, r >_O. (,4.35) 
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This is not surprising since by (A.22) and (A.19) a zero short  rate  r will remain at zero. 

For the case ur = 1, terms involving differentiation by u, drop out and (A.26) becomes 

J 

Ob (1 ,u t , r )  = 0. (A.36) + q  - 

Thus b(1, ul, r )  is the solution of (A.36) subject  to the boundary conditions (A.27), (A.33) 

and (A.35). 

For u~ --* 1, (7.2.08) is dominated  by the ln(1 - u;) term so 

au,(1 - u,) Ob 
~u~ ( u , , 1 , r )  = 0. (A.37) 

Thus solving (A.37) subject  to (A.35), the final boundary condition is 

b(u,,1, r) = bo + rq, r >_ O, Ou, < l. (.4.38) 
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A P P E N D I X  B - U N I T  D I S C O U N T  B O N D  20 Y E A R S  F R O M  M A T U R I T Y  

r values -. .  O. 
I values 

0.02500 0.03750 0.05833 0.07917 0.10000 0.1313 0.2250 

0.00000 
0.02500 
0.03750 
0.05833 
0.07917 
0.10000 
0.13125 
0.22500 

CX2 

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 
0.98565 0.57777 0.51902 0.44900 0.39772 0.35744 0.31005 0.21807 0,00000 
0.79889 0.50031 0.44710 0.38348 0.33743 0,30171 026023 0.18117 0.00000 
0.24756 0.32148 0.31281 0.28626 0.25789 0.23274 0.20178 0.14091 0,00000 

0.04087 0.12586 0.14925 0.16953 0.17325 0.16784 0.15363 0.11262 000000 
0.00555 0.03413 0.04985 0.07389 0.09161 0.10192 0.10624 0.08945 0.00000 
0.00029 0.00370 0.00703 0.01494 0.02472 0,03480 0,04755 0.05903 0.00000 
0.00000 0.00001 0.00002 0.00009 0.00028 0.00060 0,00172 0.00865 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Diffusion Pa rame te r s  Grid Pa rame te r s  

or = 0.2550 g = 0.01 (spacing of u~) 

al = 0.0866 h = 0.01 (spacing of u;) 

p, = 0.3747 n = 40 

= 0.0701 

X = 0.0355 

p = 1.06173 
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A P P E N D I X  C 

C A N A D I A N  T R E A S U R Y  B I L L  R A T E S  1 9 4 6  - 1 9 8 9  

JAN F E B  M A l t  A P R  MAY J U N  J U L  A U G  SEP O C T  NOV DEC 
1949 0,41 0.41 0.44 0.49 0.50 0,51 0.51 0.51 0.51 0.51 0,51 0.51 
1950 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.53 0.61 0.62 0.62 0.63 
1951 0.63 0.70 0.75 0.75 0.75 0.75 0.77 0.78 0.86 0.92 0.92 0.90 
1952 0,89 0.90 0.93 0.97 1.01 1.06 1.11 1.10 1.12 1.19 1.21 1.30 
1953 1.35 1,46 1.51 1.53 1,57 1,69 1.75 1.81 1,91 1.93 1,90 1.88 
1954 1.85 1.75 1.62 1,58 1.60 1.57 ! .38 1.32 1.21 1.18 1.17 1.36 
1955 0.99 0.90 1.13 1,23 1.24 1.36 1.43 1.60 1.77 2,07 2.33 2.59 
1956 2.58 2.50 2.61 2.83 2.84 2,63 2.53 2.95 3.06 3.30 3.39 3,61 
1957 3.70 3.76 3.71 3.72 3.77 3.80 3.81 3.97 3.94 3.84 3.66 3.65 
1958 3.54 2.99 2.44 1.67 1.56 1.75 1.31 1.29 2.02 2.48 3.00 3,46 
1959 3.34 3.70 4.16 4.52 4.98 5.15 5,23 5.82 5.73 5.14 4.87 5.02 
1960 4.81 4.69 3,87 3,40 2.87 2.87 3.13 2,66 1.91 2.65 3.42 3.61 
1961 3.20 3.05 3,21 3,30 3.19 2.76 2.61 2.48 2,42 2.53 2.42 2.82 
1962 3.08 3.08 3.12 3.08 3.36 4.48 5.47 5.15 5.03 4.54 3.88 3.88 
1963 3.82 3.68 3.63 3.58 3.33 3,23 3.39 3.60 3.69 3.57 3.64 3.71 
1964 3.76 3.81 3,88 3.75 3.66 3.56 3.60 3.80 3.81 3,70 3.73 3.85 
1965 3.78 3.72 3.71 3.66 3.84 3.95 4.00 4.08 4.11 4.14 4.17 4.45 
1966 4.61 4,68 4.87 5.09 5.10 5.06 5,07 5.08 5.03 5.13 5.19 5.07 
1967 4.83 4,62 4.26 4.00 4.12 4.32 4,27 4,33 4,50 4.91 5,15 5,73 
1968 5.94 6,57 6,90 6.91 6.96 6.75 5.26 5.81 5.62 5.64 5.62 5.96 
1969 6.36 6,31 6.62 6.66 6.75 7.03 7.46 7.65 7.75 7.68 7.71 7.78 
1970 7.80 7,70 7.32 6.81 6.51 5.90 5.79 5.66 5.44 5.25 4.76 4.47 
1971 4.59 4.51 3.30 3.05 3.06 3,15 3.58 3.88 3.93 3.79 3.31 3.25 
1972 3.29 3.48 3.51 3.65 3.68 3.58 3.48 3.47 3.57 3.57 3.61 3.66 
1973 3.79 3,92 4.29 4.73 5.08 5.40 5.65 6.03 6.41 6.51 6.46 6.38 
1974 6.28 6.11 6.28 7,13 8.24 8.68 8.92 9.09 9.03 8.60 7.73 7,32 
1975 6.65 6.34 6.29 6.5,1 6.90 6.96 7.29 7.72 8.37 8.31 8.44 8.58 
1976 8.59 8,70 9.04 8.97 8.94 8.99 9.02 9.12 8.97 9.07 8.88 8.41 
1977 8.08 7,67 7.61 7.55 7.26 7.07 7.12 7.16 7.09 7.19 7.25 7.18 
1978 7.14 7,24 7.62 8.18 8.13 8.24 8.43 8.77 9.02 9.52 10.29 10.43 
1979 10.80 10,78 10.90 10 .8 ,1  10.84 10.82 10.91 11.32 11.57 12.86 13.61 13,63 
1980 13.54 13,56 14.35 15.64 12.54 11,15 10.10 10,21 10.63 11.57 12,87 16.31 
1981 16.77 16,87 16.64 16.92 18.61 18.83 19.27 20.85 19.70 18.19 15.87 14.81 
1982 14.46 14,54 14.88 15,07 15.08 16.11 15.69 14.41 13.15 11.54 10.72 10.25 
1983 9.53 9,39 9.21 9.21 9.12 9.24 9.24 9.34 9.26 9.22 9.34 9.74 
1984 9.73 9,77 10.32 10,56 11.27 11.74 12.81 12.21 12.08 11.74 10.79 10.13 
1985 9.52 10,56 11.08 9.92 9.56 9.35 9.14 9.01 8.95 8.58 8.72 9.08 
1986 10.02 11,55 10.49 9A4 8.33 8.60 8.29 8.33 8.32 8.32 8.27 8.21 
1987 7.70 7,32 7.00 7.52 8.05 8.30 8.53 8.95 9.22 8.72 8.24 8.45 
1988 8.42 8,31 8.43 8.75 8.88 9.20 9.27 9.62 10.26 10.29 10.60 10.94 
1989 I I . 15  11,42 11.99 12,29 12.20 12.06 12.07 12.15 12.20 12.20 12.23 12.21 

Note: The source for this data is Statistics Canada CANSIM series B14001:91 day 

Treasury bill tender rate (monthly average). 
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A P P E N D I X  D 

C A N A D I A N  1 - 3 Y E A R  B O N D  R A T E S  1 9 4 9  - 1989  

JAN F E B  M A R  A P R  M A Y  J U N  J U L  A U G  S E P  O C T  N O V  DEC 
1949 1.63 1.62 1 ,69  1.68 1.68 1.67 1 .68  1 .60  1.58 1.61 1.61 1 .70  
1950 1.71 1.71 1 ,73  1 .73  1.72 1.75 1.75 1.75 1.80 1 .83  2 .04  2 .13  
1951 2 .18  2 .23  2 ,72  2 .52  2 .38  2 .48  2 .48  2 .45  2 .43  2 .39  2 .39  2 .33  
1952 2 .47  2 .43  2 .53  2.54 2.55 2 .72  2 .89  3.01 3 .03  3 . 1 7  3 .22  3 .19  
1953 3 .04  3 .09  3 .12  3 .12  " 3 .13  3 .0 6  3 .2 9  3 .42  3 .36  3 .35  3 .26  3 .26  
1954 3 .02  2 .75  2.72 2 .17  2 .19  2.01 2.01 1.91 1.85 1.92 1.85 1.79 
1955 1 .55  1.65 1.59 1.72 1.84 1.91 2.21 2.32 2 .48  2 .60  3 .17  3 .25  
1956 3.01 3~01 3,10 3.56 3.36 3,06 3.40 3,80 3.90 4.09 4.39 4.54 
1957 4 .77  4 .18  4 ,20  4 .2 7  4 .70  4 .79  4.71 4.84 4~87 4 .46  3 .92  3 .84  
1958 3 .63  3 .55  3 .18  3 .0 0  2 .80  3 .14  2 .37  2 .69  3 .09  3 .35  4 .00  4.52 
1959 4 .32  4 .66  4 .72  4 .95  5 .06  5,21 5 .33  5.54 5.75 5.04 4 .78  4 .96  
1960 4 .89  4.81 4.21 4 .14  4 .30  4 .06  3 .69  2.98 3 .07  3 .50  3 .92  3 .99  
1961 3 .78  3 .59  3 .84  4 .00  4 .20  3 .58  3 .42  3 .22  3 .57  3 .26  3 .24  3 .39  
1962 3 .50  3 .40  3 ,20  3 .45  3.91 5 .49  5 .63  5 .37  5.12 4 .22  3 .99  4.12 
1963 4 .14  4 .29  4 ,38  4 .38  3 .97  3.81 4 .26  4 .45  4 .22  4 .12  4 .22  4 ,28  
1964 4 .38  4 .33  4 ,49  4 .50  4 ,30  4 .33  4 .45  4 .55  4 .40  4.44 4 .49  4.21 
1965 4.01 4.31 4 .10  4 .09  4 .19  4 .29  4 .49  4 .75  4 .86  5.01 5 .03  5.11 

1966 4 .99  5 .19  5 .27  5 .20  5 .17  5 .16  5.44 5.91 5 .49  5.54 5 .74  5 .43  
1967 4 .92  5 .05  4 .35  4 .47  4.92 5.34 5 .40  5 .49  5 .80  5 .79  5 .80  6 .16  
1968 6 .35  6.51 6 .69  6 .58  6.71 6 .6 3  6 . 1 7  5 .87  5 .94  6 .16  6 .13  6.71 
1969 6.71 6 .82  7 .00  7.22 7 .54  7 .53  7 .77  7 .69  7 .86  7 .73  7.94 8 0 7  
1970  7 .95  7 .66  7 .09  6 . 8 3  6 .78  6 .52  6 .44  6 ,52  6 ,47  6 . 3 6  5 .37  4 .89  
1971 5 .05  5.05 4 .77  4 .88  4 .97  5.31 5.51 5 .33  5 .26  4.41 4.21 4 .42  
1972 4 .76  5 .18  5.51 5 .73  5 .96  5 .86  5 .87  5 .97  5 .85  5 .66  5 .03  5 .15  
1973 5 .48  5.45 5 .77  6 ,24  7.15 6 .94  7 .09  7 .27  6 .94  6.61 6 .57  6 .92  
1974 6 .75  6 .58  7.55 8 .83  8 .93  9 .29  9 .18  9 .3 0  8 .87  7 .47  6 .98  6 .66  
1975 5.91 6 .22  6 .56  7 .23  7.09 7.35 7 .90  8 .3 7  8 .76  8.21 8 .48  8 .36  
1976 8 .13  8.3+6 8 .63  8 .46  8 .25  8 .4 0  8 .44  8 .45  8 .30  8 .35  8.01 7 .50  
1977 7 .57  7 4 2  7 .46  7 5 6  7.33 7.31 7 .37  7 .3 6  7 .43  7.52 7 .60  7 .59  
1978 7 .70  7 "2 8 ,28  ~,.58 8 .58  8 .6 0  8 .63  8 .63  8 .77  9 .48  10.07 10.14 
1979 10 .08  10.07 10 .10  9 .76  9 .7 6  9 .87  10.0~ 10 .89  11.17 12 .78  12.41 12.24 
1980  12 ,79  13.62 14,27 12 .35  10.85 10 .48  11.11 11.98 12 .69  13,11 13 .08  12.95  

1981 13 .06  13.6~; 14.04 15 .78  16.22 16 .19  18.77 18.82 18.94 17 .33  13 .57  15 .22  
1982 15.95 15.O3 15,43 ~ 18 14.71 16 .50  15 ,69  13 .53  12.75 11 .57  10 ,80  10.24 
1983 10 .28  10.23 10.1~ ' , ,  o0  9 .75  10.08 10.38 10 .86  10 .10  9 .88  10 02 10 .39  
1984 1 0 .23  10 .74  11 .50  11 .76  12 .92  12 .89  13.02 1 2 .3 9  12 .04  11 .44  10  ~," 10.44 
1985 10 .27  11.69 11.14 10 .59  10 .16  10.02 10.06 9 .7 9  9 .88  9 ,44  9 .26  9 .10  
1986 9.88 9 .66  9 .36  8 ,82  8 .98  8 .83  9 .07  9 .02  9 .10  8 .99  8 .70  8.63 
1987 7.85 8.01 7.71 q 2 3  9 .33  9.11 9 .73  9 .8 8  10.61 9 .46  9 .65  9 .69  
1988 9 .04  8 .83  8 .99  9 .32  9 .46  9 .49  9 .67  10 .38  10 17 9 .80  10 .36  10.58 
l ',)89 10 ,58  11 ,30  11 ,60  I I , 0 1  10.61 10,19 10.05 10 ,63  10 ,52  10 ,24  10 ,99  10 .84  

Note: The source for this data is Statistics Canada CANSIM series B14009: Government 

of  Canada bond yield average, 1 to 3 years. 
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A P P E N D I X  E 

T E S T  O F  P R E D I C T I V E  P O W E R  1 9 4 9  - 1 9 8 9  

Y e a r  S p r e a d  R a n k  Bill R a t e  C h a n g e  R a n k  
i r e ( i , 1 ) -  r ( i ,1 )  v.,( i ,) r ( i , 1 2 ) -  r ( i ,1 )  vc(i) 

1949  1 . 2 2 0  35 0 . I 0 0  17 
1950 1.200 34 0. I  20 18 
1951 1 . 5 5 0  3 8  0 . 2 7 0  20 
1952  1 .580  39  0 . 4 1 0  23  
1 9 5 3  1 .690  40 0 . 5 3 0  25 
1954  1 .170  33  - 0 . 4 9 0  8 
1955 0 . 5 6 0  25 1 .600 34 
1956  0 . 4 3 0  20  1 .030  30  
1957  1 . 0 7 0  32 - 0 . 0 5 0  14 
1958  0 . 0 9 0  I 0  - 0 . 0 8 0  13 
1959  0 . 9 8 0  31 1 .680  35 
1960 0.080 9 -1.200 6 
1961 0 . 5 8 0  26 -0 .380  10 
1962  0 . 4 2 0  19 0 . 8 0 0  28 
1 9 6 3  0 . 3 2 0  15 -0 .110  12 
1964 0 . 6 2 0  27  0 . 0 9 0  16 
1965  0.230 14 0 . 6 7 0  26 
1966  0 . 3 8 0  17 0 . 4 6 0  24 
1967  0 . 0 9 0  11 0 . 9 0 0  29 

1 9 6 8  0 . 4 1 0  18 0 . 0 2 0  15 
1969  0 . 3 5 0  16 1 .420 33  
1970  0 . 1 5 0  12 - 3 . 3 3 0  2 
1971 0 . 4 6 0  21 -1 .340  5 
1972 1 , 4 7 0  36  0 . 3 7 0  21 
1973  ] .690 41 2 .590  38  

1974 0 .470  22 1 .040  31 
1975  - 0 . 7 4 0  3 1 .930  36  
1976  - 0 . 4 6 0  7 -1 .180  11 
1977  - 0 . 5 1 0  6 - 0 . 9 0 0  7 
1978  0 . 5 6 0  24 3 . 2 9 0  41 
1979  - 0 , 7 2 0  4 2 .830  40  
1980  - 0 . 7 5 0  2 2 .770  3 9  
1981 - 3 . 7 1 0  l - 1 . 9 6 0  3 
1982  1 .490  37  - 4 . 2 1 0  I 
1983  0 . 7 5 0  29 .5  0 . 2 1 0  19 
1984  0 , 5 0 0  23 0 . 4 0 0  22 
1985  0 . 7 5 0  29 .5  - 0 . 4 4 0  9 
1 9 8 6  - 0 . 1 4 0  8 - 1 . 8 1 0  4 
1987  0 . 1 5 0  13 0 . 7 5 0  27 
1988  0 . 6 2 0  28  2 . 5 2 0  37  
1989  - 0 . 5 7 0  5 1 .060  32 
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A P P E N D I X  F 

T E S T  

Ves,  r 

i 

1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 

O F  P R E D I C T I V E  P O W E R  1 9 5 8  - 1 9 7 4  

Spread R a n k  Bill  Ra te  Chaaxge R a n k  
m ( i , l ) - r ( i ,  1) v,(i) r ( i , 12 )  - r ( i ,  1) re ( i )  

0.090 2 -0.080 6 
0.980 15 1.680 16 
0.080 I -1.200 3 
0.580 13 -0.380 4 
0.420 I0 0.800 12 

0.320 6 -0.110 5 
0.620 14 0.090 8 
0.230 5 0.670 11 
0.380 8 0.460 10 
0.090 3 0.900 13 
0,410 9 0.020 7 
0.350 7 1.420 15 
0.150 4 -3.330 I 

0.460 11 -I .340 2 

1.470 16 0.370 9 
1.690 17 2.590 17 
0.470 12 1.040 14 

457 
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