ACTUARIAL RESEARCH CLEARING HOUSE 1991 VOL. 1

ASPECTS OF INTEREST RATE MODELS

ABSTRACT

Interest rate modelling is discussed, with special emphasis on the long and short rate model of Brennan and Schwartz (1979). Comment is made on an unexpected aspect of the solution of the resulting partial differential equation. In addition, an analysis is made of a related matter; the predictive power of the term structure of interest rates.

KEITH P. SHARP
Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
(519) 888-4492

Aug 25, 1990

Copyright (c) 1990 , Keith P. Sharp

1 Introduction

Many different types of interest rate models have been proposed. This paper concentrates on the models which use diffusion processes to model rates and proceed to set up a partial differential equation for the price of a unit discount bond. Such models were reviewed by Sharp(1990).

One of the earliest and most commonly used diffusion models is that of Brennan and Schwartz (1979). A derivation of this model is presented as Appendix A. The model uses diffusion processes for two rates, the instantaneous zero-term ("short") rate and the "long" yield on a consol (irredeemable) bond. The short rate is arrived to drift towards a value related to the current long rate.

In Section 2 of this paper is discussed the solution of the second order partial differential equation which results from the above model. It is demonstrated that although the analytic solution has not been determined, it can be shown to have a character which could be regarded as unrealistic.

In Section 3 is discussed the predictive power of the term structure. One might expect that if the yield curve is strongly upwards sloping, then Treasury bill rates would tend to increase. Indeed this behaviour would be in line with the form assumed for the drift of the short rate under the model of Brennan and Schwartz(1979).

The data available in 1979 was not inconsistent with such a drift. However it is shown that with the addition of data from the 1980's there is little evidence of any power of the
term structure to predict future Treasury bill rates.

2 A Characteristic of the Brennan and Schwartz Model

It is useful to consider an interesting feature of the Brennan and Schwartz (1979) model which has hitherto not been mentioned in the literature despite its importance. The model is described in Appendix A.

Consider (A.26) for small values of u_{l} (e.g. $0.00 \leq u_{l} \leq 0.25$) and moderate values of u_{r} (e.g. $0.25 \leq u_{r} \leq 1$). Notr that at the $u_{1}=0$ boundary there is by (A.27) and (A.33) a discontinuity at $\tau=0$. The numerical results confirm that $\partial b / \partial u_{l}$ reaches very high values as this discontinuity is propagated, and the dominant terms in (A.26) in the region considered are

$$
\begin{equation*}
-\frac{1}{n} \frac{\partial b}{\partial u_{i}}\left(1-u_{i}\right)\left[1-\frac{u_{i}}{u_{r}}\right] \doteq \frac{\partial b}{\partial T} \tag{2.01}
\end{equation*}
$$

Then (2.01) is an advective equation by which a disturhance is propagated with speed given by the coefficient of $\partial b / \partial u_{l}$. Equations of this type are discussed by Vemuri and Karplus (1981, p. 159). The initial condition for (2.01) is just before bond maturity

$$
b\left(u_{r}, u_{l}, 0+\right)\left\{\begin{array}{rr}
=1 & 1 \geq u_{\ell}>0 \\
=0 & u_{\ell}=0
\end{array}\right.
$$

This shape is propagated into the $u_{l}>0$ region as a Heaviside function. Neglecting the other terms in (A.26) or equivalently (A.23) one can show through consideration of the speed of
propagation $\ell\left(\sigma_{l}^{2}+(-\tau)\right.$ that the time taken for the discontinuity of the Heaviside function to travel from inflinity to the point r, l is

$$
\begin{equation*}
\tau_{H}(r, l)=\frac{1}{\sigma_{l}^{2}-r} \ln \left(\frac{l+\sigma_{l}^{2}-r}{l}\right) \tag{2.02}
\end{equation*}
$$

In the limit $\sigma_{1}^{2}-r \rightarrow 0, \tau_{H}\left(\sigma_{l}^{2}, \ell\right)=1 / \ell$. It is emphasized that this discontinuity is a genuine solution of (A.26) and is not a product of the numerical methods.

The propagation of the Heaviside function is actually modified by the terms found in (A.26) in addition to those found in (2.01). Nonetheless, the effect is seen in Appendix B which gives the price $P(r(20), \ell(20), 20)$ of a unit discount bond 20 years from maturity as produced by a hopscotch finite difference algorithm (Gourlay and McGee, 197T). The parameter values used are loosely based on those of Brennan and Schwartz (1979) and are intended as examples for demonstration purposes. Only a 9×9 subset of the 101×101 matrix of values is shown, but one can see the propagation of the very low bond values from the $\ell=\propto, r=0$ corner. The values given by equation (2.02) are verified. A1 $\sigma_{i}=0.0866 . r=$ $0, \tau=20$ the inversion of equation (2.02) gives $\ell=0.0463$, and it can be seen that the disturbance has indeed reached approximately this point. It should be noted in verifying the position of the disturbance that the bond values are already reduced from 1 by the operation of the other terms in (A.26), so that the best estimate of the position of the disturbance is not where the bond value is one half.

A similar disturbance results from the $\partial b / \partial u_{r}$ term in (A.26), but its impact is not so great as that resulting from the $\partial b / \partial u_{i}$ term.

Thus this unusual behaviour of the solution leads to unusual values for the bond price. Considering a fixed time to maturity, eg 20 years. Then the bond price is close to zero over much of the plane of interest rate values, as in Appendix B. The boundary region over which the price rises to significant values is very small. This type of behaviour is not what one would expect to arise from a fully realistic model of interest rates.

3 Predictive Power of the Term Structure

One view of the term structure is based on variations of the "expectations hypothesis". Typically, forward rates are thought to be estimators of future short rates where the estimator has an upward bias because of investors' risk aversion. This view has been investigated eg by Fama (1984) who used U.S. interest rate data and regression techniques. He found that bond yields did give some information about movements of short rates up to about five months in the future.

The method now described is based on nonparametric techniques. An advantage is that no assumption need be made, for example, about any change or lack of change over time of the level of the random fluctuations.

Appendix C presents monthly tender rates $t(i, j)$ of Canadian Treasury bills where i represents the calendar year and j the month. Appendix D presents monthly data $m(i, j)$ on yields to maturity of 1 to 3 year Canadian government bonds. A test was devised of the hypothesis that in each calendar year i the "spread" $m(i, 1)-r(i, 1)$ at the start of the
calendar year has some power to predict the increase $r(i, 12)-r(r, 1)$ in Treasury bill rates during the year. The choice of calendar year periods is made for the sake of convenience.

Appendix E illustrates the operation of the test. Within the $N=41$ year period 1949 - 1989, ranks $u_{s}(i), 1$ to 41 are assigned to the January spreads. Ranks $v_{c}(i)$ are assigned separately to the eleven month increases in Treasury bill rates within the calendar year

Then, denoting the beginning and ending calendar years by y_{1} and y_{N}, a calculation is made of the statistic

$$
\begin{equation*}
D=\sum_{i=y_{1}}^{y_{N}}\left(v_{s}(i)-v_{c}(i)\right)^{2} \doteqdot \frac{1}{3} N(N+1)(2 N+1)-2 \sum_{i=v}^{y_{N}} v_{s}(i) v_{c}(i) \tag{3.1}
\end{equation*}
$$

where the equality is not exact in view of the possibility of tied ranks
Under the null hypothesis of independence of the ranks. the expectation of D is given (Lehmann, 1975) by

$$
E_{H_{0}}(D)=\frac{N^{3}-N}{6}
$$

and the standard deviation can be approximated by

$$
\begin{equation*}
\left(\operatorname{Var}_{H_{0}}(D)\right)=\left(\frac{N^{2}(N+1)^{2}(N-1)}{36}\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

For the period I, 1949-1989 one finds the following:

$$
\begin{aligned}
D^{I} & =11,416 \\
E_{H_{0}}\left(D^{I}\right) & =11,480 \\
\left(\operatorname{Var}_{H_{0}}(D)\right)^{1 / 2} & \doteq 1,815.15
\end{aligned}
$$

Thus the statistic D^{l} is only 0.0352 standard deviation from its expectation under the mull hypothesis of independence of the spreads and the changes in Treasury bill rates. Thus there is no evidence of the power of the interest rate spread to predict Treasury bill movement. over the period 1949-1989.

One might speculate that the predictive power may have been present in a stable period such as II: 1958-1974. The choice of upper limit could correspond to the oil price stuock of 1974. However, the prime motivation for choice of this period was to repeat the test ore a period where it appears from Appendix E ranks that the test may yield a posiliwe result. Thus this unfairly chosen period could be regarded as giving an indication of the predictive power under the optimum circumstances. The results for 1958-197.4 are:

$$
\begin{aligned}
D^{I I} & =49.4 \\
E_{H_{0}}\left(D^{I I}\right) & =816 \\
\left(\operatorname{Var}_{H_{0}}\left(D^{\prime I}\right)\right)^{1 / 2} & \doteq 20.4
\end{aligned}
$$

Thus, this 1.58σ result is very weak evidence of some predictive power over the periorl 1958-1974. In considering this result, the method of choice of period should be kept in mind.

4 Conclusion

The solution behaviour demonstrated in Section 2 must be considered a disadvantage of the Breman and Schwartz(1979) model. The behavion is related to the fact that model is not of the general equilibrium and arbitrage - free class described by Cox. lugersoll and Ross (1985a and 1985b). In addition, the short rates drift towards the long rate under the Brentan and Schwartz (1979) model must be vewed soncwhat skeptically in light of the results of Section 3. Nonetheless. the model continues to be one of the nure practically useful and comprehensive description of the complicated behaviou of the teme structure

References

Brennan. M.J. and E.S. Schnentz. "A Contimome Time Approach to the Pricine of Bonds", Journal of Banking and Finane. Vol 3, pp 133.155 (1979).

Buser, S.A., P.H. Hendershotl and A.B. Sanders. Detemmant. of the latur of Call Options on Default - Fret Bonds. Monograph, WPS 88-5, Ohio State University (1988).

Cox, J.C., S.E. Ingersoll and S.A. Ross. "An Intertemporal General Equilibrium Model of Asset Prices". Econometrika, Vol 53, No 2, pp 363-384 (1985a)

Cox, J.C., J.E. Ingersoll and S.A. Ross. "A Theory of the Term Structure of Interest Rates", Econometrika, Vol 53, No 2, pp 385-406 (1985b)

Fama, E.F. "The Information in the Term Structure", Journal of Financial Economics 13, (1984) pp 509-528

Gourlay, A.R. and McGee, S. "The Construction of Hopscotch Methods for Parabolic Elliptical Equations in Two Space Dimensions with a Mixed Derivative". Journal of Computational and Applied Mathematics, Vol 3, pp 201-206 (1977)

Hull, J.C. and White, A. An Overview of Contigent Claims Pricing Working Paper, York University, Ontario (1988)

Ingersoll, J. Additional Topics in Option Pricing, University of Chicago lecture notes (1981)

Lehmann, E.L. Nonparametrics: Statistical Mcthods Based on Ranks, HoldenDay, San Francisco (1975)

Malliaris, A.G. and Brock, W.A. Stochastic Methods in Economics and Finance. North-Holland, Amsterdam (1982)

Sharp, K.P. Stochastic Differential Equations in Finance Journal of Applicd Mathematics and Computation (1990)

Vemuri, V. and Karplus, W.J. Digital Computer Treatment of Partial Differential Equations, Prentice-Hall, Englewood Cliffs NJ (1981)

APPENDIX A

Ito's Lemma

A generalized form of Ito's lemma is given (Malliaris and Brock, 1982, p. 85). Let $u(X(t), t)$: $[0, T] \times R^{d} \rightarrow R^{k}$ denote a continuous nonrandom function such that its partial derivatives $\partial u / \partial t, \partial u / \partial X_{i}(i=1,2, \cdots, d)$ and $\partial^{2} u / \partial X_{i} \partial X_{j}(i, j \leq d)$ are continuous. That is, u is now considered to be a k-vector and X a d-vector. Suppose that $X(t)=X\left(t . w^{\prime}\right):[0 . I] \times \Omega \rightarrow R^{d}$ is a process with stochastic differential

$$
\begin{equation*}
d X(t)=f(X(t), t) d t+\sigma(t) d z(t) \tag{4.01}
\end{equation*}
$$

Suppose also that $\sigma(t)=\sigma(t, w):[0, T] \times \Omega \rightarrow R^{d} \times R^{m}$ is a nonanticipating $(d \times m)$ matrix valued function and that $z(t)=z(t, w):[0, T] \times \Omega \rightarrow R^{\prime \prime \prime}$ is a m-dimensional Wiener proces. Let $Y^{\prime}(t)=u(t, X(t))$. Then $Y(t)$ has a differential on $[0, T]$ given by

$$
\begin{gathered}
d Y^{\prime}(t)=\left\{\frac{\partial u}{\partial t}(X(t), t)+\frac{\partial u}{\partial X}(X(t), t) f(X(t), t)\right. \\
\left.+\frac{1}{2} \sum_{i} \sum_{3} \frac{\partial^{2} u}{\partial X, \partial X_{j}}\right\}(X(t), t)\left[\sigma(t) \sigma^{\prime}(t)\right]_{i j} d t \\
\quad+\frac{\partial u}{\partial X}(X(t), t) \sigma(X(t), t) d z(t)
\end{gathered}
$$

$$
\begin{equation*}
=\left\{\frac{\partial u}{\partial t}+\frac{\partial u}{\partial X} f+\frac{1}{2} \operatorname{tr}\left[u_{X X} \sigma \sigma^{\prime}\right]\right\} d t+\frac{\partial u}{\partial X} \sigma d z \tag{A.02}
\end{equation*}
$$

where $u_{X X}$ is the $(d \times d)$ matrix with i, j th element the k-vector $\partial^{2} u / \partial X_{i} \partial X_{j}$.

Partial Equilibrium Development

There are in the literature several interest rate models where the price of a pure discount bond is assumed to depend on one or two state variables which are expressed in terms of Wiener processes. In this Appendix the models are summarized in a general framework corresponding to that of Buser, Hendershott and Sanders (1988) and Hull and White (1988). The common thread linking the models is that the use of Ito's lemma and an arbitrage argument lead to a partial differential equation for the bond price. In a few cates a closed form solution can be found while in other cases a numerical solution is necessary:

We are interested in the price of a pure discount (zero coupon) bond which matures at $\$ 1$ at time τ years hence (so $d \tau=-d t$). It is assumed that this bond is one of at least $n+1$ traded securities $B_{j}, j=, 2, \cdots n+1$ the prices of which are functions of n state variables $X_{1}, i=1,2, \cdots, n$. The state variables are assumed to follow the joint diffusion process

$$
\begin{equation*}
d X_{i}=\beta_{i} d t+\eta_{i} d z_{i} \quad i=1,2, \cdots, n \tag{A.03}
\end{equation*}
$$

The drift and instantaneous variance rates β_{i} and η_{i} are functions of time and of all the $X_{i}, i=1,2, \cdots n$. The $d z_{i}$ are standard Wiener processes such that $E\left(d z_{i}\right)=0, E\left(d z_{i}^{2}\right)=d t$
and $E\left(d z_{,} d z_{j}\right)=\rho_{i j} d t$ where $\rho_{i j}$ is the instantancous correlation between the i th and j th Wiener processes.

Now we apply Ito's lemma (A.02) to the price $B_{j}\left(X_{1}, \cdots, X_{n}, \tau\right)$ of the j th security and find

$$
\begin{equation*}
\frac{d B_{j}}{B_{j}}=\mu_{j} d t+\sum_{i=1}^{n} s_{i j} d z_{i} \quad j=1,2, \cdots n+1 \tag{A.04}
\end{equation*}
$$

where the μ and $s_{i j}$ are functions given by

$$
\begin{gather*}
\mu_{j}=\frac{1}{B_{j}}\left[\sum_{i=1}^{n} \frac{\partial B_{j}}{\partial X_{i}} \beta_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} B_{j}}{\partial X_{i} \partial X_{k}} \eta_{i} \eta_{k} \rho_{i k}-\frac{\partial B_{j}}{\partial \tau}\right] \quad j=1,2, \cdots n+1 \tag{A.05}\\
s_{i j}=\frac{1}{B_{j}}\left[\frac{\partial B_{j}}{\partial X_{i}} \eta_{i}\right], \quad j=1,2, \cdots n+1 \tag{A.06}
\end{gather*}
$$

In the above the μ, is the instantaneous expected rate of return on security B, and $s_{i j}$ is the portion of the instantaneous standard deviation of B_{j} which is produced by its dependence on X_{i}.

Now an arbitrage argument can be developed. Since there are $n+1$ securities and n Wiener processes a self financing (no cash injection required) portfolio can be formed which will be instantaneously riskless; that is its instantaneous rate of return can be predicted with certainty. Denoting the portfolio value by I and the nominal quantity held of security B, by y, we have

$$
\begin{equation*}
I=\sum_{j=1}^{n+1} y_{j} B_{j} \tag{A.07}
\end{equation*}
$$

Consider the instantaneous change in I,

$$
d I=\sum_{j=1}^{n+1} y_{j} d B_{j}+\sum_{j=1}^{n+1} B_{j} d y_{j}
$$

$$
\begin{equation*}
=\sum_{j=1}^{n+1} y_{j} d B_{j} \tag{A.08}
\end{equation*}
$$

where the second term in the expression for $d I$ is zero because of the self-financing nature of the portfolio (Ingersoll, 1981). Now using (A.04) in (A.08) we have

$$
\begin{equation*}
d I=\sum_{j=1}^{n+1} y_{j} \mu_{j} B_{j} d t+\sum_{j=1}^{n+1} \sum_{i=1}^{n} y_{j} s_{i j} B_{j} d z_{i} \tag{A.09}
\end{equation*}
$$

We can choose the y, to produce an instantaneously riskless portfolio by setting equal to zero the second term in (A.09). Then our riskless portfolio must by arbitrage arguments have a return equal to the riskless rate of interest r, often treated as being well approximated by the overnight inter-bank rate or the rate on Treasury bills. Thus $d I=I r d t$ and hence from (A.07) and (A.09) we have the set of equations

$$
\begin{gather*}
\sum_{j=1}^{n+1} y_{j} B_{j}(\mu,-r)=0 \tag{A.10}\\
\sum_{j=1}^{n+1} y_{j} B_{j} s_{i j}=0 \quad i=1,2, \cdots, n \tag{A.11}
\end{gather*}
$$

By a well known result in linear algebra, this set of $n+1$ homogeneous equations for $n+1$ unknowns y_{j} (or equivalently y, B_{j}) has a non-zero solution iff for a set $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ of variables which depend only on the state variables and time we have

$$
\begin{equation*}
\mu_{j}-r=\sum_{i=1}^{n} \lambda_{i} s_{i j} \quad j=1,2, \cdots, n+1 \tag{A.12}
\end{equation*}
$$

Then (A.12) is an asset pricing model where the λ_{i} express the extra return demanded by investors to compensate for the volatility of the i th state variable X_{i}. For most choices of
state variables (e.g. interest rates) the $s_{i j}$ from (A.06) will be negative, hence the λ_{1} will be negative. λ_{1} is often referred to as the (negative of) the market price of risk.

By choosing one particular security B out of the $B_{1}, B_{2}, \cdots, B_{n+1}$ and substituting (A.05) and (A.06) in (A.12) we derive the important equation

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} B}{\partial X_{i} \partial X_{k}} \eta_{i} \eta_{k} \rho_{i k}+\sum_{i=1}^{n} \frac{\partial B}{\partial X_{i}}\left(\beta_{i}-\lambda_{i} \eta_{i}\right)-\frac{\partial B}{\partial \tau}-r B=0 \tag{A.13}
\end{equation*}
$$

This equation (A.13) comprises a partial differential equation for the bond price. It was not derived from general equilibrium arguments, and the functional forms of the prices of risk λ_{1} are left unspecified. This is in contrast with the Cox, Ingersoll and Ross (1985a and 1985b) general equilibrium model which effectively specifies relationships between the λ_{1}, β_{1} and η_{1}.

Partial Equilibrium Model

Special cases of the pricing model (A.13) have been derived by several sets of authors.
Brennan and Schwartz (1979) point out that a single parameter model, such as one based on the spot rate of interest, will be unable to reproduce observed yield curves. The riskless or "spot" rate is the limit as the term tends to zero of the yield on a risk-free bond. It is observed that at different dates this rate may be identical while the rest of the yield curve differs. This is a result of such factors as differences in investors' expectations about future changes in the inflation rate. If it is anticipated that the inflation rate will increase in the future, then long rates will exceed short rates by a greater margin than would otherwise be the case. Brennan and Schwartz develop a model in which the riskless and long rates follow
a joint stochastic process. Thus account can be taken of information about the future coursc of the riskless rate which is contained in the current value of the long rate. A disadvantage of the model is that two exogenous variables are required, the riskless and long rates, rather than only the riskless rate.

Brennan and Schwartz again use the riskless rate r as being one of their variables, while the other state variable is the long rate l. Then r and l follow the process corresponding to (A.03)

$$
\begin{align*}
& d r=\beta_{r} d t+\eta_{r} d z_{r} \tag{A.14}\\
& d l=\beta_{l} d t+\eta_{l} d z_{l} \tag{A.15}
\end{align*}
$$

where the forms of $\beta_{r}, \beta_{l}, \eta_{r}$ and η_{l} are yet to be specified and in general the two Wiener processes are correlated. They assume that a consol bond (infinite term bond) of value I'(1) exists which pays a continuous coupon of $\$ 1$ per annum, so that l is defined by

$$
\begin{equation*}
V(l)=\frac{1}{l} . \tag{A.16}
\end{equation*}
$$

Now considering equation (A.13) for the consol bond we notice that $\partial V / \partial r=0$ and that, in view of the infinite maturity, $\partial V / \partial \tau=0$. Substituting $\partial V / \partial l=-1 / l^{2}$ and $\partial^{2} V / \partial l^{2}=2 / l^{3}$, and adding a term 1 to the left hand side of (A.13) to allow for the coupon payment per annum, we find

$$
\begin{equation*}
\lambda_{l}(r, l, t)=-\frac{\eta_{l}}{l}+\left(\beta_{l}-l^{2}+r l\right) / \eta_{l} . \tag{A.17}
\end{equation*}
$$

Thus we are left with only one utility dependent function $\lambda_{r}(r, l, t)$.

Substitution of (A.17) into (A.13) gives the partial differential equation for a bond of arbitrary maturity

$$
\begin{gather*}
\frac{1}{2} \frac{\partial^{2} B}{\partial r^{2}} \eta_{r}^{2}+\frac{\partial^{2} B}{\partial r \partial l} \rho_{r l} \eta_{r} \eta_{l}+\frac{1}{2} \frac{\partial^{2} B}{\partial l^{2}} \eta_{l}^{2}+\frac{\partial B}{\partial r}\left(\beta_{r}-\lambda_{r} \eta_{r}\right) \\
+\frac{\partial B}{\partial l}\left(\frac{\eta_{l}^{2}}{l}+l^{2}-r l\right)-\frac{\partial B}{\partial r}-B r=0 \tag{A.18}
\end{gather*}
$$

It will be noted that this important partial differential equation contains meither λ_{l} nor β_{i}. the drift parameter for the long rate l. In general, $B, \eta_{r}, \eta_{i}, \rho_{r t}, \beta_{r}$ and λ_{r} are functions of $r . l$ and t.

Equation (A.18) has no known analytic closed form solution, and Brennan and Schwart/: use numerical methods in order to solve it.

Specialization of the Bremnan and Schwartz Model

The Brennan and Schwartz two state variable model (A.18) is probably the model which has seen the widest use because the number of parameters is less than that of most two state. variable models. Since the price of a security, the consol bond, can be expressed in tems of one of the state variables, the long rate, the number of parameters is reduced as shown in the derivation of (A.18). In this Appendix, which owes much to Brennan and Schwartz (1979), the specialization of (A.18) and the transformation of the semi-infinite ranges of the short and long rate state variables are described. Then the boundary conditions are derived.

Equation (A.18) was specialized by Brennan and Schwartz (1979). They assumed that

$$
\begin{equation*}
\eta_{r}(r, l, t)=r \sigma_{r} \tag{A.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{l}(r, l, t)=l \sigma_{l} \tag{A.20}
\end{equation*}
$$

which ensures for $\beta_{r} \geq 0$ and $\beta_{l} \geq 0$ that r and l cannot become negative, and corresponds with a view that interest rate fluctuations will be on a proportionate basis. They assumed that the short rate r drifts towards the long term rate l modified by an offset parameter p, so

$$
\begin{equation*}
d \ln r=\alpha[\ln l-\ln p-\ln r] d t+\sigma_{r} d z_{r}, \quad r>0 \tag{A.21}
\end{equation*}
$$

and hence by Ito's lemma

$$
\begin{equation*}
\beta_{r}(r, l, t)=r\left[\alpha \ln (l / p r)+\frac{1}{2} \sigma_{\tau}^{2}\right] . \tag{1.22}
\end{equation*}
$$

Then substituting (A.19), (A.20) and (A.22) in (A.18) Bremnan and Schwartz find

$$
\begin{gather*}
\frac{1}{2} \frac{\partial^{2} B}{\partial r^{2}} r^{2} \sigma_{r}^{2}+\frac{\partial^{2} B}{\partial r \partial l} r l \rho_{r l} \sigma_{r} \sigma_{l}+\frac{1}{2} \frac{\partial^{2} B}{\partial l^{2}} l^{2} \sigma_{l}^{2}+\frac{\partial B}{\partial r} r\left[\alpha \ln \left(\frac{l}{p r}\right)+\frac{1}{2} \sigma_{r}^{2}-\lambda_{r} \sigma_{r}\right] \\
+\frac{\partial B}{\partial l} l\left[\sigma_{l}^{2}+l-r\right]-\frac{\partial B}{\partial \tau}-B r=0 . \tag{A.23}
\end{gather*}
$$

In order to handle numerically the possibilities $l \rightarrow \infty$ and $r \rightarrow \infty$, the transformations are made

$$
\begin{equation*}
u_{r}=\frac{1}{1+n r} \tag{A.24}
\end{equation*}
$$

$$
\begin{equation*}
u_{i}=\frac{1}{1+n!} \tag{4.25}
\end{equation*}
$$

and $b\left(u_{r}, u_{i}, \tau\right)$ is substituted for $B(r, l, \tau)$. Then (A.23) becomes, with the addition of a term in q : the coupon per unit face value,

$$
\begin{align*}
& \frac{1}{2} \frac{\partial^{2} b}{\partial u_{r}^{2}} u_{r}^{2}\left(1-u_{r}\right)^{2} \sigma_{r}^{2}+\frac{\partial^{2} b}{\partial u_{r} \partial u_{l}} u_{r} u_{l}\left(1-u_{r}\right)\left(1-u_{l}\right) \rho_{r l} \sigma_{r} \sigma_{l}+\frac{1}{2} \frac{\partial^{2} b}{\partial u_{l}^{2}} u_{l}^{2}\left(1-u_{l}\right)^{2} \sigma_{l}^{2} \\
& \quad+\frac{\partial b}{\partial u_{r}} u_{r}\left(1-u_{r}\right)\left[\sigma_{r}^{2}\left(\frac{1}{2}-u_{r}\right)-\alpha \ln \left[\frac{u_{r}\left(1-u_{l}\right)}{p u_{l}\left(1-u_{r}\right)}\right]+\lambda_{r} \sigma_{r}\right] \quad(A \tag{A.26}\\
& +\frac{\partial b}{\partial u_{i}} u_{l}\left(1-u_{l}\right)\left[-u_{l} \sigma_{l}^{2}-\frac{1}{n u_{l}}\left(1-u_{l}\right)+\frac{1}{n u_{r}}\left(1-u_{r}\right)\right]-\frac{\partial b}{\partial \tau}-b \frac{\left(1-u_{r}\right)}{n u_{r}}+q=0 .
\end{align*}
$$

It is required to solve (A.26) numerically.
The boundary conditions on (A.26) are important, and are derived by Breman and Schwartz (1979). The condition at maturity of the bond $b\left(u_{r}, u_{i}, \tau\right)$ is that it be worth the b_{0} at which it is redeemed:

$$
\begin{equation*}
b\left(u_{r}, u_{i}, 0\right)=b_{0} . \tag{A.27}
\end{equation*}
$$

By multiplying (A.26) by nu and letting $u_{r} \rightarrow 0$ and $u_{r} \rightarrow 0$ the boundary condition is obtained

$$
\begin{equation*}
b(0,0, \tau)=0, \quad \tau>0 \tag{A.28}
\end{equation*}
$$

which is intuitively reasonable in view of the dierninting .. "future maturity value at an infinite interest rate.

Another boundary condition results from multiplying (A.26) by $n u_{r}$ and letting $u_{r} \rightarrow 0$ to obtain

$$
\begin{equation*}
\frac{\partial b}{\partial u_{i}}\left(0, u_{l}, \tau\right) u_{l}\left(1-u_{l}\right)-b\left(0, u_{l}, \tau\right)=0 \tag{A.29}
\end{equation*}
$$

Solving (A.29) gives

$$
\begin{align*}
b\left(0, u_{i}, \tau\right)= & b\left(0, u_{i}^{0}, \tau\right) \exp \left[\int_{u_{i}^{0}}^{u_{i}} \frac{d u_{i}^{\prime}}{u_{l}^{\prime}\left(1-u_{i}^{\prime}\right)}\right] \\
& =b\left(0, u_{i}^{0}, \tau\right) \frac{u_{i}\left(1-u_{i}^{0}\right)}{u_{i}^{0}\left(1-u_{i}\right)} \tag{A.30}
\end{align*}
$$

where u_{l}^{0} is some value of u_{l} chosen as an origin. We always have a finite non-negative bond value since the value cannot exceed the sum of the total future coupons and the maturity value of the bond. Thus consideration of (A.30) for the case $u_{1}=1$ leads to the conclusion that

$$
\begin{equation*}
b\left(0, u_{i}, \tau\right)=0, \quad \tau>0, \quad 0 \leq u_{i} \leq 1 \tag{A.31}
\end{equation*}
$$

By dividing (A.26) by $\ln u_{t}$ and letting $u_{t} \rightarrow 0$ one finds

$$
\begin{equation*}
\alpha u_{r}\left(1-u_{r}\right) \frac{\partial b}{\partial u_{\tau}}\left(u_{r}, 0, \tau\right)=0 . \tag{A.32}
\end{equation*}
$$

Thus, in view of (A.28), another boundary condition is

$$
\begin{equation*}
b\left(u_{\tau}, 0, \tau\right)=0, \quad \tau>0, \quad 0 \leq u_{\tau} \leq 1 . \tag{A.33}
\end{equation*}
$$

In other words, (A.31) and (A.33) state that if either the short or long interest rates r and l are infinite, then the bond value is zero.

If one sets $u_{r}=1$ and $u_{i}=1$ in (A.27) one finds

$$
\begin{equation*}
\frac{\partial b}{\partial \tau}(1,1, \tau)=0 \tag{A.34}
\end{equation*}
$$

and hence from (A.27) one has the boundary condition

$$
\begin{equation*}
b(1,1, \tau)=b_{0}+\tau q, \quad \tau \geq 0 \tag{A.35}
\end{equation*}
$$

This is not surprising since by (A.22) and (A.19) a zero short rate r will remain at zero.
For the case $u_{r}=1$, terms involving differentiation by u_{r} drop out and (A.26) becomes

$$
\begin{gather*}
\frac{1}{2} \frac{\partial^{2} b}{\partial u_{i}^{2}}\left(1, u_{i}, \tau\right) u_{l}^{2}\left(1-u_{i}\right)^{2} \sigma_{l}^{2}+\frac{\partial b}{\partial u_{l}}\left(1, u_{l}, \tau\right) u_{i}\left(1-u_{i}\right)\left[-u_{i} \sigma_{i}^{2}-\frac{1}{n u_{l}}\left(1-u_{i}\right)\right] \\
+q-\frac{\partial b}{\partial \tau}\left(1, u_{l}, \tau\right)=0 \tag{A.36}
\end{gather*}
$$

Thus $b\left(1, u_{i}, \tau\right)$ is the solution of (A.36) subject to the boundary conditions (A.27), (A.33) and (A.35).

For $u_{l} \rightarrow 1,(7.2 .08)$ is dominated by the $\ln \left(1-u_{i}\right)$ term so

$$
\begin{equation*}
\alpha u_{r}\left(1-u_{r}\right) \frac{\partial b}{\partial u_{r}}\left(u_{r}, 1, \tau\right)=0 . \tag{A.37}
\end{equation*}
$$

Thus solving (A.37) subject to (A.35), the final boundary condition is

$$
\begin{equation*}
b\left(u_{r}, 1, \tau\right)=b_{0}+\tau q, \quad \tau \geq \dot{0}, \quad 0 u_{r} \leq 1 \tag{A.38}
\end{equation*}
$$

APPENDIX B - UNIT DISCOUNT BOND 20 YEARS FROM MATURITY

values \cdots I values	0.	0.02500	0.03750	0.05833	0.07917	0.10000	0.1313	0.2250	∞
0.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000
0.02500	0.98565	0.57777	0.51902	0.44900	0.39772	0.35744	0.31005	0.21807	0.00000
0.03750	0.79889	0.50031	0.44710	0.38348	0.33743	0.30171	0.26023	0.18117	0.00000
0.05833	0.24756	0.32148	0.31281	0.28626	0.25789	0.23274	0.20178	0.14091	0.00000
0.07917	0.04087	0.12586	0.14925	0.16953	0.17325	0.16784	0.15363	0.11262	0.00000
0.10000	0.00555	0.03413	0.04985	0.07389	0.09161	0.10192	0.10624	0.08945	0.00000
0.13125	0.00029	0.00370	0.00703	0.01494	0.02472	0.03480	0.04755	0.05903	0.00000
0.22500	0.00000	0.00001	0.00002	0.00009	0.00028	0.00066	0.00172	0.00865	0.00000
∞	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Diffusion Parameters Grid Parameters

$$
\begin{array}{lc}
\sigma_{r}=0.2550 & g=0.01 \quad\left(\text { spacing of } u_{r}\right) \\
\sigma_{i}=0.0866 & h=0.01 \quad\left(\text { spacing of } u_{i}\right) \\
\rho_{r}=0.3747 & n=40 \\
\alpha=0.0701 & \\
\lambda=0.0355 & \\
p=1.06173 &
\end{array}
$$

APPENDIX C

CANADIAN TREASURY BILL RATES 1946-1989

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1949	0.41	0.41	0.44	0.49	0.50	0.51	0.51	0.51	0.51	0.51	0.51	0.51
1950	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.53	0.61	0.62	0.62	0.63
1951	0.63	0.70	0.75	0.75	0.75	0.75	0.77	0.78	0.86	0.92	0.92	0.90
1952	0.89	0.90	0.93	0.97	1.01	1.06	1.11	1.10	1.12	1.19	1.21	1.30
1953	1.35	1.46	1.51	1.53	1.57	1.69	1.75	1.81	1.91	1.93	1.90	1.88
1954	1.85	1.75	1.62	1.58	1.60	1.57	1.38	1.32	1.21	1.18	1.17	1.36
1955	0.99	0.90	1.13	1.23	1.24	1.36	1.43	1.60	1.77	2.07	2.33	2.59
1956	2.58	2.50	2.61	2.83	2.84	2.63	2.53	2.95	3.06	3.30	3.39	3.61
1957	3.70	3.76	3.71	3.72	3.77	3.80	3.81	3.97	3.94	3.84	3.66	3.65
1958	3.54	2.99	2.44	1.67	1.56	1.75	1.31	1.29	2.02	2.48	3.00	3.46
1959	3.34	3.70	4.16	4.52	4.98	5.15	5.23	5.82	5.73	5.14	4.87	5.02
1960	4.81	4.69	3.87	3.40	2.87	2.87	3.13	2.66	1.91	2.65	3.42	3.61
1961	3.20	3.05	3.21	3.30	3.19	2.76	2.61	2.48	2.42	2.53	2.42	2.82
1962	3.08	3.08	3.12	3.08	3.36	4.48	5.47	5.15	5.03	4.54	3.88	3.88
1963	3.82	3.68	3.63	3.58	3.33	3.23	3.39	3.60	3.69	3.57	3.64	3.71
1964	3.76	3.81	3.88	3.75	3.66	3.56	3.60	3.80	3.81	3.70	3.73	3.85
1965	3.78	3.72	3.71	3.66	3.84	3.95	4.00	4.08	4.11	4.14	4.17	4.45
1966	4.61	4.68	4.87	5.09	5.10	5.06	5.07	5.08	5.03	5.13	5.19	5.07
1967	4.83	4.62	4.26	4.00	4.12	4.32	4.27	4.33	4.50	4.91	5.15	5.73
1968	5.94	6.57	6.90	6.91	6.96	6.75	5.26	5.81	5.62	5.64	5.62	5.96
1969	6.36	6.31	6.62	6.66	6.75	7.03	7.46	7.65	7.75	7.68	7.71	7.78
1970	7.80	7.70	7.32	6.81	6.51	5.90	5.79	5.66	5.44	5.25	4.76	4.47
1971	4.59	4.51	3.30	3.05	3.06	3.15	3.58	3.88	3.93	3.79	3.31	3.25
1972	3.29	3.48	3.51	3.65	3.68	3.58	3.48	3.47	3.57	3.57	3.61	3.66
1973	3.79	3.92	4.29	4.73	5.08	5.40	5.65	6.03	6.41	6.51	6.46	6.38
1974	6.28	6.11	6.28	7.13	8.24	8.68	8.92	9.09	9.03	8.60	7.73	7.32
19.5	6.65	6.34	6.29	6.54	6.90	6.96	7.29	7.72	8.37	8.31	8.44	8.58
1976	8.59	8.70	9.04	8.93	8.94	8.99	9.02	9.12	8.97	9.07	8.88	8.41
1977	8.08	7.67	7.61	7.55	7.26	7.07	7.12	7.16	7.09	7.19	7.25	7.18
1978	7.14	7.24	7.62	8.18	8.13	8.24	8.43	8.77	9.02	9.52	10.29	10.43
1979	10.80	10.78	10.90	10.84	10.84	10.82	10.91	11.32	11.57	12.86	13.61	13.63
1980	13.54	13.56	14.35	15.64	12.54	11.15	10.10	10.21	10.63	11.57	12.87	16.31
1981	16.77	16.87	16.64	16.92	18.61	18.83	19.27	20.85	19.70	18.19	15.87	14.81
1982	14.46	14.54	14.88	15.07	15.08	16.11	15.69	14.41	13.15	11.54	10.72	10.25
1983	9.53	9.39	9.21	9.21	9.12	9.24	9.24	9.34	9.26	9.22	9.34	9.74
1984	9.73	9.77	10.32	10.56	11.27	11.74	12.81	12.21	12.08	11.74	10.79	10.13
1985	9.52	10.56	11.08	9.92	9.56	9.35	9.14	9.01	8.95	8.58	8.72	9.08
1986	10.02	11.55	10.49	9.14	8.33	8.60	8.29	8.33	8.32	8.32	8.27	8.21
1987	7.70	7.32	7.00	7.52	8.05	8.30	8.53	8.95	9.22	8.72	8.24	8.45
1988	8.42	8.31	8.43	8.75	8.88	9.20	9.27	9.62	10.26	10.29	10.60	10.94
1989	11.15	11.42	11.99	12.29	12.20	12.06	12.07	12.15	12.20	12.20	12.23	12.21

Note: The source for this data is Statistics Canada CANSIM series B14001: 91 day
Treasury bill tender rate (monthly average).

APPENDIX D

CANADIAN 1-3 YEAR BOND RATES 1949-1989

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1949	1.63	1.62	1.69	1.68	1.68	1.67	1.68	1.60	1.58	1.61	1.61	1.70
1950	1.71	1.71	1.73	1.73	1.72	1.75	1.75	1.75	1.80	1.83	2.04	2.13
1951	2.18	2.23	2.72	2.52	2.38	2.48	2.48	2.45	2.43	2.39	2.39	2.33
1952	2.47	2.43	2.53	2.54	2.55	2.72	2.89	3.01	3.03	3.17	3.22	3.19
1953	3.04	3.09	3.12	3.12	3.13	3.06	3.29	3.42	3.36	3.35	3.26	3.26
1954	3.02	2.75	2.72	2.17	2.19	2.01	2.01	1.91	1.85	1.92	1.85	1.79
1955	1.55	1.65	1.59	1.72	1.84	1.91	2.21	2.32	2.48	2.60	3.17	3.25
1956	3.01	3.01	3.10	3.56	3.36	3.06	3.40	3.80	3.90	4.09	4.39	4.54
1957	4.77	4.18	4.20	4.27	4.70	4.79	4.71	4.84	4.87	4.46	3.92	3.84
1958	3.63	3.55	3.18	3.00	2.80	3.14	2.37	2.69	3.09	3.35	4.00	4.52
1959	4.32	4.66	4.72	4.95	5.06	5.21	5.33	5.54	5.75	5.04	4.78	4.96
1960	4.89	4.81	4.21	4.14	4.30	4.06	3.69	2.98	3.07	3.50	3.92	3.99
1961	3.78	3.59	3.84	4.00	4.20	3.58	3.42	3.22	3.57	3.26	3.24	3.39
1962	3.50	3.40	3.20	3.45	3.91	5.49	5.63	5.37	5.12	4.22	3.99	4.12
1963	4.14	4.29	4.38	4.38	3.97	3.81	4.26	4.45	4.22	4.12	4.22	4.28
1964	4.38	4.33	4.49	4.50	4.30	4.33	4.45	4.55	4.40	4.44	4.49	4.21
1965	4.01	4.31	4.10	4.09	4.19	4.29	4.49	4.75	4.86	5.01	5.03	5.11
1966	4.99	5.19	5.27	5.20	5.17	5.16	5.44	5.91	5.49	5.54	5.74	5.43
1967	4.92	5.05	4.35	4.47	4.92	5.34	5.40	5.49	5.80	5.79	5.80	6.16
1968	6.35	6.51	6.69	6.58	6.71	6.63	6.17	5.87	5.94	6.16	6.13	6.71
1969	6.71	6.82	7.00	7.22	7.54	7.53	7.77	7.69	7.86	7.73	7.94	8.07
1970	7.95	7.66	7.09	6.83	6.78	6.52	6.44	6.52	6.47	6.36	5.37	4.89
1971	5.05	5.05	4.75	4.88	4.97	5.31	5.51	5.33	5.26	4.41	4.21	4.42
1972	4.76	5.18	5.51	5.73	5.96	5.86	5.87	5.97	5.85	5.66	5.03	5.1
1973	5.48	5.45	5.77	6.24	7.15	6.94	7.09	7.27	6.94	6.61	6.57	6.9
1974	6.75	6.58	7.55	8.83	8.93	9.29	9.18	9.30	8.87	7.47	6.98	6.66
1975	5.91	6.22	6.56	7.23	7.09	7.35	7.90	8.37	8.76	8.21	8.48	8.36
1976	8.13	8.36	8.63	8.46	8.25	8.40	8.44	8.45	8.30	8.35	8.01	7.50
1977	7.57	7.42	7.46	7.56	7.33	7.31	7.37	7.36	7.43	7.52	7.60	7.59
1978	7.70	7.2	8.28	-. 58	8.58	8.60	8.63	8.63	8.77	9.48	10.07	10.14
1979	10.08	10.07	10.10	9.76	9.76	9.87	10.06	10.89	11.17	12.78	12.41	12.24
1980	12.79	13.62	14.27	12.35	10.85	10.48	11.11	11.98	12.69	13.11	13.08	12.95
1981	13.06	13.66	14.04	15.78	16.22	16.19	18.77	18.82	18.94	17.33	13.57	15.22
1982	15.95	15.03	15.43	$\therefore 18$	14.71	16.50	15.69	13.53	12.75	11.57	10.80	10.24
1983	10.28	10.23	10.18	11.00	9.75	10.08	10.38	10.86	10.10	9.88	10.03	10.39
1984	10.23	10.74	11.50	11.76	12.92	12.89	13.02	12.39	12.04	11.44	10.4:	10.44
1985	10.27	11.69	11.14	10.59	10.16	10.02	10.06	9.79	9.88	9.44	9.26	9.10
1986	9.88	9.66	9.36	8.82	8.98	8.83	9.07	9.02	9.10	8.99	8.70	8.63
1987	7.85	8.01	7.71) 23	9.33	9.11	9.73	9.88	10.61	9.46	9.65	9.69
1388	9.04	8.83	8.99	9.32	9.46	9.40	9.67	10.38	10.17	9.80	10.36	10.58
1489	10.58	11.30	11.60	11.01	10.61	10.19	10.05	10.63	10.52	10.24	10.99	10.84

Note: The source for this data is Statistics Canada CANSIM series B14009: Gnvernment
of Canada bond yield average, 1 to 3 years.

APPENDIX E

TEST OF PREDICTIVE POWER 1949-1989

Year	Spread	Rank	Bill Rate Change	Rank
i	$m(i, 1)$	$-r(i, 1)$	$v_{i}(i)$,	$r(i, 12)-r(i, 1)$

APPENDIX F

TEST OF PREDICTIVE POWER 1958-1974

Year i	Spread $m(i, 1)-r(i, 1)$	Rank $v_{s}(i)$	Bill Rate Change $r(i, 12)-r(i, 1)$	Rank $v_{c}(i)$
1958	0.090	2	-0.080	6
1959	0.980	15	1.680	16
1960	0.080	1	-1.200	3
1961	0.580	13	-0.380	4
1962	0.420	10	0.800	12
1963	0.320	6	-0.110	5
1964	0.620	14	0.090	8
1965	0.230	5	0.670	11
1966	0.380	8	0.460	10
1967	0.090	3	0.900	13
1968	0.410	9	0.020	7
1969	0.350	7	1.420	15
1970	0.150	4	-3.330	1
1971	0.460	11	-1.340	2
1972	1.470	16	0.370	9
1973	1.690	17	2.590	17
1974	0.470	12	1.040	14

