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1. Introduction.

The classical, discrete time model for ruin theory 1s based on a
surplus process with independent increments. In [3], Gerber
generalized portions of this theory by considering situations with
dependent increments. A particular case, the first-order
autoregressive model, is discussed in Actuarial Mathematics[1].
Cne of the restrictions inherent in these works 1s that the
underlying random variables are bounded. (This is not explicitly
stated in [1], but the boundedness is used in the proof of the rmain
result as we will indicate.) Gerber asks if the boundedness condition
can be relaxed, and leaves it as an open problem.

The restriction of boundedness may be reasonable from a practical
point of view. However, we frequently use unbounded random
variables, such as those with an exponential distribution, for
modelling claims. Moreover, in teaching concepts of risk theory,
the exponential distribution plays a key rcle in  examples, due to
its mathematical simplicity. Therefore, it is of significance to
remove the boundedness criteria.

In this paper we focus on the first-order autoregressive case.
A more general treatment appears in [4]. We show in section 4
below that the boundedness restriction can be removed from the
basic result on the probability of ruin, [1, Theorem 12.3]. As a
major tool, we use a certain concept of duality for distribution
functions. This idea, which has some independent interest, is
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Introduced 1in section 2. In section 5 we give some miscellaneous
examples on estimating ruin probabilities.

2. A duality.
We first need some facts about the adjustment coefficient. These
are essentially given in [1, p. 355], but for completeness and

consistency of notation we will review this material here.

Given any random variable G, with distribution function F,
define a function p:{0,} —[0,], by

o

p(r) = B[e‘erF(x) - 1.

Let v = sup {r:plr) < e} ( Since p(0) = 0, the set in question is
not empty.) Suppose that G satisfies the following two conditions:

(i) Im L, p(r) = oo
We require of course that
(1) v > 0

in order that condition (ii) makes sense. Another necessary
condition for (11) to hold is that

(1v) Pr( G <0 ) is positive,
since if Pr{G < 0) were equal to zero, p(r) would be nonpositive.

In certain cases, (1v) will imply (i1). For example, this holds if v =
oo, since (iv) implies that lim .., p(r) = oo.
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From (i11) and (i) we see that p'(0) exists and 15 equal to -E(G),
which is negative. [t 1s also clear that for r in (0, v}, p'(r) exists
and is positive. Together with (i), this shows that p has a unique
zero in the interval (0, v). This point, known as the adjustrment
coefficient , will be denoted by R. 1t is clear frormm the above
remarks that

p'(R) > 0. (2.1)

Define a distribution function F* by

t
FX(1) = ![e'RXdF(x).

From the definition of R we have a legitimate distribution

function, that is, F*(ec) = 1. We will refer to this as the Jua/
distribution of the original.

Throughout the paper we will use x to refer to guantities,

(such as expectations) calculated with respect to F*.

From (2.1) we obtaln the important fact that

oo

EX(G) = ixe‘RXdF(x) = -p(R) < 0. (2.2)

Examples.

(a) G takes the value 1 with probability p, and -1 with

probability g, where p > q. Then e’R = g/p, so the dual
distribution takes the value 1 with probability g and -1 with
probability p.
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(b) G 1s normal with mean pu and variance o?. Then

p ol

]
Q|
N

(See {1, remark below formula 12.49]) The dual distribution then
has the density function

2

showing that it 1s normal with mean -y and variance o

In both of the above cases, the dual distribution of G 1s
distributed as -G. This is not always the case, and in fact this
cannot hold when the range of G is not symmetric. Both
distributions “take the same values”. To put i1t more precisely, the
probability measures are eguivalent in the sense that each is
absolutely continuous with respect to the other.

3. The classical case.

We will briefly review the standard, discrete time surplus model
with independent increments, as outlined in [1, section 124)]. (For
the most part, we follow the notation used in [1]. However, we
omit the =~ wused to distinguish discrete time from continuous
time, since we only discuss the former.) Let G, denote the gain
made in the n-th period. That is, G, equals the excess of the
periodic premium over the claims for the n-th period. Let Uy
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denote the surplus at the end of n periods. Let u be the mnitial
surplus. The model assumes that

U= u+ G+ Gy +.+ Gy

where the G; 's are independent and each distributed as some
random variable G. Let

T=min{ n: Uy < 0}, the time of ruin,
g(u) = Pr (T« o), the probability of ruin.
Then the main result is {1, Theorem 12.1] which states that

e-Ru

(v) = ——— (3.1)
vl Ele RUT|T¢ o]

where R 1is the adjustment coefficient, calculated with respect to
G, as outlined in section 2. The proof of this is in two stages. We
must first show that the sequence e RUn 15 a martingale. In
other words, we must show that for all n,

Ele"RUn+1} U, ] = e RUn (3.2)

This is sufficient to obtain (3.1) with equality replaced by less than
or equal to. To obtain the equality we must also show that

EleRUn|Tsn) IPr(T>n) — 0 asn — oo. (3.3)

In [3], this 1s done by invoking the dominated convergence
theorem from integration theory, which needs the boundedness of
the underlying random variables to justify it. The same idea is
used in a more general setting in chapter 9 of [2]. In [1], there is an
alternate proof, based on the following result, which is of
independent interest.
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Proposition 1. Let X, be a sequence of random wvariables, with
means kp and standard deviations o, satisfying the following:

() up — e, as n — oo,

() 22 Lo
— 0, a - oo,
i ™ s n

(111) There exists m < oo, such that

Pr(X, = m) = 0, for all n.

let g be any nonincreasing function defined on the real line
such that lim ., gt} = 0. ( Necessarily, g > 0)

Then,
E[g(Xy)] — 0.

Froof. Let Fp denote the distribution function of X,. Then,

Lln/2 oo
0 < E [g(Xp)] = J‘g(wdpn(t) + Jg(t)an(t)
m Hn/2
H s
< glm) Pr (anfj +g (TJ (3.4)

By Chebychev's inequality, Pr(X, s un/2) < 40,%/up®. Taking
limits on the right hand side completes the proof.

This is essentially the derivation of (3.3) given in [1]. That proof is
given in the particular case when g(t) = e™R' and X, is Uy

conditioned by the fact that ruin has not yet occurred at time n.
Hence, U, 1s nonnegative and we can take m = 0. Note that the

existence of the lower bound is needed to ensure that the first
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term in (34) will approach zero. The following counterexample
shows that the proposition can fail without hypothesis (iii).

Example. Let

~n with probability 279

Xn =
n with probability 1-27%

and let
gt) = 27t

Then, yp, = nl 1-21"n) 5 . Moreover, Mp/n =1, so that
o2 n2- 2
- - ——F - 11-=0
Hn Hn

However, E[27%n] is clearly greater than 2% x 279 = 1,

4. The Autoregressive model of order 1.

We begin by reviewing the meodel described in [1, p. 357). Let Y
denote the underlying claim random wvariable. Let W, denote the
loss In year n. We assume that

Wn = Yp + aWpy

where -1 ¢a <1, and the Y, 's are independent and each
distributed as some random wvariable Y.

We will later use the fact that if Y is bounded, the same is true for
W A more precise formulation is as follows.
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Proposition 2. Suppose that

b <Y < d

Moreover, m and M can be defined in terms of b, d and w as
follows.

If a=20,

If a<0,let

Then:
() If myswz<Mq,then m=mq and M= My

w-b

(i) If we<mgq,then m=w and M= A

(i) If My < w, then m = and M = w.

Proof. We will prove the more complicated case of negat/ve a.
(The proof for nonnegative a is similar). We use induction on n,
noting that the conclusion is trivial when the index is 0. Assume
1t 1s true for some index n.

Suppose that (i) holds. Then,

Wne1 = Ynet + aWp, < d+amq = My,
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Similarly,
Whe1 2 b+aMyp = mjy.

Suppose that (ii) holds. Then

. ‘ wi(1-a%)-b
w < mj implies that d = T a
and so
w-b
Whet s d+aw < )
a
and
w-b
Whet 2 b+aT = W.

Case (iil) follows similarly, completing the proof.
We now return to the description of the model. Let ¢ denote the
periodic premium, let u denote the initial surplus and let w
denote Wp, the initial value of W. The surplus at the end of n
periods is given by

Up= u+nc - (Wy+Wso+ .+ Wp
We define T as in section 3. The main quantity of interest is

Ylu,w) = Pr (T < o),

the probability that ruin occurs, given initial values of u and w.
Let
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so that each G, is distributed as the the random variable
1
G = ¢ - 1-a Y

We will assume that ¢ satisfies

1 1
1-a SupP (Y) > ¢ > EE(Y)

This implies that conditions (i) and (iv) of section 2 hold for G.
We assume in addition that Y is such that condition (ii) of section
2 holds. It follows that the adjustment coefficient R, with respect
to G, exists.

We can motivate the definition of G as follows. A unit of claim in

one period will result in a units of claim the following period,

and that in turn will result in &< units the period after that

and so on. In the limiting case, each unit of claim will eventually
cause 1/(1-a) units of loss. Moreover, from the initial surplus of
u we should set aside w/(1-a) to cover the future losses
occasioned by our initial value of Wgq. It 1s natural therefore to
consider an assoclated independent increment model, with claims
multiplied by 1/(1-a), an initial surplus of u - w/(1-a), and the
same periodic premium of ¢. For such a model, the periodic gain is
distributed as G.

Let 0, be the surplus at the end of n years in this associated

model. This definition agrees with that defined in [1, formula
12.4.20] by

a
0, = U, - 1-a Vn (4.1)

We can verify this by induction. From our definition of the initial

surplus, (4.1) holds trivially for n = 0. Assuming its validity for
index n,
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a
=Un+1- 7 Wnet

In the case that & is nonnegative we can immediately say
something about the probability of ruin. From (4.1) we know that

Or < Ut (4.2)

Note that we do mof assume that claims are positive, so we
cannot say that On < U, for all n. Itis true for n equal to T,
since the loss in the year of ruin is necessarily positive. We see
therefore that there is less chance of ruin in the autoregressive
model than there 1s in the associated independent increment
model. This is intuitively clear, since the ruining claim of the
assoclated model will not necessarily ruin us in the autoregressive
case, where a portion of this loss will only appear in future periods.
Let T denote the time of ruin in the associated model. It follows
from (3.1) that ror nonnegative a

R(u-——w)
- u-——-w
e 1-a

< e “R(u-—"—w) (4.3)

qJ(U,W) E[Q-Rﬁflf(m] < 1-a

The second inequality was obtained in [1, Corollary te Theorem
12.3]. The above derivation is somewhat easier, as it does not
require that we first prove this theorem.
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Theorem 12.3 of [1] states that we can replace the first inequality
sign by an equality, if we also replace T by T in the
denominator. That is

e—R(u-—S;w)
glu,w) = E[e'ROT|T<oo]. (4.4)

This is intuitively logical when a is nonnegative We would then
expect that

0'1‘ < OT

Indeed, we have already noted that time T will occur after time T.
Hence, at time T, we will have already encountered ruin in the
associated model and may have accumulated a large deficit in
this model. This suggests that the second term in (4.3) should be
larger than the right hand side of (4.4).

We have motivated (4.4) by considering nonnegative a, but it is
in fact true for all values of a.

To prove (4.4), we must verify (3.2) and (3.3) with U replaced by
0. There is no difficulty with (3.2) and the derivation of this goes
through as in the classical case with a = 0. The problem in
deriving (3.3) is that unlike U, 0O, need zof be nonnegative at a
time prior to ruin. We do know from (4.1) that U, 2 -aW,/(1-a).
Proposition 2 then shows that if Y is bounded, 0,., is uniformly
bounded below, and we can apply Proposition 1. However, if Y is
not bounded, we need a different method. One problem is that the
existing proofs of (3.3) do not use the full definition of R, but
simply treat it as any positive constant. By a more subtle
employment of the properties of the adjustment coefficient, we
are able to handle the general case.
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General proof of (4.4).
We must show

EleRUn|Ton) |P(Ton) — 0 as n— . (4.5)
We consider now the dual distribution for &, as defined in
section 2. This induces, in a natural way, a new distribution on
the sample space consisting of all sequences of independent

observations of G. From the definition of this dual distribution,
statement (4.5) is equivalent to

Pr*(T>n) — 0 asn — oo, (4.6)
[t 1s a straightforward exercise to see that
Up = (1-a)8, + (1-a2)G_1 +..+ (1-a™ Gy + (1-a™)(c-w)+u. (4.7)
(See [ 1, formula 12.4.16] for example.) Let

EXG) = «, Var*(Q) = o2

From (4.7),

EX(Up) = oln- ]+ (e-w)(1-a™) + u (4.8)
We know from (2.2) that o < 0, and (4.8) shows that
E*(U,) < 0 for sufficiently large n. (4.9)

Using the independence of the G,'s and the fact that |1-a® | is
less than or equal to 2, we see from (4.7) that

Var*(U,) < 4no?. (4.10)
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[f ruin has not vet occurred, the surplus must be nonnegative.
Hence,

A

1
PYT>n) = P(Up20) < PUy > -5 E*(Up)

16n02
(E*(U,)2)

IA

which by (4.8), approaches 0 as n approaches infinity. (Note that
we use (4.9) for the second inequality and (4.10) together with
Chebychev's inequality for the third) We have now established
(4.5), completing the proof.

5. Estimating the probability of ruin.

One should note that (4.4) does ro¢ give an explicit formula for
the probability of ruin. There is a circularity involved, since the
time of ruin T appears on both sides of the formula. However,
one can often use the formula to estimate ruin probabilities. We
will illustrate a few examples of this. We consider two cases,
depending on the sign of the coefficient a.

Case 7. a 2 0.
[t 15 not hard tc verify that

1 a a
On = 1-aYn "1aUn-1 - 1< (5.1)

We always have Ur <0 and Ur.q 2 0. With a > 0, it follows
from (5.1) that,
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(This idea, due to Gerber, was used in a more general setting in [3,
section 4)). From (4.4) we obtain

a

yluw) < e Rlus 1_a(°_W)] (5.2)

which improves the estimate given in (4.3).

If Y i1s bounded above, then we can obtain a lower bound for
¢(u,w). Let M be as in Proposition 2. Then

Ur = Ur-1 +¢c - Wr 2 - M (5.3)

and

a 1
T-a Wt 2 -7 M (5.4)

UT = Ut -
so that

-R( u+

gluw) 2 e 1-a [M-aw] -c ) (5.5)

Case 2. a < 0.

As the second term on the right hand side of (5.1) is no longer
negative for 7 = T, we cannot obtain as good an upper bound as
in the case of nonnegative a Assume Y Is bounded and let M

and m be as in Proposition 2. Then, from (5.3) and (4.1)

z T 2 € - -1_am,

and we obtain
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a a
e-R[u +1-a (M-w)] > lu,w) 2 e-R[ u+tM -c¢ +—_; {(m-w)]

Example.

For a simple numerical example, suppose that

{1 with probability .6

YT 2 with probability 4
a = 12, ¢=3, u=0,andw =0.
Then
1 with probability .6
¢ - {-1 with probability 4

and it 1s easy to calculate that
e'R = 273

Using the second inequality of (4.3) does not help here. We just get
an upper bound of 1. Using the first inequality of (4.3}, we get

W

$(0,00 < 7,

since we know that 0-1- is necessarily equal to -1.

This is can be improved by (5.2), which gives

8
$(0,0) < 57 -
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For the lower bound, we calculate that M = 4, and see from (55)
that

31
¢(0,0) 5473 -

w
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