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1 lecture an undergraduate  course on Risk Theory at  Anahua¢ University, School of Actuar ia l  Sciences, 

and from time to time, a graduate  one in the Mathematical  Department  of Universidad Au t6noma  

Metropolitana. 

In the present comment  1 would like to express some opinions s temming mostly from my experience at  

An&huac University. One year ago Mexican students  presented, for the first time, the 151 

examinat ion.  They obtained good results. 

For the most  part, this comment  is siding in the direction of classical risk theory, this being obl igatory 

according to So<iety of Actuaries syllabus. In Actuarial  Mathematics  a great  job has been done 

resulting in a textbook accessible to average students. Consequently, the main goal of my comments  is 

to make the next edition of Actuarial  Mathematics slightly better in the part  involving Risk Theory.  

My first comment,  which crops up from our experience, is the following: the o(f(t)) formalism and 
.~f (t) 

notation should be included. For example f i t )= o(t), t - -  O, t t ~ - -  4 0  

This formalism is similarly proving to be very helpful in the 100 and 140 examinations.  Many 

problems in the 100 examination may be solved without the laborious and mechanical L'Hospital 's  

rule. The o(t) formalism is even more helpful, in the 140 examination.  Unfortunately,  the textbook by 

Kellison does not contain this kind of approximation.  It is the general opinion of our academic 

staff--e~pecially that  of Luisa Ares, the professor who is teaching the theory of interest, Miguel Angel 

Flores, calculus teacher, and mine, that  this kind of infinitesimal calculus should be included for 

actuarial  students. Tha t  is what we are doing here, making easier estimations of error. 
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['or example, tile proof of the central limit theorem is easier to explain with the little-oh formalism. 

~,%e ~ili see an application of little-oh, when talking about Theorem 11.4. (from Actuarial 

Mathematics). 

Another general comment  of mine is that the texbook is focused too much in the use of moment 

generating function. Proofs are not always easier using the m.g.f, technique, and moreover, the general 

idea often escapes, making the m.g.f, technique somewhat mindless. 

N~,~ I would like to discuss some details of the presentation of Risk Theory in A.M. 

Chapter L 

1. The text concerning 

log M x ( a )  
G=  ~r 

and 

log M X ( a | )  

a l  

should continue just like in Gerber's book: An Introduction to MathernattcalRtsk Theory. 

Many students are asking: if & > oI is the policy' feasible? 

1,Vith the trivial modification, one does not need the concept of the Essher transformation. 

M' [ t )  . 

M(t--~ ts, for an)' given t, the second moment of some r.v. with density function 

e t~ fix) 

fetrf~ x~dx 

2.- At [east one example should be attached to the text showing that, for the utility function logw, the 

premium G is decreasing with w, and an explanation why the premium increases with the wealth in 

the case of quadratic utility. It seems that this last property is a very particular one of the quadratic 

utility function. As a matter of fact, it is due to increasing curvature of this function. 

Thus the "unexpected property" re~ults more from geometrical than from algebraical properties. 
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Chapter 2. 

1.- Page 30 is badly edited. The concepts are easy, but the presentation is dull and readers lore 

patience. 

2 :  In my class I also solve the example from 2.2 in a third way, conditioning with respect to three 

values of I. 

I = 

O if the cl&im do~  not occur 
1 if it does and its amounts < 2,000 
2 if it occurs and is = 2.000 

It may be not so natural to choose more than 2 values for I, but it is a good exercise to solve the 

problem this way, practicing conditioning techniques. 

3: Talking about the central limit theorem: (page 36) ~... The central limit theorem does extend to 

sequences of nonidentically distributed random variables ~, some additional comment should be added 

like. ~lf anyone of r.v. X, is not too big comparing with the others ~. There are references, but the 

sentence sounds too categorical. 

Chapter 11. 

t.- The introduction to this chapter makes one think that only because of single period the interest rate 

is not included: but in the following chapter about the multl-periods, the interest rate is not included 

either, so the argument does not stand. 

2.- One task of a teacher in a classroom should be to link the risk theory with remaining courses. A 

good example could be 11.4, which may be solved by "tying ends ~ in bayesian statistics. Prior 

F(c~.s) distribution and Poisson random sample will produce posterior F(o+t.O+x ) distribution. From 

this observation it is very easy to solve the example. 
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3. T h . l | . l .  It would be nice to come back to this theorem in chapter  12 or 13 wi th  more  explici t  and  

natural  proof  based on the fact tha t  if Z t, Z 2, ..., Zn are wa i t i ng  t imes,  Z, for a c la im from the policy ;, 

and Z, are  independent  exponent ia l  r.v. then, if a c laim comes,  it is f rom the policy , with probabi l i ty  

q, _ q~ 
ql ÷ ... + q~ q 

The  a r g u m e n t  which could lead to this  relation can not be entirely rigorous.  One  should use the  s t rong  

Markov  property,  but  we follow a sl ightly informal  way of proofs following A.M. 

Now for Poisson Process: if a c la im X occurs,  

Xl  wi th  prob. 

X --- 
"X'~ with prob. ~ 

So the theorem results  for Poisson process for each t. Therefore  it results for Poisson d is t r ibut ion .  

On the o ther  hand,  there is a close relation between T h e o r e m  11.1 and 13.3. W e  will talk abou t  th is  

later. 

4.- In the  proof  of T h e o r e m  11.2, a new guest  appea r s  which should not be invited,  namely ,  the  

mul t id imens iona l  m o m e n t  gene ra t ing  function which usually lies beyond the  e lementary  probabi l i ty  

courses (it  clearly lies beyond the 110 examina t ion ) .  We  s imply  do not need it. 

The  proof  tha t  Jq', follows Poisson d is t r ibut ion  law is qui te  clear. (Using,  e.g.,  s t anda rd  m.g . f ,  or  the  

lab' of total  probabi l i ty) .  So it  r emains  to prove the independence of J~',. But  this is a consequence of  

the  following easy a r g u m e n t .  

Let N" = ~ . ~ ,  and  n =  ~ n , .  Then  

P ( K t  = nx, Jq2 = "N'2, ---, K m  = nm) 

= P ( N ~  = n l, N 2 = n 2 . . . . .  K m  = n ~ ,  ~V = n )  

= P (Jql = hi ,  "N? = n2 . . . . .  Jqm = n,,~r ~ = n) P ( ~ = n ) .  
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The conditional distribution in multinomial (more obvious from our interpretation of Theorem 11.1) 

and N has Poisson distribution with parameter A. So we have 

n! n~ n~ nm A n e-A 
P(Arl -- n l ,  J~r2 : n2 . . . . .  J~m : am) - nl!n2! ...nm! x l  "2 ° ' "  " ~  ~ l  

(A~l)  nl e-AXl (k~r~) n2 e-A~r2 . . .  ( A ~ ' ' )  nm e_k~. m 

hi! n2! nrn! 

: P ( g l  = n , )  P ( - ~ :  = n2)  • . • P ( g , ~  = n , ~ )  

5.- Th. 11.3. [ consider more important and more didactic to show that  the proof relies on the 

connection of this theorem to the classical central limit theorem instead of proposed technical proof. 

For the sake of applications it is enough to consider A and r integers in a, and b, respectively. In this 

case almost nothing remains to be done. Anyway, it is quite classical that if P (Zn <_ x) - -  <I,(x), and 

if o~ ~ 1 ,  P(I Y~ [ > c) - -  0 (Yn tends to zero in probability), then P (an  Zn + Y ,  _< x) ~ @(x). 

This fact is called by statisticians "Slutsky's theorem ~. This theorem lies beyond the 110 examination. 

But even some kind of intuitive reasoning would be sufficient to understand the problem. 

Now the theorem l l .3a  results immediately. Setting ['] for the integer part, 

SA-Xp~ _D S[-~] + SA_[A} - [Alp, -( A- IX] ) p, 

( S[A ] and S A _ l k  ] being independent). 

The proof of l l .3b,  results with trivial changes. 

(Note that both compound Poisson and compound negative binomial disitributions is ~closed under 

convolution ~, considering here common P(x) and in the second case alse common p, and 

SA _ [A] 
0 in probability) 
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6 -  With respect to the t ransla ted g a m m a  distr ibut ion (p.336) , it seems easier to consider X ~ F ( a , f l )  

and S - x 0 + X  the t ranslated g a m m a  r,v. 

The remark  on the page 337 is not another  l imit  theorem but results immedia te ly  from the central  

limit theorem and our proof of  the Theorem l l .3 .  

7.- Theo rem  11.4 This is a classical example  of how the use of  little-oh calculus can simplify the proof, 

In the T a y l o r ' s  formula  (from the textbookj ,  too m a n y  terms are involved. It is enough to use f(x) 

= f(0) + f ' (x) x + o(x) which, a.s a m a t t e r  of fact, results from the existence of  the first derivat ive,  

Now q(k) q{l)  ' ~  = k a ,  w h e r e c t =  p ~ . S i n c e  E ( S k ) = r k p l a  

[ \ p~ t {1"~ 
M X u / E  (~,) )  = , + ~ + o  ~ )  we too~ ,o, grant~ theexist . . . . .  M x ( t )  

within an interval  (-~c, 'r) ,  3' > 0, and this clearly implies the existance of MX(0)  , and E(IXI k) for any 

k. The  same assumpt ion  is m a d e  in A.M. , but  it does not appear  until the chapte r  13, 

E ]r sow . . . .  g.t. of s , / c  ( s , )  is plkt 
1 - q l k )  M x (t/E(S,)) 

~,Ve will calculate 

;) 
p{k) p(k) p(k} r k cl - .  

s, (r~)r 
"lherefore the l imit  of the m.g.f ,  of ~ is as k tends to infinity. This  proof allows an 

immedia te  generalization: 

lustead of asking for 

_ _  = l i m  q ( k )  1 
q(k)p(k) k ,~ we a l ight  as,sume tha t  k ~ o c  p(k) k - c ~  

148 



It is quite impor tan t  that  students realize that unlike in the central limit theorem, here only the first 

moment  is involved. 

8.- I propose the following change in the formulation of problem 11.23. If X, are individual claims 

in the second model, then individual claims Z, in the first model are Z, = X l + X 2 + X N., X,, .N" 
k 

being independent random variables and F ( ~ = k )  = - k @ n  p" In this presentation the s t ructure  of 

the first model is clearer. 

Chaper I...22 

1.- The global method a) in the page 348 should read: %_ We specify the distribution of .N'(t+h) - 

.N'(t) given the past history .N'(s), s<_t. This distribution may depend, or not depend, of the values of 

.~(s), s~t" 

2.- The method b) is not easy to understand.  More explanation is needed in order to ~catch" the loss 

of generality by, this method. 

3.- 12.3 gives a rather strange example x "~ e - t .  I consider it much more impor tant  tha t  the method of 

adjustment  coeficient fails in very impor tant  examples like Pareto  or Lognormal.  At leazt some 

references should be given in the case of ~heavy tail" claims. 

4.- I propose the following, slightly modified version of the proof of Theorem 12.1. Similar to the A.M. 

proof, we avoid the formal t rea tment  with martingales. 

Star t  with the l emma(a l so  useful in the proofs of Theorems 12 .2and  12.3); 

, ( x o )  ( ) - o  If Xn > O, E(Xn) = f(n) - -  ~ ,  and ~,ar f -~  ~ O, then E e - x "  

Proof of the Iemma 

Let 0 < e < l be any number.  Now we have 

- e  f(n) Var (Xn) _<e +.~ (, Xo .-f(nl,, ( l -  o~ f~n~), e-° f~n/ + ( , .  o~ (f(o~) 2 O. 
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Proof  of the theorem.  

z e - a t ( t )  = e - a °  e -r~¢t E (e aS(t)  ) = e_Ro e_a¢t e~t [M x (a) -1}  

= e _ , ,  uR e - R o t  + xt [M x (R)  -1] = e -''u~ , because R is the a d j u s t m e n t  coefficient.  On the  o ther  

hand.  

E e - R U ( t )  = E (e - R U ( t )  I T  < t)  P (  T < t) + 

[e - l ' tL(t  ) E (e - R U ( t )  F, ]T=c.~) P ( T = o c )  + [ t < T < pc ) P (t < T < ¢x~ ) 

Now, as t - -  ~c, P (t < T < oc,) ~ 0, and E (e - R U ( t )  

t tends to infinity.  

If  T = ~c, R U( t )  is non-nega t ive  

t < T < pc) < 1. So the th i rd  t e rm vanishes  as 

where o = c - A PL, #2 = A Pc" 

So we can apply  the l e m m a  to the second term,  which vanishes  a.s t ~ o¢. Therefore ,  it suffices to 

show tha t  

E ( e - R U ( T ) I T < _  t ) =  E ( e - R U ( t ) I T <  t )  and let t t e n d  to infinity.  

~Ve will prove first the  equal i ty  

E (e-" U(t' I T-- I T : ,)  o - "  (iT) Eeas,  

Note tha t  U(t)  -- U ( r )  + c(t - v) - [S ( t)  - S ( r ) ] .  We  can sepa ra t e  the  expec ta t ions  because U(v) ,  

g iven T = r  <t, and S(t)  - S ( r )  are independent .  Moreover S(t)  has s tat ionary '  and  independent  

increments ,  so tl'~e equal i t )  results easily'. 
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Now, a~ before, R being the adjustment coeficient implies that 

E ( e - R U ( t ) i T =  T_< t)  = E ( e - R U ( r ) J T =  ,< t).  Therefore 

E I t )  -- E • : ,) 

5.- The example 19.4 results immediately due to "lack of memory" for exponential distribution (which 

as a matter of fact, is proved in the textbook). Nevertheless, this lack of memory should be mentioned 

in an explicit form. 

ft.- The proof of Theorem 12.4. is too technical and one does not get the point. 

What good does it to do the important concept of penalt:, if it is not used in the sequel and students 

have found the proof unreadable? 

I consider clearer and easier to explain Theorems 12.4 and 12.5 (which are closely related) using the 

renewal theory, as in the classical texbooks by Feller, Karlin and Taylor, B't]lhmann and Grandell. 

Let ¢ ( z )  = 1 - ~v(z). Now q~(z) satisfies: 

• (z) = ,~ e - '~r  ~ ( z + c r - x )  dF(x) dr  , z >0 
o 

Later on, following e.g. Grandell p. 5, 

0 

By the way, 1 do not understand the unanimity of these classical texts of claiming that  ¢(u) is 

differentiable. 

The equation 

@'(u) : ~ @(u) - ~ .~ 4,(u-z) d F(z) cannot be satisfied everywhere if F(z) suffers jumps. 
o 
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There is a counterexampte, in A.M. (example [2.22.) In points of jumps of the distribution function F, 

Cr Would suffer jumps, but it is impossible. (the derivative does not need to be continuous, but all 

di~outmuities are essential). So the solution of the problem 12.22 (p. 613) should read a) ... 0 < u < 1 

t h e  robust result ~,,(0) = ~ might be obtained in the same way a.s in Grandell's text or, in general, 

the Theorem 12.4 results straightforward using general theory of renewal processes. The total loss M is 

smaller than x, if and only if there is no ruin with initial surplus x. M, the maximal loss with infinite 

horizon, might be seen in the following way: every time when surplus is negative we point the 

respective quantity out, and start with zero surplus. 

Now the accumulated loss satisfi~ P(M _< x) = ~(x). so the improper density 

represents what we were seeking. (We may assume initial surplus equal to be zero) 

Theorem 12.5 follows immediately from (12.5.4). 

Now. to solve the problem 12.22 we simply ~solve ~ 

m l n ( l , I I  

~(t) = 1 - + + + / * ( t  -x} dx 
o 

C, hapter 13. 

q'  needs more explanation 1.- The formula ql +... + q,~ 

First of all, why Bayes? It rather results from the definition of conditional probability. Now, if qi are 

small, then the probability of two or more claims is smaller only if there are not too many q,ts. 

Nevertheless, we could treat the problem in a given time interval [O,T], and if ~ q, > 1 ,  or ~ q, q: 
J m l  

is of the same or geater order, we could split the original interval in 2 or many equal segments and 

look for n such that E ~¢~ E ~  ~ ~ means here much bigger) 

"~,'e have assumed that the moment of arrival of each claim given that it occurs is U[O,T] distributed. 

Now the best wa~ to get the result seems to be the following: P (claim , I claim in t) = 

/ \ 
lim P / c l a i m  '1 claim in [ t , t  + h ) / ---- jim 
h - -0  \ ! h 4 0  

h q ' - T -  

q~ ~ +... + q. ~ + o(hl 
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Almost  the same proof proceeds for the exponential  wai t ing t ime for claims. (Compare  with the 

c o m m e n t  about  t h . l l , 1 ) .  

2.- In example  13.11 (Proport ional  reinsurance with 0 (should read ~ ) : I00 per cent, which is the 

same as 0, should be ra ther  called "friendly cooperation ~ instead of  reinsurance.  The  chap te r  13 is 

called "applicat ions ~, excess - of - loss coverage with t = 0 would be ra ther  difficult to get. At least, it 

should be discussed. 

3.- In page 391 - the sentence "This  implies that  there is not a positive root to (12.3.1) and tha t  the 

ruin is cer ta in"  is confusing. It is val id in the context ,  but less careful s tudents  migh t  take it to be 

" the general t ru th" .  
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