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Abstract 

The aggregate claims process is modelled by a process with independent, 

stationary and nonnegative increments. Such a process is either compound Poisson or 

else a process with an infinite number of claims in each time interval, for example a 

gamma process. It is shown how classical risk theory, and in particular ruin theory, can be 

adapted to this model. A detailed analysis is given for the gamma process, for which 

tabulated values of the probability of ruin are provided. 
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1. Introduction 

In classical collective risk theory, the aggregate claims process is assumed to be 

compound Poisson (Panjer and Willmot, 1984). Here we shall examine a more general 

model for the aggregate claims process: processes with independent, stationary and 

nonnegative increments. Such a process is either compound Poisson or else a process 

with an infinite number of claims in any time interval. The most prominent process with 

this intriguing property is the gamma process. 

Since the process under consideration is either a compound Poisson process or a 

limit of compound Poisson processes, its properties can be derived from the basic 

properties of the compound Poisson process. The general results are derived in Section 

2 (for the aggregate claims process) and Section 6 (for the probability of ruin). The 

gamma process is examined in detail in Sections 3, 4 and 5 (for the aggregate claims 

process) and Sections 7 and 8 (for the probability of ruin). 

2. 

Let Q(x) be a nonnegative and nonincreasing function of x, x > 0, with the 

properties: 

and 

Processes with Independent, Stationary and Nonnegatlve Increments 

O(x) ~ 0 as x ~ =, 

Iq (x )  dx < OOo 

0 

Condition (2.1) can also be written as 

, • x  [-dQ(x)] < =,, 

0 

which, if q(x) = --Q'(x) exists, becomes 

,~x q(x) dx < ~.  

o 

(2.1) 
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Such a function Q(x) defines an aggregate claims process {S(t)} I ~ o in the following way. 

For each x > 0, let N(t; x) denote the number of claims with an amount greater than x that 

occur before time l; let S(t; x) be the sum of these claims. We assume that {N(t; x)} t ~ o is a 

Poisson process with parameter Q(x) and that {S(x; t)}t~ o is a compound Poisson process 

with Poisson parameter Q(x) and individual claim amount distribution 

t 0 y ~ x  
P(y; x) = Q(x) - Q(y) (2.2) 

[ Q(x) Y > x 

The process {S(t)} is defined as the limit of the compound Poisson processes {S(t; x)} as x 

tends to 0. 

We write 
Q(0)--- lim Q(x). 

x - ~ 0  

We need to distinguish two cases: Q(0) < ~,, and Q(0) = ,,~, In the first case, {S(t)} is a 

compound Poisson process with Poisson parameter Q(0) and individual claim amount 

distribution 
O(y) 

P{y) --- 1 - Q(0) ' Y ~ 0. (2.3) 

This is the classical model tor collective risk theory. Conversely, every compound 

Poisson process, given by Poisson parameter & and individual claim amount distribution 

P(y), is of this type if we set 

Q(y) = X[1-P(y) ] ,  y _> 0. (2.4) 

In the second case, {S(t)} is the limit of compound Poisson processes, but is not a 

compound Poisson process itself, because the expected number of claims per unit time, 

Q(0), is infinite. Indeed, with probability one, the number of claims in any time interval is 

infinite. Nevertheless, S(t) is finite, as the majority of the claims are very small in some 

sense. In both cases, Q(y) is the expected number of claims per unit time with an amount 

exceeding y. 



Since {S(t)} is the limit of {S(t; x)} as x tends to O, we can use well-known results for 

the compound Poisson process to obtain results for the process {S(t)}. For example, it 

follows from 

E[S(I; x)] = t Q(x) j~[1 - P(y; x)] dy 

o 

= txQ(x) + t~(~y) dy 
11 

that 

Eis(t j--,J'o(yl dy --t J'yE- ocy>l. 
o o 

(2.5) 

To get the Laplace transform, we start with 
w 

E[e-zslt;x~] = exp{tQ(x)[j*e zYdP(y; x) - 1]} 
X 

= exp{tJ~e - z y -  1][-dQ(y)]}. 

Letting x --~ O, we obtain 

E[e-Z s(t)] = exp{t~e'[e -zy - 1][-dQ(y)]}. (2.6) 

The process {S(t)}, defined by the function Q(x), has independent, stationary and 

nonnegative increments, and E[S(t)] < ~. The converse is true in the following sense. 

Every process {X(t)} with these properties is of the form 

X(t) = S(t) + bt, 

where {S(t)} is a process of the type presented above and b is a nonnegative constant. 

This is a consequence of the connection between processes with independent and 

stationary increments and infinitely divisible distributions, and the characterization of 

infinitely divisible distributions with nonnegative support (Feller, 1971, p. 450, Theorem 2; 

p. 571, formula (4.7)). 
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3. The Gamma Process 

Assume that the function Q(x) is differentiable and that -Q'(x)  is 

a A-bX q(x) = y-e , x > O, (3.1) 

where a and b are positive constants. Let {S(t)} be the associated aggregate claims 

process. In a time interval of length t, the expected number of claims with an amount 

exceeding x is 
-by 

,o/xl _-a,J' dy 
X 

Since Q(0) = ~, there is an infinite number of claims in each time interval. By (2.5) the 

expected aggregate claims in a time interval of length t are 

E[S(t)] = t f yq (y )dy  = at~e-bydy - at  
b "  

0 0 

(3.2) 

To obtain the distribution of S(t), we compute its Laplace transform by (2.6): 

E[e -zs{t)] = exp{tJ[e -zy - 1]q(y)dy} 

= exp{atS~e-(z+b)y _ e-bY 
dy} 

0 

(3.3) 

To verify the last step, consider the function 

~(z) = j~ e-(z ÷ b)yy _ e-bY dy; 

0 

observe that ~(0) = 0 and ~'(z) = - (z  + b) -1. Formula (3.3) shows that the distribution of 

S(t) is gamma, with shape parameter c£ = at and scale parameter ~ = b. Hence the 

process {S(t)} is called a gamma process. 

A gamma process with a = b = 1 is called a standardized gamma process. For an 
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arbitrary gamma process with parameters a and b, we may set t* = at and S'(t*) = bS(t). 

It follows from (3.3) that 

E(eZS'"')) = ( ~ +  1)"  (3.4) 

Thus the transformed process {S*(t')} is a standardized gamma process. 

In Section 2, the aggregate claims process {S(t)} is obtained as a limit of the 

compound Poisson processes {S(t; x)} as x tends to 0. Here, we have a specific Q(x) and 

we now show that the gamma process {S(t)} is the limit of a certain family of compound 

Poisson processes, which are not {S(t; x)}. 

Let a and b be the positive constants in (3.1). Consider the family of compound 

Poisson processes with Poisson parameter ~., X > 0, and individual claim amount density 

function 

where 

In view of (2.4), we examine 

p~(x) = b= x a- 2e-bX x > 0, (3.5) 

~=aJ% 

a b ~ x ~ - le-bX 
~. p(x) = 

x F(oL + 1) 

For ~. ~ o,, (a ~ 0) we obtain the right-hand side ot (3.1). Thus the gamma process with 

parameters a and b is indeed the limit of this family of compound Poisson processes. 

4. Parameter Estimation for the Gamma Process 

Let {S(t)} be a gamma process with (at time t = 0) unknown parameters a and b. 

We claim that, il we can observe the process for a time interval of (arbitrarily short) length 

h, h > O, the vatue of a can be obtained as a limit: For 0 < x < 1. we define the random 

variable 
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then 

N(h;  x ) .  
A(x)  -- - h In(x) ' (4.1) 

lim A(x) = a. (4.2) 
x --[, 0 

(We remark that a similar situation exists for the diffusion process with a pr ior i  unknown 

but constant infinitesmal drift I~ and variance O2: If the sample path for an arbitrarily small 

time interval is known, o 2 can be calculated.) 

To prove (4.2), we write (4.1) as 

- e-by 

S --~-- dy N(h; x) 
A ( x ) -  ~ a. 

X X 

Applying L'HSpitars rule, we see that the first ratio tends to 1 as x tends to 0. The second 

ratio is N(h; x)/[hQ(x)]; by the strong law of large numbers it converges to 1 (with 

probability one) as x tends to 0. 

In the following we assume that the value of a is known, but that b is unknown. If 

the aggregate claims process has been observed to time t, Sit) is a sufficient statistic, i.e., 

any additional information about the sample path is irrelevant for the estimation of b 

(DeGroot, 1975, p. 304, #5). To illustrate this, let us treat the unknown b as a random 

variable 9 with prior probability density function u(B), B > 0. Then the posterior density of 

0 at t ime t, given the value of Sit) ,  is 

u(O; t) = 
oa, e-e s(q u(0) 

r a' e-rS{Ou(r)dr 

o 

Let us now assume that u(e) is gamma, say, 

u(e) ~ e  ~-  1e-P° = F(~x) e>o ,  

with ~ > 0 and oc > 1. Then the posterior density is also gamma, with parameters 
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c~ = or+at 

and 

13~ = I], + S(t) .  

At time t = 0, the expected aggregate claims per unit time are 

E(e) F'u(O).,,, I~ -_ a j - - 6 - - o o  = 1 

o 

Hence, with S(t) known, the conditional expectation of the aggregate claims per unit time 

is 
13t 13 + S( t )  

a = a 

a t - 1 oc + at - 1 

= ( t -  Z,)a;~T + z;S~ t), (4.3) 

where Z t = at/(at + ot - 1). Formula (4.3) corresponds to the well-known result for exact 

credibility in the gamma/gamma model. 

5. Simulation of the Gamma Process 

We can simulate a compound Poisson process by simulating the times and 

amounts of the claims. This straightforward approach is not applicable to the gamma 

process, since there are infinitely many claims in each time interval. We now present a 

method tor simulating the gamma process. 

Let {S(t)} be the gamma process with parameters a and b. To simulate a sample 

path, we use the following result. For time ~ > 0, the conditional distribution of the ratio 

S(V2)/S('[), given S(¢), is symmetric beta with parameter a't/2 (DeGroot, 1975, p. 244, #5). 

Thus, if we want to simulate a sample path for S(t), 0 _< t ~; T, we can proceed as follows. 

First, we simulate a value for S(T), whose distribution is gamma with shape parameter aT 

and scale parameter b. Then we obtain S(T/2) by simulating a value for S(T/2)/S(T), 
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which has a symmetric beta distribution with parameter aT/2. Nexl, we obtain S(T/4) and 

S(3T/4) by simulating the values of S(T/4)/S(T/2) and [S(3T/4) - S(T/2)]/[S(T) - S(T/2)], 

respectively, each of which has a symmetric beta distribution with parameter aT/4. 

Similarly, we can generate the values of S(T/8), S(3T/8), S(5T/8), S(7T/8), and so on. 

We have simulated the standardized Gamma process for T = 5.11 and T = 10.23. 

The resulting sample paths are shown in Figures 1 and 2. 
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6. Ruin Theory 

Let {S(t)} be the aggregate claims process introduced in Section 2. In this section 

we present some ruin probability results for this process. In the next section, we 

specialize to the case that {S(t)} is a gamma process. 

Let the surplus of an insurance company at time t, t ~ 0, be 

U(t) = u + ct - S(t). (6.1) 

Here u is a nonnegative number denoting the initial surplus and c is the rate at which the 

premiums are received. The relative security loading e is defined by the equation 

c = (1 + e) E[S(1)] = (1 + O)/Q(x)dx. (6.2) 

0 

We assume that 6 > 0. Let ~'(u) denote the probability of ultimate ruin, i.e., the probability 

that the surplus becomes negative at some future time. 

In view of formula (2.4), results for this model can be obtained via those for the 

compound Poisson model with the following recipe. We start with a formula for the case 

of the compound Poisson process with Poisson parameter ;k. and individual claim amount 

distribution P(y). Then we substitute Q(y) for ~.[1 - P(y)] (or q(y) for ;kp(y) if the derivatives 

exist) to obtain the corresponding formula for the more general model. 

For example, in the compound Poisson model the probability of ruin satisfies the 

following defective renewal equation [e.g., Bowers et al (1986, p. 373, #12.11)]: 

u 

C~(U) = ;~j'~(u - y)[1 - P(y)]dy + ;Lj~l - P(y)]dy, u > 0. 

0 u 

Substituting Q(y) for Z[1 - P(y)], we get 
u 

j' u-y)Q ,)dy + rQ(y) , 
0 u 

u>O. (6.3) 

For u = 0, this gives 
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~V(0) = y)dy _ 1 + O' 
0 

Let us now consider the maximal loss random variable 

(6.4) 

L = max {S( t ) -c t } .  (6.5) 
t z o  

It is of interest since 1 - ~(u) is its distribution function. In the compound Poisson model, it 

is well known (Bowers eta/, 1986, Section 12.6) that L has a compound geometric 

distribution: 

L = L 1 + L 2 + ... + L N. (6.6) 

Here N, L 1, L2, ... are independent random variables, the Li's are identically distributed 

with the probability density 
1 - P ( x )  

h(x) - , x > 0, (6.7) ~ 1 - P(y)] dy 

o 

and N has a geometric distribution defined by 

Pr (N=n)  = 8 / e )n 
TT6- 7T+ - ' 

n = 0, 1,2 ..... (6.8) 

If we multiply both numerator and denominator of (6.7) by ~., we see that (6.6) is valid for 

the general model, with 
O(x) 

h(x) - , x > 0. (6.9) 

~Q(y)dy 

0 

These formulas can be used to determine numerical lower and upper bounds for the ruin 

probability; see Method 1 in Dufresne and Gerber (1989). 

For the next result we assume that p(x) = P'(x) and q(x) = -Q'(x)  exist. Let T denote 

the t ime of ruin. Put X = U(T-),  the surplus immediately before ruin, and Y = IU(T)I, the 

deficit at the time of ruin. We assume that u = 0. Given that ruin occurs, the joint 

probabil ity density of X and Y in the compound Poisson case is 
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h(x, y) - p(x + y) , x > O , y > O  (6.10) 

~ l  - P(s)]ds 

0 

(Dufresne and Gerber, 1988). Thus, in the general model, the joint density of X and Y is 
q(x + y) 

h(x,y) = - - - -  x > 0 ,  y>0 .  (6.11) 

Q(s) ds 

0 

We note that both (6.10) and (6.11) are symmetric in x and y. The probability density of 

Z -- X + Y (the amount of the claim that causes ruin) is 
z 

0 

z > O. (6.12) 

The conditional probability density of X given Z = z (and u = 0) is 
h(x, z - x) 1 

g(z) - z '  O < x < z .  

This is the somewhat surprising result that the conditional distribution of X (given Z = z) is 

uniform between 0 and z. 

We wish to remark that, if Q(0) = ,~, the notion of an individual claim amount 

distribution of the process {S(t)} per  se does not make sense. However, the conditional 

claim amount distribution, given certain information, may still exist. For example, (2.2) is 

the distribution of an individual claim amount given that it exceeds x. Likewise, g(z) is the 

probability density function of the amount of the claim that causes ruin. 

We now turn to Lundberg's asymptotic formula. The adjustment coeff ic ient R is 

defined as the positive value of r for which 

E[er[SC~) - ct]] = 1 (6.13) 

o r  

E[e' s~tl] = e,~. (6.14) 

(Note that the left-hand side of (6.14) is (2.6) with r = -z  and that some regularity 

conditions have to be imposed on Q(y) to guarantee the existence of R.) Lundberg's 
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famous asymptotic formula states that 

~(u)  ~ Ce -n~ foru ~ .  

In the compound Poisson case, 

0XSYdP(Y) 
0 

C =  

XfyenYdP(y) - c 
o 

(Seal, formula (4.64)), which is translated as 

--eSydQ(y) 

C :  0 

-fyeRYdQ(y) - c 

o 

(6.15) 

(6.16) 

(6.17) 

7. Ruin Theory for the Gamma Process 

We now consider the special case that {S(t)} is a gamma process. As we pointed 

out in Section 3, any gamma process can be transformed into a standardized gamma 

process. Thus we assume that, for x > 0, 
- X  

q ( x ) -  e (7.1) x 

or  

~e -y  Q(x) = j ' - ~ d y .  
X 

(7.2) 

In Abramowitz and Stegun (1964, p227), the exponential integral (7.2) is denoted as 

El(x)- 

Since 

formula (6.2) becomes 

f f x)dx = xq(x)dx = e-*dx = 1, 

o o o 

1 + 0  = c. ( 7 . 3 )  
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By (6.9) the common probability density function of the random variables {Li} Is 

h(x) = Q(x) = EI(x ), x>0 ,  (7.4) 

and their distribution function is 
X 

H(X) = Ih(y)dy = 1 - e  -x+xE1(x ), 

o 

x>O. (715) 

From (6.11) and (6.12) we obtain 

h(x, y) = e-(x * y) 
x + y  (7.6) 

and 
g(z) = e -z, (7.7) 

respectively. Formula (7.7) is especially interesting, as it says that (if u = 0) the amount of 

the claim that causes ruin is exponentially distributed. 

Substituting (3.4) and (7.3) in (6.14) yields the equation 
t r(1 * e) 

- e 
t - r  

(7.8) 

The adjustment coefficent R is the positive root of (7.8). It follows from (6.17) and (7.3) that 

the asymptotic constant C in Lundberg's formula is 

C =  e 
1 

1 - R  (1 + e) 

e( t  - R) 

R - e(1 - R ) '  
(7.9) 

R e m a r k :  As pointed out in Section 3, the gamma process is the limit of a certain family of 

compound Poisson processes, each with a gamma claim amount distribution. For these 

Willmot (1988) has given an elegant method to evaluate the probability of ruin. 

8. T h e  P r o b a b i l i t y  of  R u i n  for  the  G a m m a  P r o c e s s  

As in the last section we assume thai the aggregate claims process is the 

standardized gamma process. Since (7.5) gives an explicit expression for H(x), we can 

apply the method of lower and upper bounds to calculate the probability of ruin (Dufresne 

and Gerber, 1989). We have calculated lower and upper bounds for ~(u) for different 
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values of the initial surplus u (0, 1 ,2 . . . . .  20) and the relative security loading e (o.1,0.2, 

0.3 . . . . .  1.o), for intervals of discretisation with length 0.01 and 0.001. For 8 = 0.5 these 

bounds are displayed in Table 1. Thus the exact value of the probability of ruin is known 

with sufficient accuracy (4 decimals). Table 2 shows these values. 

Table 1 

Lower and UDDer BQtJn~s for the Probability of Bviq 

0=0.5 

6 
7 
8 
9 

I0 

Lower Bounds Upper Bounds 

0.666667 0.666667 0.666667 
0.321352 0.322741 0.323055 
0.175016 0.176268 0.176550 
0.096653 0.097604 0.097819 
0.053619 0.054288 0.054439 
0.029801 0.030250 0.030352 

0.016577 0.016870 0.016936 
0.009225 0.009412 0.009454 
0.005135 0.005252 0.005279 
0.002858 0.002931 0.002948 
0.001591 0.001636 0.001646 

0 666667 
0 324488 
0 177839 
0 098798 
0 055129 
0 030817 

0.017240 
0.009649 
0.005401 
0.003024 
0.001693 

ii 0.000886 0.000913 0.000919 0.000948 
12 0.000493 0.000510 0.000513 0.000531 
13 0.000275 0.000284 0.000287 0.000297 
14 0.000153 0.000159 0.000160 0.000166 
15 0.000085 0.000089 0.000089 0.000093 

0.000047 0.000049 0.000050 
0.000026 0.000028 0.000028 
0.000015 0.000015 0.000016 
0.000008 0.000009 0.000009 
0 . 0 0 0 0 0 5  0 . 0 0 0 0 0 5  0 . 0 0 0 0 0 5  

[___o __1 
........ 0 . 0 1  

16 
17 
18 
19 
20 

0.000052 
0.000029 
0.000016 
0.000009 
0.000005 

length of the interval of discretisation 
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Table 2 

The Probability of Ruin for the Standardized Gamma process 

u 

6 
7 
8 
9 

I0 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

0.i 

0.9091 
0.7395 
0.6184 
0.5182 
0.4345 
0.3643 

0.3054 
0.2561 
0.2148 
0.1801 
0.1510 

0.1266 
0.I062 
0.0890 
0.0746 
0.0626 

0.0525 
0.0440 
0.0369 
0.0309 
0.0259 

Relative Security 5oading Theta 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.8333 0.7692 0.7143 0.6667 0.6250 0.5882 0.5556 
0.5736 0.4613 0.3816 0.3229 0.2782 0.2434 0.2155 
0.4165 0.2990 0.2253 0.1764 0.1424 0.1178 0.0994 
0.3038 0.1952 0.1344 0.0977 0,0741 0.0582 0.0470 
0.2219 0.1277 0.0805 0.0544 0.0388 0.0289 0.0224 
0.1621 0.0836 0.0482 0.0303 0.0204 0.0144 0.0107 

0.1185 0.0548 0.0289 0.0169 0.0107 0.0072 0.0051 
0.0866 0.0359 0.0173 0.0094 0.0056 0.0036 0.0025 
0.0632 0.0235 0.0104 0.0053 0.0030 0.0018 0.0012 
0.0462 0.0154 0.0062 0.0029 0.0016 0.0009 0.0006 
0.0338 0.0101 0.0037 0.0016 0.0008 0.0005 0.0003 

0.0247 0.0066 0.0022 0.0009 0.0004 0.0002 0.0001 
0.0180 0.0043 0.0013 0.0005 0.0002 0.0001 0.0001 
0.0132 0.0028 0.0008 0.0003 0.0001 0.0001 
0.0096 0.0019 0.0005 0.0002 0.0001 
0.0070 0.0012 0.0003 0.0001 

0.0051 0.0008 0.0002 
0.0038 0.0005 0.0001 
0.0027 0.0003 0.0001 
0.0020 0 . 0 0 0 2  
0.0015 0.0001 

0.9 

0.5263 
0.1929 
0.0854 
0.0388 
0.0178 
0.0082 

0.0038 
0.0018 
0.0008 
0.0004 
0.0002 

0.0001 

0.5000 
0.1743 
0.0743 
0.0327 
0.0145 
0.0065 

0.0028 
0.0013 
0.0006 
0.0003 
0.0001 

0.0001 
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I l lustrat ion: Assume that the annual aggregate claims have an expectation p = 100,000 

and a standard devialion c = 20,000. The initial reserve is 48,000 and the annual 

premium (net of expenses) is 120,000. What is the probability of ullimate ruin? 

Solut ion:  We assume that the premiums are received continuously and the aggregate 

claims process can be modetled by a gamma process with parameters a and b. Then 

a/b = p. = 100,000 and a/b 2 = c 2 = (20,000) 2. It follows that b = IZ/C 2 = 1/4,000. In order to 

use ]able 2 (which is for the standardized gamma process), we have to transform the 

initial reserve to u = 48,000 × b = 12. The relative security loading 8 = 0.2 does not 

change. Looking up Table 2, we obtain the probability of ruin ~(12) = 0.018. 

Acknowledgment 

This paper was compleled during the tenure of the senior author as the first Dr. L.A.H. 

Warren Professor of Actuarial Science at the Faculty of Management, University of 

Manitoba. Support from the Warren Professorship Endowment Fund and the Natural 

Sciences and Engineering Research Council oi" Canada is gratefully acknowledged. 

2 5  



References 

Abramowitz, M. and Stegun, I.A. (1964) Handbook of Mathematical Functions. National 

Bureau o! Standards, Washington, D.C. Reprinted by Dover, New York. 

Bowers, N.J., Jr., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J. (1986) 

Actuarial Mathematics. Society o! Actuaries, Itasca, Illinois. 

DeGroot, M.H. (1975) Probabifity and Statistics. Addison-Wesley, Reading, Massachusetts. 

Dufresne, F. and Gerber, H.U. (1988) The surplus immediately before and at ruin, and the 

amount of the claim causing ruin. Insurance: Mathematics and Economics 7, 193-199. 

Dufresne, F. and Gerber, H.U. (1989) Three methods to calculate the probability of ruin. 

ASTIN Bulletin 19, 71-90. 

Feller, W. (1971) An Introduction to Probabifity Theory and Its Applications, Vol. 2 (2nd 

edn). Wiley, New York. 

Panjer, H.H. and Willmot, G.E. (1984) Models for the distribution of aggregate claims in risk 

theory. Transactions of the Society of Actuaries 36,399-477. 

Seal, H.L. (1969) The Stochastic Theory of a Risk Business. Wiley, New York. 

Willmot, G.E. (1988) Further use of Shiu's approach to the evaluation of ultimate ruin 

probabilities. Insurance: Mathematics and Economics 7, 275-281. 

Francois Dufresne 

E-cole d'Actuadat, Universit~ Laval, Quebec G 1K 7P4, Canada. 

Hans U. Gerber 

E-cole des H.E.C., Universit~ de Lausanne, CH-1015 Lausanne, Switzerland. 

Elias S.W. Shiu 

Department of Actuarial and Management Sciences, Faculty of Management, University of 

Manitoba, Winnipeg, Manitoba R3T 2N2, Canada. 

26 


