ACTUARIAL RESEARCH CLEARING HOUSE
1993 VOL. 2

LIFE CONTINGENCY FUNCTIONS AND THEIR DERIVATIVES
by Hung-Ping Tsao
ABSTRACT
Deferred term, pure endowment and endowment life contingency
functions and their derivatives are discussed in general and some

familiar formulas are derived in particulr.

We shall consolidate the ideas presented in {11 and [Z] in a
more general fashion. Foreulas in the cantinuous case will be
derived formally and some errotrs in those papers carn be easily

ident1fied.
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where m " m
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and ( CXEAIQ&) is & pair of corresponding life contingency and

1nterest function notatians 1n the context of (1) such as (d,,ﬂﬂ)
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Far the cantinuous case, we define
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by taking y = x + b 1n (1) we can obtain
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We can readily cbtain

M_;ﬁ@_ klh’o(x/“)""k—mf’x O(n{/‘nkﬂl B)
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Let ue lock at some examples.
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EXAMFLE 1. Q;t =yt
Fraom (2}, we have
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Let us now look at the continuous case.

Since the last term of (5) can be written as
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wWe Can alsoc abtain
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By taking m = 1 and k = O, these formulas become
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Let us now look at the continucus case.

Since the last term of (6) can be written as
mi-
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Formulas for increasing functions can be derived 1n a similar
rashion. The derivation 1is ratner complicated and therefore

aomitted. However, by making use of the relationship
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we can obtain the following “ormulas for the continuous cacse:
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