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A negative with positive results

I recently noticed that allowing m to

becorne negative in the formula for
a‘(ﬂ - m)

produces an annuity immediate

payable m times per year. Le.

(- m)_ ,{m)
‘5] =aa -

This can be seen by noticing that
d(— @) ‘(m)

This relationship could be put
to good use, for example. in the
design of financial functions for
spreadsheet prcgrams. When a
parameter is added to allow vartation
tn the payment frequency, the func-
tion is automatically generalized for
both due and immediate.

It is interesting that the relation-
ship holds in at least two cases for
life annuities.

(a) the usual approximation
;iﬂ= i- m-1
{b) assuming U.D.D.
I P =o(m)ed,— Blm)
where
__i=d _ ==
! m)—‘(m’l‘d(ﬂ) B(m)_!(m)dl m
Robert A. Alps
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The observations

dem o
and
g
can also be found on page 573 of [2]. Mr. Alps’s conjecture
i(—m) _ L m
x x

can be derived as follows. Let T denote the time-until-death random variable [1, Chapter 3]. Let

[Tand|- ] denote the ceiling function and floor function, respectively. Then

© @
a = E@ )
X fTl/id
and
&) X
a = EQ ).
* et/
It follows from
f(—m)T-l _ mT_'
T T m @)
and (1) that
_a(-m) _ (m)
X x

For each pair of real numbers ¢ and d, let cad denote the minimum of the numbers. Then

® K1l
a = E@a )
x:nl nATKT W
and
& (x)
a ).

= E(a
x:nl nALkT_]/kl

It now follows from (1) and (2) that
_(~m) (m)
2 =2 3)

x:n, x:7
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Another approach to prove (3) is 1o express the temporary life annuitics as Riemann integrals:
n

)
:'a(k E di

x 0l g b
and

® {

ax o} - gfkﬂlkE" .

Then apply the formula [-£1= &)
A third proof for (3) is to write the temporary life annuities as Stieltjes integrals:
© !
a = | Edlkl/i
1l 0!

X

and
n

©
= | E_d{(kt/k).
ax:n1 b[[xd.J/)

Remarks
(i) Itcan be shown that
o(-m) = a(m)

and

Bl-m) = B(m) + m.
Furthermore, the function 1(.) defined in #5.18 on page 152 of (1] satisfics the reiation

Y-m) = y(m) + ml.
(ii) According to #5.19 on page 153 of [1],

¥m) = a(m) - Bm) — mL.

Consequently,

L}

a(m) - f(-m)
o(-m) — B(-m).
This result relates to Mr. Alps's case (b).

Y(m)
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(iii} For further discussion on the functions a(.), B(.) and ¥.), we refer the interested reader to [3).

(iv) Because of the formula

at-m = j(m)
we immediately have
é('-ﬂ\] _ (a)(m)
X: lﬂ X nT
See [1, Example 5.12].
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