ACTUARIAL RESEARCH CLEARING HOUSE 1991 VOL. 2

Annuities with Negative Payment Frequency

Elias S.W. Shiu
Deparment of Actuarial \& Management Sciences
University of Manitoba
Winnipeg, Manitoba R3T 2N2

The following Letter to the Editor appeared on page 16 of Vol. 25, No. 7 (September 1991) of The Actuary.

A negative with positive results I recently noticed that allowing m to become negative in the formula for

$$
x_{n}(-\infty)
$$

produces an annuity immediate payable m times per year. i.e.

$$
x_{0}^{(-m)}=\alpha_{0}^{(m)} .
$$

This can be seen by nobicing that

$$
d^{(-\infty)}=f^{(m)}
$$

This relationship could be put to good use. for example. in the design of financtal functions for spreadsheet programs. When a parameter is added to allow varration in the payment frequency, the functoon is automatically generalized for both due and immediate.

It is interesting that the relationship holds in at least two cases for life annuities.
(a) the usual approximation
(b) assuming U.D.D.

$$
x_{x}^{\prime m}=s_{x}-\frac{m-1}{2 m}
$$

$x_{x}^{i m}=s_{z}-\frac{m-1}{2 m}$

$$
{u_{x}^{\prime}}_{x}=\alpha(m) * x_{z}-\beta(m)
$$

where

$$
\alpha(m)=\frac{1 \neq d}{\int^{(m)^{\prime}} \neq d^{(m)}} \quad \beta(m)=\frac{1-1^{(m)}}{\int_{\text {Robert A. Alps }}^{(m)} d^{(m)}} .
$$

The observaions

$$
d^{(-m)}=i^{(m)}
$$

and

$$
\begin{equation*}
\dot{\mathbf{a}}_{\mathrm{n}]}^{(-\mathrm{m})}=\mathbf{a}_{\mathrm{n} 7}^{(\mathrm{m})} \tag{1}
\end{equation*}
$$

can also be found on page 573 of [2]. Mr. Alps's conjecture

$$
\dot{\mathrm{a}}_{x}^{(-m)}=a_{x}^{(m)}
$$

can be derived as follows. Let T denote the time-until-death random variable [1, Chapter 3]. Let
$\lceil\cdot\rceil$ and $\lfloor\cdot\rfloor$ denote the ceiling function and floor function, respectively. Then

$$
\dot{a}_{\mathrm{a}}^{(k)}=E\left(\frac{(\mathbf{a})}{\lceil k T / / k}\right)
$$

and

$$
a_{x}^{(k)}=E\left(a_{[k T / k}^{(k)}\right) .
$$

It follows from

$$
\begin{equation*}
\frac{\lceil(-m) T\rceil}{-m}=\frac{\lfloor m T\rfloor}{m} \tag{2}
\end{equation*}
$$

and (1) that

$$
\dot{\mathbf{a}}_{x}^{(-m)}=a_{x}^{(m)}
$$

For each pair of real numbers c and d, let $\mathrm{c} \wedge$ d denote the minimum of the numbers. Then

$$
\bar{a}_{x: n\rceil}^{(k)}=E\left(a_{n \wedge\lceil k T h}^{(k)}\right)
$$

and

$$
\underset{x: n\rceil}{a^{(k)}}=E\left(a_{n \wedge\left\lfloor k T _{k}\right.}^{(k)}\right) .
$$

It now follows from (1) and (2) that

$$
\begin{equation*}
\frac{a}{a}_{x: n_{i}^{-}}^{(-m)}=a_{x: n i}^{(m)} . \tag{3}
\end{equation*}
$$

Anocher approach to prove (3) is to express the temporary life annuities as Riemann integrals:

$$
\bar{a}_{x: n\rceil}^{(k)}=\int_{0}^{n} \operatorname{lut}_{1 / k} E_{x} d t
$$

and

$$
a_{x: n\rceil}^{(k)}=\int_{0}^{n} \sum_{k} E_{k} d t .
$$

Then apply the formula $\lceil-\xi\rceil=-\lfloor\xi\rfloor$.
A thind proof for (3) is to write the temporary life annuities as Stieltjes integrals:

$$
{\underset{\mathrm{a}}{x: n\rceil}}_{(k)}=\int_{0}^{n} \mathrm{E}_{\mathrm{x}} \mathrm{~d}([k\rceil / / k)
$$

and

$$
a_{x: n]}^{(k)}=\int_{0}^{n} E_{x} d(L k J / k)
$$

Remarks

(i) It can be shown that

$$
\alpha(-m)=\alpha(m)
$$

and

$$
\beta(-m)=\beta(m)+m^{-1} .
$$

Furthermore, the function $\gamma($.$) defined in 45.18$ on page 152 of [1] satisfies the relation

$$
\gamma(-m)=\gamma(m)+m^{-1}
$$

(ii) According to $\# 5.19$ on page 153 of [1],

$$
\gamma(m)=\alpha(m)-\beta(m)-m^{-1} .
$$

Consequently,

$$
\begin{aligned}
\gamma(m) & =\alpha(m)-\beta(-m) \\
& =\alpha(-m)-\beta(-m) .
\end{aligned}
$$

This result relates to Mr. Alps's case (b).
(iii) For further discussion on the functions $\alpha(),. \beta($.$) and \gamma($.$) , we refer the interested reader to [3].$
(iv) Because of the formula

$$
\mathrm{d}^{(-m)}=\mathrm{i}^{(\mathrm{m})},
$$

we immediately have

$$
a_{x: n\rceil}^{(-m)}=a_{a}^{o(m)}{ }_{x: n\rceil}
$$

See [1, Example 5.12].

Acknowledgment

Support from the Nanural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

1. Bowers, N.L., Jr., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J. Acruarial Marhematics. Itasca, Ilinois: Society of Actuaries, 1986.
2. Shiu, E.S.W. "Integer Functions and Life Coneingencies," Transactions, Sociery of Actuaries, 34 (1982), 571-590; Discussion 591-600.
3. Shiu, E.S.W. "Power Series of Annuity Coefficients," Actuarial Research Clearing House, 1987.1, 23-31.
