ACTUARIAL RESEARCH CLEARING HOUSE 1991 VOL. 3

A LINEAR PROGRAYMING APPROACH TO HAXIMIZING POLICYHOLDER VALUE

by Michael F. Conwill

Fellowship Credit Research Paper
 90-3

Approved by Society of Actuaries Education and Exanination Research Paper Comittee

Effective September 16, 1990

Abstract

This paper explores the use of linear programing as tool to guide policyholders in getting the most value out of their combined insurance and investment programs. Concentrating on flexible premium universal life within the tax environment of the United States, several linear programing modela are developed that can be used (1) at the point of sale, to select the most cont effective policy from those available in the marketplace, and (2) after isaue, to maximize the prosent value of future cash flows on the policy of an intured who is in ill-health. These optimization modela utilize to the maximum benefit of the policyholder the options available within the typical univereal life contract to vary premium payments, make caph value withdrawala, take loans, and select a level or an increasing death benefit. Considerations in developing aimilar modele for traditional plant of insurance are also briefly discuned.

1. Introduction

1.1 Hotivation; Orerview of the Paper 1-1
1.2 Literature Review 1-3
2. Cach Value as a Linear Function of Prior Transactions
2.1 Coefficients for the Impact on Cash Value of Prior Changes 2-1
2.2 Coefficients for the Impect on Cash Value of Prior Face Mmounts 2-4
2.3 Coefficient for the Impact on Cash Value of Prior Loan Activity. 2-5
2.4 Cash Value as Linear Function; product Design considerations. 2-7
2.5 Nonlinearity and the IRS Section 7702 Caph Value corridor. 2-10
3. A Simple Model
3.1 Objective Function and Constraints 3-1
3.2 Examples 3-2
4. A General Model
4.1 Notation 4-1
4.2 Objective Function and Constrainte 4-5
4.3 An Example. 4-14
5. The General Model ae cost Compersion Method
5.1 Compering UniverEal Life Plant 5-1
5.2 Purchaser of Multiple Universal Life Plans. 5-3
5.3 Comparing Universal Life and Traditional Plang 5-7
5.4 Concerng of the Selling Company 5-9
6. Maximizing the Return on an In Force Plan on an Impaired Life
6.1 The Model 6-1
6.2 Examples 6-9
6.3 Other Option with Potential for Net-Amount-at-Riak Manipulation 6-13
7. Some Mdditional Conalderations
7.2 Limitetions of Linear Programing Cost Comparison Methods 7-1
7.2 Computational Imaves. 7-2
7.3 Modelling IRS section 7702 and 7702 A 7-5
7.4 Modelilng Traditional Plans. 7-7
7.5 Some Final Thoughts and Suggestions for Further Remearch. 7-12
Appendix
Bibliography

Chapter 1

Introduction

1.1 Motivatien; Orervien of the Paper

Policyholders make lese than optimil insurance purchases. While illustrations and cost comparison methods offer some guidance to the prospective purchaser of insurance, drawbecke exint that limit their utility. Thit is especially true when contracti euch as flexible premium univerinal life are purchased, because exiating cost comparimon methods give no weight to flexibility that may be inherent in a product' design.

Consider, for example, a universal life product that it among the most competitive on the market when products are compared on basis that generously funds the contracta. This product might very well compare unfavorably when the comparison is done using lower premiume. How, then, is the prospective policyholder to determine which is the better buy, the policy that if competitive when funded generously or the one that is competitive when treated more as term ingurance? Given the proliferation of universal contracte offering persieting policyholders interest rate bonuses, the "best" policy could well be one that is treated like term insurance in the ourly yeare, and then if funded more generoumly in the later yeari, after migher interest rate takes effect.

A eecond drawback of molet eximting cost comparison methods is that they take into account the time value of money by discounting or accumulating funde at a single interegt rate. A more valuable approach recognizes that a policyholder may place money not allocated to an infurance program into one or more of any number of investient alternatives, and accounta for the differing returne and tax treatment of the insurance plan and each investment.

Thus, in comparing contracts that offer a policyholder a degree of flexibility, a cost comparison method ideally should compare performance when esch policy is performing optimally when used in conjunction with the universe of available inveatments, subject to the needs of and any constraints imposed by the policyholder.

This paper develops several linear programming modela that may be used to develop optimal insurance and investment programs. The papar concentrates on flexible premiun univeran life and alternative investments within the federal income tax envirorment of the United States; however, considerations in deaigning a model to be used for combinations of traditional insurance are also discussed briefly

This first chapter concludes with an overview of the existing literature on maximizing policyholder vilue. The mecond chapter develops the mathomatics necessary to exprets universal life cash values as a linear function of prior policy transactions, prerequisite to developing linear programing models to optimize universal life purchases.

The third chapter presents a simple linear programming model (The "Term Model") that solver for the optimal funding utrategy for a universal life contract that is to be used strictly as term insurance, given a mingle after-tax interest rate to discount cash flow. While this model is very basic, it introduces nome of the considerations that will need to be taken inte account in the more mophisticated models that follow, and provides mone insight into linear programming solution that might be les obvious within a more complicated setting.

Chapter four develops a linear programming model (the General Model") to be used to solve for the optimal allocation of funds between aniversal ilfe contract and alternative invegtmenta. The linear programing objective function in this model may take either on of two form: Haximize the total after-tax accumulated value of an ingurance policy and investments, or alternatively, maximize future \quad efter-tax income stream. This model is quite general in is applicability, taking into account, for example, any intermediate need for funds that may exist, and allowing for loan from the universal life contract ae well as withdrawals. The use of this model in selecting the bet plan of insurance to purchase, $i . e .$, the ume of the model as a cost comparison method, is explored in chapter five

In chapter $\theta^{i x}$, a linear programing model (the "Impaired Life Model") is
developed that solves for the optimal atrategy to be used by the owner of an in force univergal life contract on an inaured who is in ill-health. This model recognises that within the typical univereal life design, there is some opportunity to manipulate the net-amount-at-risk, and to exploit the contract to the maximum benefit of the contract holder.

Chapter seven covers som miscellaneous items, and closes with aeveral suggestiona for further zesearch.

1.2 Literature Review

The mont common aproach to maximizing policyholder value is the use of one or more cost comparison indices during the inamance sales procese. Black and Skipper \{3] contains a very readable diecussion of the strangths and weaknessea of the most commonly ueed cost comparimon methode. The General Model developed in this paper can be used an an extension of the equal outlay cost comparison method' that parmits investment in several side funde mimultaneously and if generalized to allow for arbitrary future withdrawal patterne.

Several athors have investigated the suitability of universal life as an efficient combined insurance and invetment vehicle. Chung and skipper [8] have gtudied using universal life contract's credited interest rate as a cost comparison index, but concluded that the correlation betwen the current rate and the tenth and twentieth year cash urrender values ib too weak to juatify ita une at an index.

Cherin and Eutchins [7] have tudied information on univeratal life and term policies available for ale in 1983, and concluded that the salea loads and expense charger inherent in univereal life contracte decrease the internal rate of return sufficiently to render them inferior to a buy term and invert the

[^0]differencem strategy. ${ }^{2}$ D*Arcy and Lee [9] have also gtudied universal life versue buy term and invest the difference, but concluded that once a polieyholder's option for contribution to deductible individual retirement account (IRA) or $\operatorname{similar}$ inventment vehiele hae been fully utilized, that the tax advantages of univeralal life outweigh the cont of expense loadings and result in a vehicle that is mperior to other investment alternatives, aseuming the holding period is eufficiently long.

Lee and D'Arcy [14] have developed a notion of the optimal level premium funding strategy for an increasing death benefit universal life contract. Their approach is to calculate the average after-tax marginal cate of return on each dollar of premium paid annually to univereal life contract, and to fund the contract to long as thif rate exceeds the marginal rete of return available on an annual contribution of one dollar to an altergative investment. While the linear programing approach in thi paper implicitly recognizes the marginal rate of return on each dollar of premium, it also recognizes that the rate of return will vary with the timing of payment. Thus, linear programming results in a "more optimal" solution in which paypents to the contract may vary by duration.

Schlef has written everal papers that have recognized the value of inear programaing in constructing cont comparison methods. In [21], Schleef developa a linear programing model that solves for the optimal amount of whole life and term insurance to purchase or cancel bach year, given an insurance need, but also taking into account the opportunity to self-insure through savinge. In $[20$. Schleef uses the model developed in $\{22\}$ to derive a functional relationanip between the interest-adjusted cost index and the rate of return earned on whole life policy. In [22], he uses lineax programing to derive a veroion of the intereet-adjusted surrender cont index, and compares this index to the traditional interent-adjusted surrender coet index and to Linton's yield for mixty-eight whole life contzecte.

One theme of schleef'e work reappeare in this paper, namely, that cost

[^1]comparison methods derived through linear programing techniques are of greater valu to prospective purchaser of insurance than are more traditional cont comparison methods, because unlike traditional methode, linear programing methods determine the best purchase while utilizing given policy's flexibility to the maximum advantage of the purchaser. As mentioned earlier, this theme in especially valid in the case of flaxibla premium universal life. In addition to thi peper'e emphasis on universal life, there are other dietinctiona between Schlef'a work and the linear programing modele contained in this paper. Schlef's modela concentrate on the optimal timing of ingurance purchases and murenders; thi paper focuees on optinal funding strategies. Schleef's objective function maximize the present value of future cash flow, diseounted at an after-tax intereat rate; in contrate the objective functione in the General Model developed in this paper maximize after-tar accumulated values or after-tax retixement income streams. An adoantage of the accumulation approach is that it it more amenable to the treatment of inventment in eeveral alternative Fhicles when the rate earned by ench investoent ib digtinct, and when the tax impact of one or more of the investmenta cannot be reduced to a imple after-tax discount or accumulation rate.

Linear and quadratic programaing hat long been recognized at analuale tool in developing the proper aseet allocation ftrategy of the institutional invettor. This application is so common thet it is used as an exaple in a everal operatione research textbooks; eee, for example, [4] or [5]. Generally, much models solve for an allocation that attains given desired rate of return while minimizing the variability the of return. Within the actuarial literature, Tilley [25] hae ueed linear programming in invegtment allocation decisions to match asetes and liabilities. ${ }^{3}$

[^2]
Abstract

Other branches of operations research have been used to model optimal insurance purchate decisions．For example，Babbel and ohteuka［1］，conbining decision analyeis and utility theory，have developed a model that showin that，in contrast to studies indicating buy term and invest the difference strategies to be superior to purchasee of whole life，that rational decimion makere will often opt for purchasing a combination of term and whole life．The Babbel and Ontauka model places a value on options aveilabie in whole life that axe not generally recognized by proponentg of term insurance．Hakanseon 【12〕 and other econouists have developed models to maximize the utility of insurance to the consumer． These models are often quite theoretical and do not find direct application to the insurance sales procese．

[^3]
Chapter 2

Cath Value as Loinelar Function of Prior Transactions

Sckley [11] has developed commtation functions that may be ueed to express the account value of anivereal life policy as a linear function of the face anount, preaium payments, and expense charge deductions. This chapter provides
 linear functions, and provides extengions for handing loan activity and linezrity when a policy in within the Internal Revenue Service Section 7702 cash Falue corridor. ${ }^{\prime}$

The goal of the chapter is to express the cash value at mone future time as e linear function of the prior premium payments, face amounts, loan activity, withdrawals, and expense charge deductions. Logically, premium payments, Withdrawals, and expense charge deductions may be grouped: what in of interest is the change in camh value at time u, due to a fixed increment or decrement to the cash value at time t, irrespective of the source. The linear coefficient for the change in cash value at time u due to a one dollar increase in cash value at time t will be denoted by $A C V C_{9}$. The impact on cash value at time u due to one dollar of in force face amount and one doliar of loan outatanding at time t will be denoted by $u^{A C V P_{t}}$ and $u^{A C V L}{ }_{t}$, reapectively.
2.1 Coefficients for the Inpact on Cenh Value of prior Changes in Cash Value

A common formula ((ee Eckley (11]) used for accumulating a level death benefit universal life account value from the beginning of one month to the beginning of the next month is:

$$
\begin{equation*}
C V_{t+\frac{1}{12}}-\left(C V_{t}-\frac{Q_{t}}{12}\left(\frac{F_{t}}{\left(1+i_{g}\right)^{1 / 122}}-C V_{t}\right)\right)\left(1+i_{c}\right)^{2 / 12} \tag{2.1.1}
\end{equation*}
$$

[^4]```
 where: CV = Cash value at time t
 F
 ic = Annual credited effective interest rate
 ig = Guaranteed intereat rate
 qq = Nnnual cost of in|urance rate per dollar
 net-amount-at-risk in effect at time t
This formula asmumes that there are no changes in account value other than for the deduction of the current month's cost-of-insurance and for the crediting of interest. If the cash value at the beginning of the month changes, due perhaps to a premium payment, a withdrawal, \({ }^{2}\) or the deduction of en expense charge, the impact of this change on the cash value at the beginning of the next month may be written as:
```

$$
C V_{t+\frac{1}{12}}+\Delta C V_{t+\frac{1}{12}}-\left(C V_{t}+\Delta C V_{z}-\frac{q_{t}}{12}\left(\frac{F_{t}}{\left(1+i_{s}\right)^{1 / 22}}-\left(C V_{t}+\Delta C V_{t}\right)\right)\right)\left(1+i_{e}\right)^{1 / 12}(2.1 .2)
$$

Subtracting (2.1.1) from (2.1.2) and rearranging terms yields:

$$
\begin{equation*}
\frac{\Delta C V_{e+\frac{1}{12}}}{\Delta C V_{t}}=\left(1+\frac{q_{t}}{12}\right)\left(1+i_{e}\right)^{2 / 12} \tag{2.1.3}
\end{equation*}
$$

Restricting t to integer values and continuing the process of accumalating the cash value through the remaining eleven months of the policy year, define:

$$
\begin{equation*}
t_{\Delta C V C_{E}}=\frac{\Delta C V_{t \cdot 2}}{\Delta C V_{E}}-\left(1+\frac{q_{t}}{12}\right)^{12}\left(1+i_{e}\right) \tag{2.1.4}
\end{equation*}
$$

[^5]$L_{\text {acve }}$ may be interpreted as the change in the cash value of a level death benefit policy one year later as realt of a one dollar change in cash value at time $t$. similarly, continuing this proces further into the future, define: ${ }^{3}$
\[

$$
\begin{equation*}
{ }_{u}^{L^{2}} \Delta C V C_{t}-\frac{\Delta C V_{t}}{\Delta C V_{t}}-\prod_{j-c}^{w-1}{ }^{2} \Delta C V C_{j} \tag{2.1.5}
\end{equation*}
$$

\]


#### Abstract

which may be interproted as the change in cash value at time usa result of a one dollar change in cash value at time $t .{ }^{6}$

Suppose that a total of one dollar if added to or deducted from the cash value on modal basis, with frequency $m$. Uaing (2.1.3), the impact of these m transaction: on the cash value at the end of the year may be written as: ${ }^{5}$


$$
\begin{equation*}
{ }^{2} \Delta C V C_{t}^{(\infty)}-\frac{1}{m} \sum_{=i}^{m}\left[\left(1+\frac{g_{t}}{12}\right)^{12}\left(1+i_{c}\right)\right]^{\frac{1}{2}} \tag{2.1.6}
\end{equation*}
$$

and the impact on the cash value at time $u$ may be written as:

$$
\begin{equation*}
{ }_{0}^{2} \Delta C V C_{t}^{(m)}={ }_{v}^{2} \Delta C V C_{t+1} \cdot{ }^{+} \Delta C V C_{t}^{(m)} \tag{2.1.7}
\end{equation*}
$$

A common formula for the monthly accumulation of an increasing death benefit

[^6]option universal life poliey is:
$$
C V_{t \cdot \frac{1}{12}}=\left(C V_{\mathrm{e}}-\frac{Q_{\mathrm{t}}}{12}\left(\frac{F_{\mathrm{t}}+C V_{\mathrm{t}}}{\left(1+i_{\mathrm{s}}\right)^{1 / 12}}-C V_{\mathrm{t}}\right)\right)\left(1+i_{c}\right)^{1 / 12} \quad \text { (2.1.8) }
$$

Oning this formula, the following analogous factors may be derived for the increasing death benefit option case:

$$
\begin{equation*}
r_{\Delta C V C}^{t}-\left(1+\frac{g_{t}}{12}\left(1-\frac{1}{\left(1+i_{g}\right)^{1 / 12}}\right)\right)^{12}\left(1+i_{e}\right) \tag{2.1.9}
\end{equation*}
$$

$$
\begin{align*}
& { }_{u}^{2} \Delta C V C_{2}=\prod_{-\varepsilon}^{1-2}{ }^{1} \Delta C V C,  \tag{2.1.10}\\
& { }^{1} \Delta C V C_{t}^{(1)}-\frac{1}{m} \sum_{j=1}^{D}\left[\left(1+\frac{q_{t}}{12}\left(1-\frac{1}{\left(1+i_{g}\right)^{1 / 12}}\right)\right)^{12}\left(1+i_{c}\right)\right]^{\frac{1}{2}}  \tag{2.1.11}\\
& { }_{y}^{I} \Delta C V C_{z}^{(s)}-{ }_{y}^{I} \Delta C V C_{r=2} \cdot{ }^{I} \Delta C V C_{x}^{(s)} \tag{2.1.12}
\end{align*}
$$

### 2.2 Coefficients for the Impact on Cash value of Prior Face mounts

 From (2.1.1) for the level death benefit case and (2.1.8) for the increasing death benefit cane, it is apparent that each dollar of face amount results in a monthly deduction of:$$
\frac{q_{e}}{12\left(1+i_{g}\right)^{2 / 22}}
$$

At the end of the month, the impact of this deduction has grown by the interest lont; bringing twelve such deductions to the end of the year reatite in:

$$
\begin{equation*}
\left.{ }^{L_{\Delta C V F}}=-\frac{q_{t}}{12}\left(\frac{1+1}{1+i_{g}}\right)\right)^{1 / 22} \sum_{j=0}^{11}\left[\left(1+\frac{q_{t}}{12}\right)^{12}\left(1+i_{c}\right)\right]^{\frac{1}{12}} \tag{2.2.1}
\end{equation*}
$$

which may be interpreted as the impact on cash value at the and of the year of one dollar of level death benefit face amount in force at time $t, 6$ and:

$$
\begin{equation*}
{ }^{r} \Delta C V F_{t}=-\frac{q_{t}}{12}\left(\frac{1+i_{c}}{1+i_{q}}\right)^{1 / 12} \sum_{f=0}^{11}\left(\left(1+\frac{q_{t}}{12}\left(1-\frac{1}{\left(1+i_{g}\right)^{1 / 12}}\right)\right)^{12}\left(1+i_{c}\right)\right)^{\frac{1}{12}} \tag{2.2.2}
\end{equation*}
$$

```
which is the analogous factor for the increasing death benefit case.
 For the impact at time u, define:
```

$$
\begin{align*}
& { }_{u}^{I} \Delta C V F_{t}={ }_{u}^{1} \Delta C V C_{t, 1} \cdot{ }^{2} \Delta C V F_{t}  \tag{2.2.3}\\
& { }_{u}^{1} \Delta C V F_{t}={ }_{v}^{I} \Delta C V C_{t+1} \cdot{ }^{I} \Delta C V F_{t}
\end{align*}
$$

2.3 Conficionts for the Iapact on Cash value of Prior Loan activity
Suppose that a loan in taken out at the beginning of a policy year. In administering a universal life policy, it is common to plit the cash value into two funds. The first, consieting of unloaned cash valus, is credited with premiume, charged with mortality and expense deductions, and earns interent at the current interest rate. The second, initially eet to the amount of the outetanding loan, in aegregated and earns interest at a different rate, typically

Onder the commutation function approach, let $C_{j}=D_{j+1}{ }^{L} \Delta C V F_{j}$.
fixed and epecified in the contract. To take into account the exietence of the loan, formula (2.1.1) expreseing the monthly processing of a level death benefit unizernal life contract may be modified as follow:

For $t$ an integer and $=0,1 / 12, \ldots, 11 / 12^{\prime}$, let

$$
\begin{equation*}
C V_{t+E}=U C V_{t+\varepsilon}+L C V_{t+E} \tag{2,3.1}
\end{equation*}
$$

where:

$$
\begin{equation*}
U C V_{t+1+\frac{1}{12}}=\left(\operatorname{UCV} V_{t+\xi}-\frac{q_{t}}{12}\left(\frac{F_{t}}{\left(1+i_{g}\right)^{1 / 12}}-\left(U C V_{t+\infty}+L C V_{t+\infty}\right)\right)\right)\left(1+i_{e}\right)^{1 / 12} \tag{2.3.2}
\end{equation*}
$$

$$
\begin{array}{ll} 
& \operatorname{LCV}_{t \rightarrow r *} \frac{i}{L i}=L C V_{t \rightarrow i}\left(1+i_{L}\right)^{\frac{1}{12}}  \tag{2.3.3}\\
\text { UCV }_{t+1} & =\text { Unloaned cash value } \\
\operatorname{LCV}_{t+s} & =\text { Loaned caph value } \\
i_{L} & =\text { Loaned cash value earned interest rate. }
\end{array}
$$

At the end of the year, if the loan is repaid, the earh value is recombined into a mingle fund. If the loan is not repaid in full, then a transfer is made between the unloaned fund and the lotned fund so that at the commencement of the new policy year, the loaned fund will sgain equal the amount of the outstanding loan.

Letting $=0$ in $(2.3 .1)$ and subtracting (2.1.1), the difference in cash value after one month between policy with an amount $L_{t}$ in the loaned fund and an otherwise identical policy without a loan is:

$$
\operatorname{LCV}_{\mathrm{E}}\left[\left(1+i_{L}\right)^{1 / 12}-\left(1+i_{\varepsilon}\right)^{1 / 12}\right]
$$

Were the loan to be repadd after only one month, the impact of this differential
could be brought forward into the future as if it were a ingle deduction ${ }^{7}$ fron the cash palue. When the loan reaing outetanding for the entire policy year, howerec, one buet eccount for the differential for etch month, which increapee as the loaned fund is credited with interest. Thu, the net frpact on the cash value at the and of the year of a one dollar loan outatanding for the entire year asy be witten as:

$$
\mathrm{L}_{\mathrm{ACV}}^{E} \text { }=\sum_{i=1}^{2 \lambda}\left[\left(1+1_{L}\right)^{1 / 12}-\left(1+1_{c}\right)^{1 / 22}\right]\left(1+1_{L}\right)^{1 / 12}\left[\left(1+\frac{q_{6}}{12}\right)^{24}\left(1+1_{c}\right)\right]^{(11-01 / 22}
$$

and the impact at tive $u$ nay be witten as:

$$
\begin{equation*}
{ }_{v}^{L_{\Delta}} \Delta C L_{E}=t_{t}^{t} \Delta C C_{E+1} \cdot L_{\Delta C V} \tag{2.3.5}
\end{equation*}
$$

The analogons factorn for the increasing death benefit case are;


$$
{ }_{u}^{t_{\Delta}} \Delta C V_{t}-{ }_{v}^{2} \Delta C V C_{t \cdot 1} \cdot{ }^{s_{\Delta}} \Delta C V_{t}
$$


#### Abstract

2.t Cont Value ns Limen Function; Froduct Desigr Cossiderations The cofficients derived bove allow the cagh valut of universal life policy at eny point to be expreseed es a lineer function of prior preming peymente, face amounts, loan ectivity, vithdravals, and expenee deductions. Let a denote whether apicy is level death benefit or an increasing death benefit


[^7]```
policy. Then':
```

$$
\begin{align*}
& \text { (1-Bt) } E \Delta C V C C_{j-1}^{\left(q_{1}\right)} \cdot P_{j} \\
& +\left(\sum_{i C V F}^{y-2}-\frac{E F}{1000}{ }_{i} \Delta C V c_{j-1}^{(\infty)}\right) F_{j} \\
& C V_{t}\left(P_{j}, F_{j}, L_{j}, N_{j} \mid j-1, \ldots, t\right)=\sum_{j=1}^{2}+{ }_{i} \Delta C V L_{j-1} \cdot L_{j} \tag{2.4.1}\\
& -\quad \Delta C V C_{j-1} \cdot w_{j} \\
& -E \Delta C V C_{j-1}^{(8)} \cdot E P_{j}
\end{align*}
$$

where: CV_{t} = Cash value at the end of year t
$P_{j} \quad=$ Premiums paid during year j, mode mp
$F_{j} \quad=$ Face amount in force during year j
$L_{j} \quad=$ Loan outstanding duxing year j
$W_{j} \quad=$ Withdrawal taken at the beginning of year j
E* \quad Percent of premium charge
EF = Per thoumand of face charge, deducted mode mef
EP \quad Per policy charge, deducted mode $m_{E p}$
In using the formula above, it should be remembered that on level death benefit policies, each withdrawal will generally cause a reduction in the face amount of the policy. To handie this, F_{t} can be expressed as a function of the initial face mount and all prior withdrawale. Changes in death benefit option will also generally cause an adjubtment to the face amount, with a change from a level

[^8]death benefit policy to an increating death benefit policy resulting in a reduetion of the face amount by the amount of cesh value in the policy at the time of the change, and converêtly, change from an increaling death benefit policy to level death benefit policy resulting in the face amount being Increased by the amount of the cash value at the time of the change. In the event of death benefit option change, future face amounti can be expreseed as efunction of the cash value at the time of the change. In such asef, linear coefficient accounting for the impact of transections before the death benefit option change on cash value after the death benetit option change will need to be a hybrid of mnual level and increasing factors. The handling of a per thousand charge after a change in death benefit option will depend upon the product design.

Using factors such as $\operatorname{ucvC}^{(12)}$ to account for the impact on canh value of modal per thousand or per policy expenge deductions implies that these deductions are made at the beginning of the month. In fact, many product designt deduct these chargee at the end of the month. Suming trom $j=0$ to m-1 in (2.1.6) and (2.1.11) will produce the factors neceteary for the end-of-month case.

There are everal form of expense charges in existence that present some difficulty when one attempte to exprees cash value ag linear function of prior transactione. An example of one euch "problem" product denign is the policy which has a monthly expence charge that is expressed ae the "lesser of $\$ \mathrm{X} . \mathrm{XX}$ or the amount of excese interest credited for the month." Aa aractical matter, the problem of the potentially variable expense charge can be overcom if it is poseible to restrict the calculation of cash values to situations in which the intermediate cash valuet will alway官 be large enough to recruire the deduction of the full expense charge. A similar problem oceurg in policies with an interest corridor," in which only the guaranteed interest rate is credited to the first SY of cash yalue (typically five hundred or one thousand dollaris). In this -ituation, if the calculation of canh values can be restricted to ituatione in which intermediate canh values will alwaye exceed the corridor amount, then cath *alueg miny be calculated uning linear coefficiento by crediting the entire cash
value with the rate for amounts in excess of the corridor, and imputing a monthly expense charge equal to the amount of interest lost on the corridor amount.

Among other product designs that require epecial conaideration are those with "competitive enhancements" or "policyholder persistency bonusea." For example, in some policies, the credited interest rate increases after the policy has been in force a epecified number of yeara. For portfolio rate products, this increase may be handled aimply by changing the rate uned in the calculation of linear coefficiente at the appropriate duration. New money crediting otrategies, however, pose a greater challenge. Under many new money methoda, the rate arned on a policy is unique to the policy and depends upon the amount and timing of prior paymenta. Such designs may be amenable to an approach which treata separately different generations of cash flow. For example, the cash value existing up to the time of an interest rate increase may be brought forward ueing one set of $\triangle C V C$ factors in which the interest rate used to calculate the factors gradually increases to the new rate, as this cash value is presumed to roll over to the new rate. New premiums, on the other hand, may be brought forward using a set of factors based solely upon the new rate. The ease with which loans and withdrawals may be handled will depend upon the apecifics of policy administration.

Under another form of peraimtency bonus, if a policy atay in force a given number of yeara, the cash value will be recalculated as if a higher intereat rate had been credited from issue. This design requires one aet of factors to calculate cash values up to the time of the retroactive interest bonus, and a second set of factorn, derived using the higher interest rate and applied since issue, to calculate cash values after the crediting of the interest bonus.

2.5 Monlinearity and the Ins section 7702 Cash Valne Corridor

A universal life policy that meete the definition of life insurance through the guideline premium/cabh value corridor test requires an increate in death benefit when the face amount (for a level death benefit policy) or the face amount plus cash value (for an increasing death benefit policy) is less than the
canh value times the corridor percent for the appropriate attained-age. At the point where a cash value rich policy hite the corridor, cash values are no longer expresmible at linear functions of prior tranaactions. The impact on future cash values of each additional dollar of premium ia reduced as it incura the added cost of purchasing the required additional death benefit. As more premium is received, the policy hits the corridor in succeasively earlier months, thut resulting in auccesively greater penalties.

In the examplea that illustrate the linear programing models in chapters three through five, cash value corridor coneiderations will not come into play. The linear programing model developed in chapter 6 will take the cash value corridor into account, and in fact will sometimes exploit corridor effects to the advantage of the policyholder. Approachen to handing cash value corridor effecte are discussed in section 7.3.

It hould be noted that if a policy is in the corridor at time t, and if the nature of the problem precludes the policy leaving the corridor, future cash values may be expresed ar a linear function of CV_{t} and the subsequent transactions. Derivation of the linear coefficients uses the formula for accumulating cash values within the corridor:

$$
\begin{equation*}
C V_{t \cdot \frac{1}{12}}=\left(C V_{t}-\frac{q_{t}}{12}\left(\frac{C O R R_{t} \cdot C V_{t}}{\left(1+i_{g}\right)^{1 / 22}-C V_{t}}\right)\left(1+i_{c}\right)^{1 / 12}\right. \tag{2.5.1}
\end{equation*}
$$

where: CORR $=$ IRS section 7702 corridor percent at time t and results in factors wuch as:

$$
\begin{equation*}
\cos \Delta C V C_{t}=\left(1-\frac{g_{\varepsilon}}{12}\left(\frac{\operatorname{CORR}_{\varepsilon}}{\left(1+i_{g}\right)^{2 / 12}}-1\right)\right)^{12}\left(1+i_{c}\right) \tag{2.5.2}
\end{equation*}
$$

Notice that aince the current death benefit for a policy in the corridor is determined solely by the beginning-of-month cast value, there is no need for eeparate factors for level and increasing death benefit options, and no need for a face amount factor.

Chapter 3

A simple model

Abstract

As an introduction to the use of linear programming an a means of maximizing policyholder value, this chapter presents a very simple model (the "Term Model") that answers the following question: Given an after-tax dibcount rate reflecting a policyholder't appraisal of the time value of money, what funding atrategy minimizes the present value of future premiums In constructing thi model, it if aspumed that the policyholder has a tixed period insurance need and has no deaire for cash surrender value; thus, the universal life policy is effectively being umed as term ingurance.

Two examplee ueing this model will be etudied. In the firftexample, the change in the optimal funding etrategy will be examined as the digcount rate is varied, under the aspumption that the infured has an unlimited eource of funds in any year. In the second example, the optimal funding etrategy will be looked at when an annual limit is placed on the amount of money that the ineured hat available to fund his contract.

Abstract

3.1 Objective Function and constralats

The limt below defines the notetion ueed in the objective function and the conatrainte equations for thit model. [P] to the left of a variable indicates a model input parameter, [D] indicates variable that is largely descriptive and is used internally within the model, and [S] indicatea variable that is of fundamental importance to the user ae part of the linear programming solution. It ahould be noted that while many [D] iteme are also solved for ap part of the proces of minimizing or maximizing the objective function, thene iteme are not of primary intereet, ferving, rather, an internal accounting function. $P_{t}=$ Premium paid at the beginning of year t (D) $\quad C V_{i}\left(P_{j} \mid j=1, \ldots, t\right)$ canh value at the end of year t^{1}

[^9]hasuming premiume are paid annually, the objective of the model in to:
$$
\text { HINIMIZE } S=\sum_{t=1}^{N_{0 r}} v^{e-1} P_{E}
$$
subject to the following two seta of constraints:
(T1) The net cash value ie not less than zero throughout the period the policy is to stay in force: ${ }^{2}$
$$
\text { For } t=1 \text { to Per: } \quad C v_{t}\left(F_{j} \mid j=1, \ldots, t\right) \geq s C_{t}
$$
(T2) For each year t, the policyholder paya no more than Fundakaile to fund the contract:
For $t=1$ to Per: P_{t} sfundenvail,
If in any year the indured hat no restriction on the funde available, the
constraint for that year may be eliminated.

3.2 Sxatplet

Mseupe chat forty-five year old policynolder with a twenty year ingurance

[^10]need purchases a $\$ 100,000$ level death benefit policy from company A. ${ }^{3}$ Table 3-1 chowe the premiums over the twenty year period that will optimize the objective function as the present value interest rate is varied, as well as the corremponding progression of cash values, under the asmuption that the polieyholder hate unlimited funds available in any year.
he one might expect, at low present value intereat rates, up to 10.2925%, the etrategy that optimize the objective function ib to purchaee the policy with a ingle promiun. The cash value that resulte initially growe with time, as interest credite exceed cost of insurance deductions; however, in year eleven the canh value begins to decresse with time, to that precisely by the end of yar twenty it i exheusted. At high present value interest rates, above 11.51748, funding of the contract if deferred at long as poesible: Each year' premium pityment in precisely enough to keep the cash value at the end of that year from dropping below the policy' surrender charge.

Xt intereft raten in between, the optinal etrategy involvet deferring funding for several yeare, and then funding the contract with the single premium required to bring the policy through age 64 . The interest rate boundaries are defined by the factor: $\operatorname{laCVC}_{45}-1, \operatorname{laCVC}_{66}-1, \ldots, \operatorname{laCVC}_{64}-1$. (See the appendix.) $L_{\text {ACVC }}^{\text {- }} 1$ represents an "interent rate" that is the sum of two componenta, the interest rate credited to the policy, and the sevinge in year t coet-of-ineurance deductions that occur with every dollar increase in cath value, due to decrease in net-amount-at-risk. ${ }^{4}$ Though the interest rate for the company λ policy in level over time, the cost-of-ingurance rates increase with time, resulting in LaCVC, factore that increase with time. As the present value interest rate increases and crosses each $\mathrm{ACVC}_{\mathrm{t}}-1$ boundary, the optimal strategy shifts to

[^11]| preant Iron | ```Velue Mote``` | | Yeer | $\underset{2}{\text { Yeer }}$ | reer | | Yeer | Year | | | | $\begin{aligned} & \text { Yoer } \\ & 10 \end{aligned}$ | | | | | Yoer | Yoer | Veer | Yeer | ${ }_{19}$ | ${ }_{\text {row }}^{20}$ |
| :---: |
| -manran | |
| 0.0000x | 10.2925x | $\begin{aligned} & \text { Prailu (eor) } \\ & \text { CV (EOT) } \end{aligned}$ | $\begin{aligned} & 4,765 \\ & 4,661 \end{aligned}$ | m, | \$5,014 | \$5.111 | 85,338 | | | 85,701 | | | | | | | | | | | 43 | 0 |
| 10.29238 | 10.31658 | $\begin{aligned} & \text { Prealie (EON) } \\ & \text { ev (EON) } \end{aligned}$ | | $\begin{aligned} & 9,161 \\ & 24,860 \end{aligned}$ | \$5,014 | \$5,181 | 5. | 35,481 | 35,605 | 35,701 | \$5,762 | \$5.776 | 35,738 | 35,624 | 85,433 | 35,467 | 4,745 | 4,205 | 23,409 | \$2,593 | 81,463 | 80 |
| 10.3145\% | $10.3420 x$ | $\begin{aligned} & \text { Preaine (tow) } \\ & \text { CV (EOV) } \end{aligned}$ | $\begin{aligned} & 5093 \\ & 3750 \end{aligned}$ | $\begin{aligned} & 160 \\ & 8700 \end{aligned}$ | $\begin{aligned} & 84,406 \\ & \$ 5,016 \end{aligned}$ | 85,181 | 85,338 | \$5,481 | 85,60 | 35,701 | 83,762 | 35,776 | 35,738 | 3,624 | 33.433 | 35,147 | \%,743 | 4 | 3. | 2.503 | 81,463 | 30 |
| 10.34202 | 10.3604\% | $\begin{aligned} & \text { Primelue (SOY) } \\ & \text { cv (EOV) } \end{aligned}$ | $\begin{aligned} & 3993 \\ & 3750 \end{aligned}$ | $\begin{aligned} & 8168 \\ & 800 \end{aligned}$ | $\begin{aligned} & 8197 \\ & \$ 650 \end{aligned}$ | $\begin{aligned} & 5.643 \\ & \hline 189 \end{aligned}$ | 05,336 | 85,481 | 85,005 | 85, 701 | 85,762 | 5,776 | 35,753 | 35,624 | \$5,433 | 55,147 | 4.745 | 4 | 13,4 | 3,593 | 81.463 | 80 |
| 10.3006\% | 10.4004 | $\begin{aligned} & \text { Pramicu (EOV) } \\ & \text { cV (EOY) } \end{aligned}$ | $\begin{aligned} & 3993 \\ & 3750 \end{aligned}$ | $\begin{aligned} & 8100 \\ & 8700 \end{aligned}$ | $\begin{aligned} & \$ 197 \\ & 850 \end{aligned}$ | 8227 | 8,874 | 35 , | *5,005 | \$5,701 | \$3,762 | 85,776 | 35,73 | 35,624 | \$8,433 | B5, 47 | 4,743 | 84, 205 | 33.4 | ,50] | 31,443 | 50 |
| 10.4006\% | 10.4336x | $\begin{aligned} & \text { Pramice (LOV) } \\ & \text { CV (EOT) } \end{aligned}$ | $\begin{aligned} & 8993 \\ & 8>50 \\ & 8 \end{aligned}$ | $\begin{aligned} & 8160 \\ & 8700 \end{aligned}$ | $\begin{aligned} & 8197 \\ & 8650 \end{aligned}$ | 8227 | $\begin{aligned} & 8240 \\ & 850 \end{aligned}$ | $\begin{aligned} & \$ 5,094 \\ & \$ 5,401 \end{aligned}$ | 35,005 | 58, 701 | 85,762 | 85.776 | 25,735 | 35,624 | 85,433 | 35.1 | 4.763 | 4,205 | 33,4 | 2,593 | 81,463 | 0 |
| 10.4336x | 10.4719x | $\begin{aligned} & \text { Proming (EOOT) } \\ & \text { CV (EOH) } \end{aligned}$ | $\begin{aligned} & 8093 \\ & 8750 \end{aligned}$ | $\begin{aligned} & \$ 160 \\ & \$ 700 \end{aligned}$ | $\begin{aligned} & 5197 \\ & 5650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8600 \end{aligned}$ | $\begin{aligned} & \$ 260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & \$ 290 \\ & 8500 \end{aligned}$ | $\begin{aligned} & 35,209 \\ & \$ 5,205 \end{aligned}$ | 3s,701 | 85,762 | 3,776 | 35,755 | 35,024 | 85.433 | 35 | 3, 74\% | *,205 | 3 | 2,5 | 81,463 | 40 |
| 10.6769\% | 10.5 1718 | Preariue (EOVI) CY (EOV)
 CV (EOV) | $\begin{aligned} & 8993 \\ & 8750 \end{aligned}$ | $\begin{aligned} & \$ 166 \\ & 8700 \end{aligned}$ | $\begin{aligned} & \$ 197 \\ & 8650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8000 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & 829 \\ & 8500 \end{aligned}$ | $\begin{aligned} & 8555 \\ & 5450 \end{aligned}$ | $\begin{aligned} & 85,68 \mathrm{~S} \\ & \$ 5,701 \end{aligned}$ | 35,762 | 35.776 | 55,73 | 35.624 | 35,433 | 35, 1 | 4,745 | 4,20s | 3,4 | 2,593 | 31,463 | 30 |
| 10.5171\% | 10.56738 | Primilu (EOH) cy (EOT) | 2093 $\$ 750$ | $\begin{aligned} & \$ 160 \\ & \$ 700 \end{aligned}$ | $\begin{aligned} & \$ 197 \\ & 8650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8600 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & 8297 \\ & 8500 \end{aligned}$ | $\begin{aligned} & 8335 \\ & 450 \end{aligned}$ | $\begin{aligned} & 8381 \\ & 8400 \end{aligned}$ | $\begin{aligned} & 55,659 \\ & 83,762 \end{aligned}$ | 35,776 | 35,735 | 85,624 | 85,433 | 85,147 | 4.745 | 4,20 | 3.4 | .593 | 81,443 | s |
| 10.5673x | 10.62588 | $\begin{aligned} & \text { Prulum (eor) } \\ & \text { CV }(E O Y) \end{aligned}$ | $\begin{aligned} & 8993 \\ & 8750 \end{aligned}$ | $\begin{aligned} & \$ 168 \\ & \$ 700 \end{aligned}$ | $\begin{aligned} & 8197 \\ & 8650 \end{aligned}$ | $\begin{aligned} & 3227 \\ & 8600 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 850 \end{aligned}$ | $\begin{aligned} & 8298 \\ & 8500 \end{aligned}$ | $\begin{gathered} \$ 335 \\ 8450 \end{gathered}$ | $\begin{aligned} & 381 \\ & 8400 \end{aligned}$ | $\begin{aligned} & 432 \\ & 535 \end{aligned}$ | $\begin{aligned} & 85,757 \\ & 85,776 \end{aligned}$ | *5,75 | 85,624 | 35,433 | 85, 1 | 24,745 | \%4,20 | 83.499 | 2.59] | 81,463 | 50 |
| 10.625% | 10.6906\% | $\begin{aligned} & \text { Prealum (tEOH) } \\ & \text { CV (EOT) } \end{aligned}$ | $\begin{aligned} & \$ 993 \\ & 8750 \end{aligned}$ | $\begin{aligned} & \$ 166 \\ & \$ 700 \end{aligned}$ | $\begin{aligned} & \$ 197 \\ & 8650 \end{aligned}$ | 8227 | $\begin{aligned} & 8260 \\ & 3550 \end{aligned}$ | $\begin{aligned} & 8295 \\ & 8500 \end{aligned}$ | $\begin{aligned} & \$ 335 \\ & 450 \end{aligned}$ | $\begin{aligned} & 3391 \\ & 3600 \end{aligned}$ | $\begin{aligned} & 432 \\ & 3350 \end{aligned}$ | $\begin{aligned} & \mathbf{3 4} 91 \\ & 3500 \end{aligned}$ | $\begin{aligned} & \mathbf{3 5}, 026 \\ & 5,755 \end{aligned}$ | 85,024 | 85,433 | 35,147 | 74 | 4.2 | .469 | 2,593 | 81,443 | 30 |
| 10.60\%\% | 10.76264 | $\begin{aligned} & \text { Preluen (EOT) } \\ & \text { ever } \end{aligned}$ | $\begin{aligned} & 8993 \\ & 8150 \end{aligned}$ | $\begin{aligned} & 8100 \\ & 8700 \end{aligned}$ | $\begin{aligned} & 897 \\ & 8650 \end{aligned}$ | \$227 | $\begin{aligned} & \$ 260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & 8298 \\ & 8500 \end{aligned}$ | $\begin{aligned} & 8335 \\ & 8630 \end{aligned}$ | $\begin{aligned} & 8301 \\ & 8400 \end{aligned}$ | $\begin{aligned} & 8432 \\ & 8360 \end{aligned}$ | $\begin{aligned} & \mathbf{4} 91 \\ & \mathbf{3} \end{aligned}$ | $\begin{aligned} & 3555 \\ & 2850 \end{aligned}$ | $\begin{aligned} & 55,035 \\ & \$ 5,024 \end{aligned}$ | 35,433 | 3, 14 | 4,745 | 34 | 33,499 | . 5 | 31,463 | 80 |
| 10.76248 | 10.6367 | ermenturs (eor) | $\begin{aligned} & 3903 \\ & 8730 \end{aligned}$ | $\begin{aligned} & 8165 \\ & 8700 \end{aligned}$ | 8197 8650 | 8227 8600 | $\begin{aligned} & 3250 \\ & 8550 \end{aligned}$ | $\begin{aligned} & 1295 \\ & 3500 \end{aligned}$ | $\begin{aligned} & 8335 \\ & 8550 \end{aligned}$ | $\begin{aligned} & \$ 381 \\ & \\ & \hline 400 \end{aligned}$ | 3452 | $\begin{aligned} & \mathbf{3} 41 \\ & 8300 \end{aligned}$ | $\begin{aligned} & 3555 \\ & 8250 \end{aligned}$ | 4625
 $\$ 200$ | $\begin{aligned} & 55,770 \\ & 8,633 \end{aligned}$ | 35,147 | 4,765 | *,20 | 33,69 | ,503 | 31,463 | 80 |
| 10,8387 | $10.9213 x$ | $\begin{aligned} & \text { Premicur (EOV) } \\ & \text { CV (EOV) } \end{aligned}$ | $\begin{aligned} & 3993 \\ & 3730 \end{aligned}$ | $\begin{aligned} & \$ 168 \\ & 8700 \end{aligned}$ | $\begin{aligned} & \$ 197 \\ & 8650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8000 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & 8295 \\ & 3500 \end{aligned}$ | $\begin{aligned} & 8335 \\ & 450 \end{aligned}$ | $\begin{aligned} & 8391 \\ & 3600 \end{aligned}$ | $\begin{aligned} & 8332 \\ & 8350 \end{aligned}$ | $\begin{aligned} & 8491 \\ & 8500 \end{aligned}$ | $\begin{aligned} & \$ 555 \\ & \$ 250 \end{aligned}$ | 1625 | $\begin{aligned} & \$ 700 \\ & \$ 150 \end{aligned}$ | $\begin{aligned} & 65,670 \\ & 85,147 \end{aligned}$ | 4,745 | ,20 | .4 | 2.593 | \$1,463 | 30 |
| 10.9213x | 11.0145 | $\begin{aligned} & \text { Premiun (EOY) } \\ & \text { cy (EOH) } \end{aligned}$ | $\begin{aligned} & 8993 \\ & 8150 \end{aligned}$ | $\begin{aligned} & 8160 \\ & 8700 \end{aligned}$ | $\begin{aligned} & 8197 \\ & 650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8600 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & 8298 \\ & 8500 \end{aligned}$ | 5335 450 | $\begin{aligned} & 3301 \\ & 3400 \end{aligned}$ | $\begin{aligned} & 8432 \\ & 8350 \end{aligned}$ | $\begin{aligned} & 8491 \\ & 8500 \end{aligned}$ | $\begin{array}{r} 8555 \\ 8250 \end{array}$ | $\begin{aligned} & 8523 \\ & 8200 \end{aligned}$ | $\begin{aligned} & \$ 700 \\ & \$ 150 \end{aligned}$ | $\begin{aligned} & 876 \\ & 8+60 \end{aligned}$ | $\begin{aligned} & 85,349 \\ & 4,745 \end{aligned}$ | 84,203 | 3,429 | ,503 | 11,463 | 0 |
| 11.0145x | 11.11868 | $\begin{aligned} & \text { Prcalum (cor) } \\ & \text { CV (EOT) } \end{aligned}$ | $\begin{aligned} & 5993 \\ & \$ 750 \end{aligned}$ | $\begin{aligned} & 8160 \\ & 8700 \end{aligned}$ | $\begin{aligned} & 8197 \\ & 8650 \end{aligned}$ | 627 8600 | $\begin{aligned} & \$ 260 \\ & 8550 \end{aligned}$ | $\begin{array}{r} 3205 \\ 8500 \end{array}$ | $\begin{aligned} & 8335 \\ & 8650 \end{aligned}$ | $\begin{aligned} & 3301 \\ & 8600 \end{aligned}$ | $\begin{aligned} & 432 \\ & 8350 \end{aligned}$ | $\begin{aligned} & 3491 \\ & 8300 \end{aligned}$ | $\begin{array}{r} 8555 \\ 8250 \end{array}$ | $\begin{aligned} & 8625 \\ & \$ 200 \end{aligned}$ | $\begin{aligned} & 8700 \\ & \$ 150 \end{aligned}$ | 8_{8100} | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 850 \end{aligned}$ | $\begin{aligned} & 64,205 \\ & 64,205 \end{aligned}$ | $33,498$ | $12,593$ | 1,443 | 50 |
| 11.1180x | 11.23668 | | $\begin{aligned} & 8993 \\ & 8750 \\ & 870 \end{aligned}$ | $\begin{aligned} & 8160 \\ & 8700 \end{aligned}$ | \$197 | 2227 8600 | 3260 3550 | 329 8500 | $\begin{aligned} & 8355 \\ & 8450 \end{aligned}$ | $\begin{aligned} & 8301 \\ & \$ 400 \end{aligned}$ | $\begin{aligned} & 8632 \\ & \$ 350 \end{aligned}$ | $\begin{aligned} & 8491 \\ & 3300 \end{aligned}$ | \$3555 | 82025 | $\begin{aligned} & 3700 \\ & 8150 \end{aligned}$ | 8100 | $\begin{array}{r} 830 \\ 0 \\ 0 \end{array}$ | 50 | $\begin{aligned} & 4.676 \\ & 33,69 \end{aligned}$ | $3,393$ | 11,443 | 6 |
| 11.23448 | 11.36635 | $\begin{aligned} & \text { Prominn (EON) } \\ & \text { CV (EON) } \end{aligned}$ | $\begin{aligned} & 3993 \\ & 8750 \end{aligned}$ | $\begin{aligned} & \$ 160 \\ & \$ 700 \end{aligned}$ | $\begin{aligned} & 3197 \\ & 650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8000 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & \$ 299 \\ & \$ 500 \end{aligned}$ | 6335 430 | $\begin{aligned} & \$ 381 \\ & 8400 \end{aligned}$ | $\begin{aligned} & 248 \\ & \$ 330 \end{aligned}$ | $\begin{aligned} & 8191 \\ & 8300 \end{aligned}$ | $\begin{array}{r} 8555 \\ 8250 \end{array}$ | $\begin{aligned} & \$ 625 \\ & \$ 200 \end{aligned}$ | $\begin{aligned} & 870 \\ & \$ 150 \end{aligned}$ | $\begin{aligned} & 880 \\ & 8100 \end{aligned}$ | $\begin{gathered} 889 \\ \$ 50 \end{gathered}$ | 590 | $\begin{array}{r} 31,127 \\ 80 \end{array}$ | $\begin{aligned} & 83,733 \\ & 82,606 \end{aligned}$ | $81,463$ | 50 |
| 11.36654 | 11.51748 | $\begin{aligned} & \text { Prelue (EOT) } \\ & \text { CV (EOT) } \end{aligned}$ | $\begin{aligned} & \$ 993 \\ & \$ 750 \end{aligned}$ | $\begin{aligned} & 8166 \\ & 8700 \end{aligned}$ | $\begin{aligned} & 8197 \\ & 8650 \end{aligned}$ | $\begin{aligned} & 8227 \\ & 8600 \end{aligned}$ | $\begin{aligned} & 8260 \\ & 8550 \end{aligned}$ | $\begin{aligned} & \mathbf{3 2 9} \\ & \mathbf{3 5 0 0} \end{aligned}$ | $\begin{array}{r} 8335 \\ \$ 450 \end{array}$ | $\begin{aligned} & 8381 \\ & 400 \end{aligned}$ | $\begin{aligned} & 342 \\ & 3350 \end{aligned}$ | $\begin{array}{r} \$ 491 \\ \$ 300 \end{array}$ | $\begin{aligned} & 8555 \\ & 8250 \end{aligned}$ | $\begin{aligned} & 8625 \\ & \$ 200 \end{aligned}$ | $\begin{aligned} & 8700 \\ & 8150 \end{aligned}$ | $\begin{aligned} & \$ 780 \\ & 8100 \end{aligned}$ | $\begin{array}{r} 8870 \\ 850 \end{array}$ | $\begin{array}{r} 89 \% \\ 80 \end{array}$ | $\begin{array}{r} 31,127 \\ \hline 0 \end{array}$ | $\begin{array}{r} 81,246 \\ 80 \end{array}$ | $\begin{aligned} & 2,758 \\ & 81,443 \end{aligned}$ | 6 |
| 19.5174\% | and | $\begin{aligned} & \text { Prealue (teor) } \\ & \text { cy (for) } \end{aligned}$ | $\begin{aligned} & 8993 \\ & 8750 \end{aligned}$ | $\begin{aligned} & \$ 166 \\ & 8700 \end{aligned}$ | 8197 860 | \$227 | $\$ 260$ 850 | 3898 $\$ 800$ | 3335 350 | 3381 8000 | $\begin{aligned} & 432 \\ & 3350 \end{aligned}$ | $\begin{aligned} & 3491 \\ & 3900 \end{aligned}$ | $\begin{aligned} & \$ 555 \\ & 8250 \end{aligned}$ | $\begin{gathered} 6055 \\ 8000 \end{gathered}$ | $\begin{aligned} & 8700 \\ & 8150 \end{aligned}$ | $\begin{aligned} & 870 \\ & 8100 \end{aligned}$ | $\begin{aligned} & 850 \\ & 0 \end{aligned}$ | 50 | $\text { 81, } 127$ | $\begin{array}{r} 81,246 \\ 80 \end{array}$ | $51,302$ | $\begin{array}{r} 31,535 \\ 50 \end{array}$ |
| 1eble 3.1 | Ierm Modo solutiona | Isolut lens und ot present vil | | inted f reet rot | | As Pres nume ise | | lus inter uniqu: | ereet 角
 W. | tate varl | | | | | | | cor $=0$ | almin | of-yet | or, EOT | - End-of | veer |

defer payment of the single premium for one additional year, inatead paying the minimum premium neceseary to keep the policy in force. ${ }^{5}$

Within the interest rate intervala shown on Table 3-1, the optimal solution is unique; on the boundaries, the molution in not unique. If $\sigma=\left\{P_{i}, \ldots, P_{i o}\right\}$ is the optimal molution on the interval of present value rates $\left[i_{n-1}, i_{n}\right]$ and E=\{Pi,, $\left.P_{20}^{f}\right\}$ is the optimal colution on $\left[i_{n}, j_{n+1}\right]$, then for a present value interest rate of i_{n}, any eolution of the form $\delta \alpha+(1-\delta) B$ (0sisi) will be an optimal solution.

Table 3-2 illuetrates the optimal solution as function of the present value interest rate when the policyholder can afford to pay no more than $\$ 1,000$ in any given year. At low present value interest rates, up to 10.35904 , eince the policy can no longer be purchaeed with a single premium, it is funded with the $\$ 1,000$ per year maximum until enough money is paid to bring the policy through age 64. Conversely, at high present value interest rates, above 11.0965t, the policy ie funded with the minimum premium reguired to reep the poilicy in force each year, with the exception that in years 17 through 20, since this premium is in excese of the $\$ 1,000$ per year maximum, only $\$ 1,000$ is paid, and in years 12 through 16 , more than the minimum reguired ia paid, in order to prefund the later deficits.

At low intereet retes, the optimal solution ie to fund the contract through premiums of $\$ 1,000$ in years 1 through 6, and $\$ 10$ in year 7. The first change in the optimal funding etrategy occurs at the present value interent rate at which the policyholder is indifferent to transferring policy funding from year 1 to year 7, that is, at $i=10.3590 \%$, when ${ }_{s}{ }^{2} \Delta C v C_{65}=(1+i)^{6}$.

Since the minimum premium for year 1 ie $\$ 993$, year 1 funding cennot drop more than 57 from the 51,000 per year maximum, and any further funding deferral will be due to a reduction in year 2 premium. When year 1 premium is at $\$ 993$,

[^12]
Abstract

year 2 premium can drop to as low as $\$ 168$ before the policy will lapse. Indifference to transferring funding from year 2 to year 7 occure at $i=10.37234$, When $\operatorname{si}^{f} \Delta C V C_{46}=(1+1)^{5}$, thue defining the next shift in the optimal solution and the second interest rate boundary. However, dropping the year 2 premium from $\$ 1,000$ to $\$ 404$ rebulte in funding at the full $\$ 1,000$ level in year 7 ; any further funding reduction will need to be made up in year 8 . This defines the third interest rate boundary, at $i=10.38894$, when $\operatorname{sincvC}_{46}=(1+i)^{6}$. Further interest rate boundariea are mimarly defined by the point at which the policyholder if indifferent to tranaferring funding from period m to period n (msn), where either period m funding ia done at the minimum level required to keep the policy in force, or period n funding is done at the $\$ 1,000$ maximum.

Chapter 4

a coceral model

Abstract

This chapter developa model to be ued by a policyholder to optimally allocate fund between aniversal life (UL) contract and several alternative investmente. The alternetive considered are a money-market fund (MR), a deductible individual retirement account (IRN), and a flexible premiwn annuity (FPA). As presented here, the model is constructed to optimally allocate funds at the time contract is igaued, but with minor modifications it could be used to optimize the allocation of future funds on en insurance and investment program that if already in effect. In the next ehapter, the use of thim model as a cost comparimon method will be etudied.

[P]	GAPOLFee,	- Any additional guideline annual premium at insue required to cover fixed policy conts, such as policy fees or other administrative chargen	
[8]	GSPOLFee,	= Any additional guideline single premium at iasue required to cover fixed policy costs	
[D]	GAP	= Guideline annual premium, year t	
[D]	EGAP ${ }_{t}$	= Sum of the guideline annual premiums through year t	
[D]	GSP ${ }_{t}$	= Guideline single premium, year t	
[D]	GPL	- Guideline premium limit, year t	
[P]	Corre	$=$ IRS section 7702 corridor factor for the insured's attained-age during year t	
[P]	7 Pay000	= Modified endownent 7-Pay premium test premium per thousand for a policy at the insured'g issue age.	
[D]	TaxBasim	= Policy' ${ }^{\text {a }}$ tax basia, year t	
[D]	7702Bamist	= Policy' IRS section 7702 basis, year t	
[P]	DBInd	- 1 for an increasing death benefit policy O for a level death benefit policy	
[P]	SurrPer000,	= Surrender charge in year t, per thousand of face amount issued in year 1	
[D]	$\mathrm{CV}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}}, \mathrm{I}\right.$	```* \|}	j=1,\ldots,t = Cash value, end of year t, as function of prior transactions```
[P]	ULimint	= Upper limit on the amount of money the policyholder desires to put into the $0 L$ contract, year t	
[P]		$=$ Lover limit on the amount of money the policyholder deaires to put into the 0 CL contract, year t	
[P]	MinNAR	= Policyholder's minimum desired net-amount-at-risk, year t	
In the model. F_{q} will be allowed to vary frow year to year, to accomodate the dollar-for-dollar reduction in face amount that occure on level death benefit policies when withdrawals are made. As part of the linear programaing solution,			

the model will solve for the minimum face anount at issue，Fy，so that the policy will dways mets its minimum insurance element reçuirement，es defined by the input parameters MinsAR，and all other conterainte．Ae developed here，F．， though it may vary by duzation，i曾 not meant to model increasee or decreases in face anount other than those due to withdrawals．The model asames that withdrawals of cash value can be made without invoking a Eurrender charge；${ }^{9}$ thus，once F ，is determined，the eurrender charge in effect each duration it fixed based on the rates in the input parameteri Surrper 000 ．For the eake of convenience，surrender chargen are aspumed to be based on the face amount at issue；most other surrender charge patterns（for example，based on a percentage of firet year premium）could be modelled equally easily．

The following notation is used to deecribe the inveatmenta，where ac\｛ MOM， IRA，PPA）：

［S］	D_{4}	＊Deposit to investment α ，beginning of yeer t
［P］	Loadpet＊	＊Percent－of－deposit load charged by investment a
［P］	i＊	＝Interent rate credited inventment a
［S］	w_{t}^{*}	＝Withdrawal from investment a，beginning of year t
（D）	TAXAELEFFPA	＝Portion of $\mathrm{w}_{\mathrm{t}}^{\mathrm{FPA}}$ that is taxable
［D］	TAKFREE $W_{t}^{\text {FPA }}$	＝Portion of $\mathrm{W}_{\mathrm{t}}^{\mathrm{FPA}}$ that it tax－free
［D］	TPAEa番	$=$ Flexible premium annuity tax basis，year t
［D］	$\mathbf{N B}_{t}^{\text {e }}$	＝Investment a account balance，end of ymar t
［P］	ULim ${ }_{\text {E }}^{\text {E }}$	＝Upper limit on the amount the policyholder desires or
		is allowed to contribute to investment a in year t
［ P］	L工ime	F Lower limit on the amount the policyholder desires or
		I．allowed to contribute to investment a in year t

In keeping track of cash flowe，depoaita to the individual retirement account will be tex－deductible，interest will eccumalete at ilh and will not be

[^13]currently taxed, and all withdrawals will be fully taxable. Deposite to the money-market fund are assumed to be made with after-tax funde, and accumulate at an after-tax interest rate $i^{M N}$; thus, withdrawals are not taxable. Flexible premium annuity deponits are assumed to be made from after-tax funds which accumulate tax-deferced at i^{FPA}. In contrast to the individual retirement account and the money-market fund, annuity taxation rules necemeitate keeping track of the taxable and non-taxable component of each withdrawal.

Some miscellaneous notation follows:
$n \quad=$ Number of yeare the insurance and investment program is to remain in force
FitRate \quad Policyholder's marginal federal income tax rate
TPInd, \quad Tax penalty indicator for IRA or FPA withdrawals, equals 1 if withdrawal at the beginning of year t would be deemed to be premature, 0 otherwite ${ }^{2}$
IRAMinWt, $=$ IRA minimum withdrawal percent, year $t .3$
FCF $_{t}$
= Policyholder's (fixed) estimate of the after-tax funde that will be available to fund (if positive) or that will need to be withdrawn from (if negative) the insurance and investment program at the beginning of year t

[^14]$=$ combined after-tax universal life cash surrender value
and alternative investment account balances, end of

year n

4.2 Objective Frnction and Constraints

The goal of this linear programing model is to maximize the sum of the end of year n after-tax universal life cash murender value and associated investment account balancea:

```
                    MAXIMIIE: S = CABn
The ninetmen sete of constrainte required for this model, labelled (G1) through
``` (G19), are deacribed below. Conetraint eete (G1) through (G12) deal specifically with the universal life policy, constraints (G13) through (G17) deal with the investmente, and eet (G18) linke the insurance and investment cash flows. CABn it defined in (G19).
(G1) The following constraints relate the universal life loan outstanding each year to the amounts loaned, amounts repaid, and the interest rate charged on loans: \({ }^{4}\)
\[
\begin{gathered}
L_{1}=L I_{1} \\
\text { FOr } t=2 \text { to } n: \quad L_{t}=L I_{t}-L R_{t}+\left(1+i_{L C}\right) L_{t-1}
\end{gathered}
\]
(G2) The following constrainta eneure that the contract remains in force, by requiring that the end-of-year cash value leas the loan outatanding during the year (including the interest that will accumulate on the loan) equala or exceeda the eurrender charge:
\[
\text { For } t=1 \text { to } n: \quad C V_{t}-\left(1+i_{L C}\right) L_{t} \geq .001 \cdot F_{q} \text { SurrPer000 }
\]

\footnotetext{
Linear programming algorithma determine a solution that if on a cornerpoint of the feasible region defined by the conatraint equation. In the formulation of this linear programing model, any golution in which both LT, and LR are greater than zero for a given \(t\) will not be a cornerpoint of the fealable region. Thus, one or the other of \(L T\) and \(L R\), may be greater than zero, but not both.

It is possible to formulate thil linear programming model without defining "loans taken" or "loans ropaid" variables, by instead defining and solving for only the loan outstanding each year. The loan taken or repaid at the beginning of year \(t\) would then be \(L_{1}-\left(1+i_{L c}\right) L_{z-1}\). This approach in more direct, but somewhat less natural. This same coment applies as wil to money market account procesaing: It would be more direct, but lese natural, to eet up the model to solve only for the end-of-year account balances, and then back into the required deponits and withdrawals.
}
(G3) The following constraints administer the reduction in face amount on level death benefit policies that occurs whenever withdrawal is made:
\[
\text { For } t=1 \text { to } n-1: \quad F_{t+1}=F_{t}-(1-D E I n d) \cdot H_{t+1}
\]
(G4) The following constraints ensure that the policy face anounts through time are sufficient to meet the minimum insurance need, as defined by the MinNNR, factors:

For \(t=1\) to \(n: F_{t}-(1-D E I n d) \cdot C V_{t} \geq M_{i n N R}\) Should the policyholder ever deem his insurance to be clearly secondary to the use of the policy a an investment venicle, MinNRR, covid be aet to zero from that point forward.

Two comments deserve to be made regarding constraint set (G4). First, in the absence of this stt of constraints, the model could exhibit undesirable behavior. The objective in to maximize a cash accumulation, and reducing the amount epent for insurance will, all other things being equal, increase the cabh accumalation. Thus, if the cost of paying and immediately withdrawing a dollar of premium is less than the cost of purchasing that one dollar of insurance over the period the policy is to be held, the optimal molution could involve overfunding the contract and then withdrawing money, for the sole purpose of reaping the fictitious "benefit" of reducing insurance coste. Clearly this is not desirable.

Second, while constraint eet (G4) Effectively places a lower limit on the face amount to be purchased, it does not imply an upper limit. Onder acoe circumstances, the model will purchase more face amount than one might initially expect by imply examining the factore MinNRR. For example, mppose the tax edvantage combined with the investment zeturn on univer alal life contract make it a desirable invertment vehicie, compled to other available options. If guideline preaium conetrainte (G11) or cash value corridor conterainte (G12) for the minimum face amount neceseary to meet the insurance need get in the way of fully allocating available funds to the insurance contract, a larger face amount will be purchased if the cost of the additional protection required to make room for additional premium does not dilute the return to such an extent that the
contract is no longer the preferred investment.
(G5) Ae part of the compliance requirementa for the IRS section 7702 definition of life insurance, the following aet of constraints definea the initial guideline premiums, adjuste them an necessary for any eubeequent reduction in face amount when withdrawals are taken from level death benefit policies, and defines the um of the guideline annual premiums:
\[
\begin{aligned}
& \text { GAP } 1=.001 \cdot F_{1} \cdot \text { GAPAdj000, }+ \text { GAPOLFee, } \\
& \text { GSP }_{1}=.001 \cdot \mathbf{F}_{1} \cdot \text { GSPAdj000 }_{1}+\text { GSPOLFee }_{1} \\
& \mathbf{E G A P _ { 1 }}=\mathbf{G N} \mathbf{P}_{\mathbf{1}}
\end{aligned}
\]
and for \(t=2\) to n :
\[
\begin{aligned}
G A P_{t}= & G A P_{t-1}-.001 \cdot(1-\text { DBInd }) \cdot \text { GAPAdj000 }_{t} \cdot W_{t} \\
G S P_{t}= & G S P_{t-1}-.001 \cdot(1-\text { DBInd }) \cdot \text { GSPAdj000 }_{t} \cdot W_{t} \\
& \operatorname{EGAP}_{t}=E G A P_{t-1}+G A P_{t}
\end{aligned}
\]
(G6) The following constraints define the guideline premium limit each year as the greater of the guideline single premium and the sum of the grideline annual premiums:

For \(t=1\) to \(n\) :
\[
\text { GSPExCEGAP }_{t}-\Sigma G A P E X C G S P_{t}=G S P_{t}-\Sigma G A P_{t}
\]
where:
GSPExcEANP \(=\) Amount by which the guideline single premium exceeds the sum of the guideline annual premiums, year \(t\) EGAPEXEGSP \(_{t}=\) Amount by which the oum of the guideline annual premiums exceeda the grideline single preaium, year \(t\) and:
\[
\text { GPL } L_{t}=\operatorname{LGA} P_{z}+\text { GSPEXCSGAP }
\]

Thi: technique will be uned several tinet in thie paper for defining a variable that is the maximum (or the minimum) of two other variables. In the linear programing solution, in a given year, either GSPExcEGAP will be greater than zero, or \(\operatorname{scAPExCGS}\), will be greater than zero, but not both. If GSPExCIGAP is greater than zero, then the guideline ingle premium dominates the sum of the guideline annual premiums in year \(t\), and GSPExCEGAP \(\mathrm{t}_{\mathrm{t}}\) will be added to EGAP to
get the guideline premium limit, GPL, . Conversely, if the sum of the guideline \(^{\text {g }}\), annual premiums dominates, then GPL, will equal sGAP.
(G7) Constrainte are required to split withdrawala during the firgt five years into taxable and non-taxable componente. The rulem for doing thit eplit, defined in IRS section \(7702(5)(7)\), are somewhat complicated. Cash distributiont are to be recognized as income up to the amount of the gain in the contract, to the extent of the rectpture ceiling, which for a vithdrawal at the beginning of Year \(t\) if the larger of:
A. The tax basis of the contract, TaxBasist-1, lese the guideline premium limitation GPL after the withdrawal
and B. The cash value, \(C V_{t-1}\), imuediately prioz to the withdrawal lam the face amount, Fi, after the withdrawal, divided by the corridoz factor corr \({ }^{\text {a }}\) The recapture ceiling can be calculated using the following set of constrainte:
```

For t = 2,···.,5: Recap\mp@subsup{n}{t}{}-\mp@subsup{D}{0}{\prime}

```

```

                RecapAExcRecapB ( RecapBExcRecaph t = Recapht = RecapB
                RecapCeilingt = RecapB
    ```
where:
(D)
[D]
[D]
[D]

The gain in the contract can determined by adding the constrainte:
\[
\text { ULGaint }_{t}-\text { ULLOEB }_{t}=C V_{t-1}-\text { TaxBesist }
\]
where:
[D]
ULGaint \(=\) Gain in the contract, beginning of year \(t\)

Finaliy, splitting withdrawalb into taxable and tax-free components can be accomplished by adding the constrainte: \({ }^{5}\)
```

Gainexerecap - RecapsxcGain $=$ ULGain $_{t}$ - Recapceiling

```
\[
\begin{aligned}
W_{t}^{\text {TAXAREE }} & =\text { ULGain }- \text { GainsxcRecap } \\
W_{t} & =W_{t}^{\text {TAPREE }}+W_{t}^{\text {TAXARLE }}
\end{aligned}
\]
where:
Gainexchecept F Amount by which Gaint exceede Recapceiling,
[D] RecapExcGain \(=\) Mmount by which Recapceilingt exceede Gaint
(G8) \(A\) Het of constraints if required to mplit withdrawalm into taxable and non-taxable components in yeare \(\quad i x\) through fifteen. The rules ace identical to those stated bove for withdrawale taken during the first five yeare, except that the recapture ceiling ie defined el (B) above, rather than the greater of (A) and (B). 6
(G9) The following constrainte are ufficient to gplit withdrawals in year sixteen on, which are taxed only to the extent that they exceed the tax basif, into their taxable and non-taxable components:

For t \(=16\) to n:
\[
\begin{aligned}
& W_{t}=W_{t}^{\text {TAXPEEE }}+W_{t}^{\text {TAYANE }} \\
& \text { HyARFEE } \leq \text { IaxBasint }
\end{aligned}
\]

In arriving at an optimal solution to this linear programing problem, notice

\footnotetext{
Sone epect of the taxation of withdrawal if not addreseed by conetraints (G6) and (G7), namely the treatment of distributions made in anticipation of death benefit reductions" referced to in 7702(f)(7)(E). Under thit etetion, the calculation of taxable income upon withdrawal that reducen benefite requires an examination of any other withdrawale made in the previous two years and a poseible fecalculation of taxable incowe. This arpect of the tax code has not been modelled.

6any taxable withdrawals allowed by the model during the first fifteen policy yeare will be considered to be premium returned to the policyholder when determining the "sum of premiume paid" under 7702. Thut, such withdrawale offist premiums in the definition of 7702Basis. in (G11).

Although not allowed by the model, the policyholder could have a contractual right to additional taxable withdrawals, if there is still cash value remaning in the contract once tax-free withdrawals up to the full amount of the tax basis have been taken. For further dibcusicion of withdrawale during the first fifteen policy yeare under the guideline premium/cash value corridor test, sef [10]. including the enlightening discussion by J. Peter Duran.
}
that withdrawals will automatically be allocated to tax-free withdrawals before taxable withdrawals, due to the desirability of deferring taxable income. \({ }^{7}\) Conveniently, thie parallele the allocation for tax treatment.
(G10) The following constrainta define TaxBalist for uee in determining taxable income:
\[
\text { TaxBanis }{ }_{1}=P_{i}
\]

(G11) The following constraints define 7702Basis, and ensure that the policy meets the guideline premium limitations of the definition of life inmurance:
\[
\begin{aligned}
& 7702 \mathrm{BaE} \mathrm{Im}_{1}=\mathrm{P}_{\mathrm{y}}
\end{aligned}
\]
\[
\begin{aligned}
& \text { For } t=1 \text { to n: } 7702 \text { Basis }_{t} \leq \text { GPL }_{t}
\end{aligned}
\]
(G12) The following set of constraints ensures that the policy meets the cash value corridor constrainte of the definition of life inaurance:
\[
\text { For } t=1 \text { to } n: \quad C V_{q} \leq\left(F_{q}+D B I n d \cdot C V_{q}\right) / \operatorname{Cor}_{q}
\]

Rather than increase the death benefit when the cash value becomed auficiently high, theme constraint limit the eash value so that the policy never entere the cash value corridor. This approach is necestary because of the dearability of keeping cash ralues a linear function of prior transactions; linearity breaks down as policy enter the corridor. Defining the constraints using end-of-year values is eufficient to ensure that the policy has not entered the corridor at any time during the year, eince on cash value rich policiez euch an policies near the corridor, the end-of-year cash value would be expected to be the largest canh value in effect during the year.
(G13) Lastly, the following conetrainte prohibit the policy from becoming

\footnotetext{
\({ }^{7}\) Given the time value of money, it would generally be to one'a benefit to delay to the extent possible the payment of any income tax. Thie observation holds in the case of a withdrawal when the tax on the withdrawal does not vary with the timing of the withdrawal (as is true in the General Model, since fitrate is fixed by duration). The proper ordering of taxable verbus tax-free withdrawala would almo be preaerved if fithate were allowed to monotonically increase by duration.
}
a modified endowment contract. In testing cumulative premiume againat modified endowbent 1 imits, the malleet face amount in effect during the first beven years is used. Since face reduction occur only when withdrawals axe taken frow level death benefit policies, the face amount monotonically decreaees with time, and thus \(F_{7}\) may be used in each year's test:

For \(t=1\) to 7:
\[
\sum_{j=1}^{t}\left(P_{y}-W_{j}^{\text {pacsers }}\right) \leq t \cdot\left(.001 F_{7}\right) \cdot 7 \text { Pay000 }
\]

Constraints (G14) through (G17) administer the investment alternatives: (G14) The following constraints define the end-of-year account balances for each invertment:

For a \(\{\) \{M, IRA, FPA\}:
\[
\mathbf{A} \mathbf{B}_{1}^{a}=\left(1+i^{a}\right)\left(1-\text { LoadPct }{ }^{e}\right) D_{1}^{t}
\]
and for \(t=2\) to n :
\[
A B_{t}^{e}=\left(1+i^{*}\right)\left\langle A B_{t-1}^{a}+\left(1-\text { LoadPct }^{*}\right) D_{t}^{a}-W_{t}^{a}\right\}
\]
(G15) The following constraints requires that each investment (including the insurance policy) meet the minimum and maximum contribution limite defined by the policyholder (or by tax law, in the case of contribution limits to IRAs).

For \(t=1\) to \(n\) and for ac \(\{M, I R A, F P A\}:\)
\[
\begin{gathered}
P_{t} \geq L L i m_{t}^{U L} \text { and } W_{t}=0 \\
D_{t}^{a} \geq L i m_{t}^{a} \text { and } W_{t}^{E}=0 \\
P_{t} \leq U L i m_{t}^{U L} \\
D_{t}^{t} \leq U L i m_{t}^{a}
\end{gathered}
\]

The above constraints involving withdrawale prevent the poseibility that withdrawale will occur \(\quad\) imultaneously with deposits when the input parameters LLime required a deposit. constraints involving LLimi and withdrawals should only be defined when thime is greatec than zero. LLime and ulime factora can be ueed to force a diversification of investments. Alternatively, constraints placing a minimum or maximum on the account balance of any particular investment
as a percentage of total invested funds could be defined.
(G16) The following constraints ensure that the minimum withdrawal requirements from an IRA are met:

Fort \(=1\) to \(n\)
\[
W_{z}^{I N A} \geq B_{q-1}^{I R A} \cdot \text { IRAMINWG: }
\]

In years in which withdrawale from IRAs are requixed, no IRA deposits should be allowed, so ULimith should be set to zero.
(G17) The following constraints keep track of the tax basis of the flexible premium annuity and aplit withdrawale into taxable and non-taxable components. For the tax baeis, let
\[
\text { FPABa日ia, }{ }_{1}=D_{1}^{F P A}
\]

For \(t=2\) to \(n\) : FPABanis \(=\) FPABasis \(_{t-1}+D_{t}^{F P A}-\) TAXFREE \(_{W_{t}}^{\text {FPA }}\)
To account for the tax treatment of withdrawala, which during the accumulation phase of an annuity are treated as taxable income (with a possible penalty tax) to the extent of any gain in the contract, let:

For \(t=2\) to n:
\[
\begin{aligned}
& \text { FPAGAin }_{t}-\text { FPALOAs }_{t}=\text { AB }_{t-1}^{\text {FPA }}=\text { FPABaAis }_{t-1} \\
& \text { TAKFREE } \text { wiph }_{t}-\text { FPAGainExCW }_{t}=\text { wiph }_{t}-\text { FPAGain }_{t}
\end{aligned}
\]
where:
FPAGain, \(=\) Gain in the annuity contract, beginning of year \(t\) FPALoses \(=\) Lons in the annuity contract, beginning of year \(t\) FPAGainsxch \(=\) Anount by which the annuity gain at the beginning of Year \(t\) exceeds the amount of the withdrawal, if it does
(G18) The following constraints eet the after-tax cash flow into or out of the inourance policy and the investment alternatives equal to the policyholder' expected cash flow each year, as apecified by the ingut factore FCF, In the formula below, adjustments are made to account for tax credits available on IRA deposits, and tax charget (including any penalty) on taxable withdrawale from the insurance policy, the individual retirement ecount, and the flexible premium annuity:
\[
\begin{aligned}
& \operatorname{FCF}_{t}=P_{t}+I R_{t}+D_{t}^{1 m}+(1=F i t R a t e) D_{t}^{j R A}+D_{t}^{F P A} \\
& \text { - (l - Fitrate) witracle } \\
& \text { - (} \left.1 \text { - FitRate - } .1 \text { TPInd }_{q}\right)\left(W_{t}^{1 R A}+\text { TAXABLE }_{W_{t}^{F P A}}\right) \\
& -\left(L T_{t}+W_{t}^{\text {TAXFREE }}+\text { TAXFREE }_{W_{t}^{F P A}}+W_{t}\right)
\end{aligned}
\]
(G19) The following constraint definet \(C A B_{n}\), the end of period \(n\) combined after-tax account balance: which is maximized under the objective function. In defining CAB \(_{n}\), it ia necemsary to oplit the cash surrender value \(C_{n}\) of the universal life policy into taxable and tax-free componente \(C V_{t}^{\text {TAXABLE }}\) and \(C V_{t}^{\text {TAXFAEE, }}\) and to aimilarly split the flexible premium annuity into componente \({ }^{\text {IAXABLEABAPA }}\) and TAKFREABFA. The mechanics of doing this eplit have already been developed within the context of the taxation of withdrawala, and will not be repeated here. Any outetanding loan, with intereat for the year just ended, also neede to be repaid. Therefore:
\[
\begin{aligned}
\mathrm{CAB}_{n}= & C V_{n}^{\text {TAXFREE }}-\left(1+i_{t c}\right) L_{n}+A B_{n}^{\text {PM }}+\operatorname{TAXPREEAB} B_{n}^{F P A} \\
& +(1-\text { FitRate }) C V_{n}^{T A X A B L E} \\
& +(1-\text { FitRate }-.1 \text { TPInd })\left(A B_{n}^{I R A}+\operatorname{TAXABLE} A_{n}^{P P A}\right)
\end{aligned}
\]

Under come circumetances, it may be more desirable to maximize an after-tax income atream for a period of years, rather than aingle future camh accumulation. This may be accomplished by limiting the ixed cash flow input factors FCF; to \(m\) years, and for yeara \(m+1\) thorough \(n\), replacing the fixed input factors PCF. \(_{q}\) by the variable -VCP \({ }_{\mathrm{t}}\), while adding the constraints: \({ }^{8}\)
\[
\begin{aligned}
& \mathrm{VCF}_{\mathrm{m}+1}=\mathrm{VCF}_{\mathrm{m}}{ }^{2} \\
& \text { VCF }_{-2} \text { * VCF }{ }_{-3} \\
& \mathrm{VCF}_{\mathrm{n}}=\mathrm{CAB}_{n}
\end{aligned}
\]

As expreseed above, the \(n-m+1\) after-tax disbursement: will be equal in amount. However, it would be ample matter to adjust the constraint equations

\footnotetext{
Beal flow into the policy have been defined as positive, and cash flow out as negative. To keep VCF, for \(t=m+1, \ldots, n\) greater than zero, FCF is replaced by -VCF. It is desirable to keep the sign of ach VCF, value positive, both for consiftency with \(\mathrm{CAB}_{n}\) (which also is a component of the income stream), and to satisfy non-negativity conetraints on linear programing variables.
}
above to obtain varying income pattern, e.g., one that increases at a fixed rate from year to year to take into account the effecte of inflation. Additional work would be required if it i desired to treat payout from the flexible premium annuity as coming from annuitization, rather than withdrawals during the accumulation phase.

In running this model, it is assumed that a death benefit option has been chosen. One might expect the policyholder to be indifferent to the death benefit option, so long as the mindmum insurance element, MinNAR, has been met each year. Asauming this to be the case, it would be desirable to run the General Model twice, once under each death benefit option. The death benefit option selected would then be the one under which the model produces the higher value of the objective function.

\subsection*{4.3 An Exampla}

Suppose a prompective forty-five year old policyholder wants to begin an inaurance and retirement mavinge program. He desiree a minimum net-amount-atrisk of \(\$ 100,000\) each year until age 65, and has \(\$ 6,000\) of after-tax cash flow that he is willing to allocate in any manner among the following investmenta:
(1) \(A\) universal life policy from Company \(A\)
(2) A deductible, no-load IRA that credits interest at 9.0 per year, and has a maximum contribution limit of \(\$ 2,000\)
(3) A flexible premium annuity that charges a 3 load, and credite interest at 9.5: per year
(4) A no-ioad, tax-free money-market mutual fund that credite intereat at 6.51 per year.

Table 4-1 illustrates the optimal insurance purchase (a \(\$ 100,000\) increaning death benefit policy) and allocation of funds so to maximize the age 65 combined after-tax cash accumulation, asauming the policyholder' marginal income tax rate is 28*.

In the example, the IRA is funded with the maximum allowable contribution of \(\$ 2,000\) each year. Thie providef an annual tax credit of \(\$ 560\), which becomes

Table 4-1: Optimal Allocation Anong Investments and a \(\$ 100,000\) Issue Age 45 Increasing Death Benefit Policy From Cunpany A

Assumptions: IRA contributions are tax-deductible and limited to \(\$ 2,000\) per year. The IRA is no-load and earns interest at 9.0 per year.
The flexible premium anmity has at load and earns interest at 9.5 per year The money market fund is no-load and earns interest at a tax-free rate of 6 . St per year The policyholder has \(\$ 6,000\) of after-tax cash flow to invest each year. The policyholder' marginal federal income tax rate ia 28 .
available for investment in one of the three other investment. During the first fourteen yeari, the universal life contract is the second most desirable inventment, and it is funded to the maximum extent allowed by the guideline preaium limitations of IRS section 7702. Any additional money available is allocated to the flexible premium annuity.

In year fifteen, the universal life contract is no longer preferable to the annuity, becaute the 64 load charged by Company \(A\) on universal life premiums cannot be made up by the contract' superior 10 interest crediting rate when funds are to remain on deposit for six years or less; thus, the annuity becomes the preferred investment, after the IRA, for yearg fifteen and sixteen. From year seventeen on, the annuity's three percent load similarly dilutes ite overall return to such an extent that the no-load tax-free money market fund becomes the investment of choice.

A more typical insurance and investment program deaign would have been to fund the \(\$ 100,000\) increasing death bencfit policy with level premiums of \(\mathbf{S} 1,200\) per year, while deponiting \(\$ 2,000\) per year to the IRA and \(\$ 3,360\) per year to the annuity. Such an allocation results in a twentieth year after-tax cath accumulation of \(\$ 273,315\). of the \(\$ 4,381\) increase in after-tax cash accumulation under the optimal allocation, \(\$ 4,099\) is due to mifting money to or frow the inaurance contract and one of the alternative invemtments, and \(\$ 282\) in due to the allocation of annuity premium ingtead to the tax-free money market fund in years eventeen on. The \(\$ 4.099\) increase may appear rather modest when compared to the total accumulated value of 5277,696 . It in more impressive when viewed as the avings that remults on a \(\$ 100,000\) policy when the policy is utilized most appropriately within the universe of possible inveatments.

\section*{Chapter 5}

The Ceneral Model at ant Conperison Method

\subsection*{5.1 Compering Univarsal Life Plane}

The General Model may be used an cost comparison method, to aid the prospective policyholder in purchasing the most cost effective policy, by following these tept:
1. Select gall (e.g., meximize an aftex-tax cash accurglation at age sixty-ifive or an after-tax income stream commencing at age 65) and develop an objective function to xefiect that goal.
2. Select the policieg (with investment alternativel) to be compared.
3. Define parameters for the constraints equations.
4. Use linear programing to optimally allocate funds among the insurance policy and the alternative invertments.
5. Choose af the optimal purchase the policy and allocation that produces the nighest value of the objective function.

This method hat feveral advantages over existing cost comparison methode when the traditional methods are used to compere univerasel life type contracte.

Fizet, the linear progranming cost comparison method defined above fully utilize univertel life' premium flexibility, eolving for the premilum otrean (and other policy transactions) that causes each contract to perform optimally when used in confunction with other available investmenta. In contragt, traditional cost comparison method do not account adequately for the premium flexibility of universel life. Onder traditional methode, policies can be compared at any deesired premium level, but no recognition in given to the fact that mome policies will operite better when funded generousiy, while others will perform well when funded at lower level.

Second, the ilned programing cost comparison method recognizes that there are numerous alternative inve色ment media available to the policyholder that can be used advantegeouiliy in conjunction with the infurance plan. The tax apect of asch investmant are recognized and utilized.

Third, existing cost comparison methods either are inadequate when they are used to compere policiee funded at different levele due to their inability to account for differences in the resulting net death benefit, or overcome this drawback by adjusting for the difference in death benefit besed upon an arbitrary ecale of term charget. The linear programing cost comparimon method akirts this problem by requiring only that each year, a minimum inturance element (as defined by the input parameters KinNAR) be met. So long as the minimum is met, the policyholder should not care to what extent the policy in funded, as long as it operates optimally when used in combination with the other inventment options.

Tables 5-1A and 5-18 illustrate the result of the General Model when the example illustrated in Table \(4-1\) is applied to purchanes of policies from Companies \(B\) and \(C\), respectively, rather than company \(A\). The value of the objective function (the age 65 combined after-tax inaurance and inveatment account balances) for each potential purchase ie mumarized below:
\begin{tabular}{lll}
Company A & \(\$ 277,696\) & (\$1) \\
Company B & \(\$ 276,470\) & (\$3) \\
Company C & \(\$ 277,428\) & (\$2)
\end{tabular}

Thus, under the alsumptions given, a policy from Company A, tructured with alternative investments as illustrated in Table 4-1, is the preferred purchase; company \(C\) and company \(B\) come in second and third, respectively. Interentingly enough, had the comparizon been done amply by comparing twentieth year cath values under a \(\$ 1,200\) per year level funding scheme, the ranking of policiea would have been reversed:
\begin{tabular}{llll}
Company A & \(\$\) & 39,455 & (13) \\
Company B & \(\$\) & 40,998 & (1) \\
Company C & \(\$\) & 39,790 & (12)
\end{tabular}

The increases in after-tax cash accumulation over a more typical strategy that allocates level \(\$ 1,200\) per year to the insurance contract, \(\$ 2,000\) per year to the IRA, and \(\$ 3,360\) to the annuity, are:
\begin{tabular}{ll}
Company A & \(\$ 277,696-\$ 273,315=\$ 4,318\) \\
Company & \(\$ 276,470-\$ 274,426=\$ 2,044\)
\end{tabular}

Table 5-1A: Optimal Allocation Among Investments and a \(\$ 100,000\) Issue Aga 45 Increasing Death Benefit Policy From Company B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Year & \[
\begin{array}{r}
\text { UL } \\
\text { Premium }
\end{array}
\] & \[
\begin{array}{r}
\text { IRA } \\
\text { Deposit }
\end{array}
\] & IRA Tax Credit & \[
\begin{array}{r}
\text { FPA } \\
\text { Premíum }
\end{array}
\] & Deposit & \[
\begin{aligned}
& \text { Net } \\
& \text { Cash } \\
& \text { Flow }
\end{aligned}
\] & & \[
\begin{array}{r}
\text { UL } \\
\text { NCV }
\end{array}
\] & Balance & \[
\begin{array}{r}
\text { FPA } \\
\text { Balance }
\end{array}
\] & Balance. \\
\hline & 1 & 4. 560 & 2,000 & (560) & 0 & 0 & 6,000 & 1 & 3,700 & 2,180 & 0 & 0 \\
\hline & 2 & 613 & 2,000 & (560) & 3.947 & 0 & 6,000 & 1 & 4,540 & 4,556 & 4. 193 & 0 \\
\hline & 3 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 4,805 & 7.146 & 9.434 & 0 \\
\hline & 4 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 5.070 & 9,969 & 15,174 & 0 \\
\hline & 5 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 5,333 & 13,047 & 21,459 & 0 \\
\hline & 6 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & I & 5,592 & 16,401 & 28,341 & 0 \\
\hline & 7 & 0 & 2,000 & (560) & 4,560 & 0 & 6.000 & 1 & 5,844 & 20,057 & 35,877 & 0 \\
\hline & 8 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 6,083 & 24,042 & 44, 128 & 0 \\
\hline & 9 & 0 & 2,000 & (560) & 4. 560 & 0 & 6,000 & 1 & 6,305 & 28,386 & 53,164 & 0 \\
\hline & 10 & 0 & 2,000 & (560) & 4.560 & 0 & 6,000 & 1 & 6,502 & 33,121 & 63,058 & 0 \\
\hline & 11 & 0 & 2,000 & (560) & 4. 560 & 0 & 6.000 & 1 & 6.669 & 38,281 & 73,892 & 0 \\
\hline or & 12 & 0 & 2,000 & (560) & 4.560 & 0 & 6,000 & 1 & 6.797 & 43,907 & 85,755 & 0 \\
\hline & 13 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 6,882 & 50,038 & 98. 745 & 0 \\
\hline & 14 & 0 & 2,000 & (560) & 4,560 & 0 & 6.000 & 1 & 6,916 & 56,722 & 112.969 & \({ }^{\prime}\) \\
\hline & 15 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 6,886 & 64,007 & 128,545 & \({ }^{11}\) \\
\hline & 16 & 0 & 2,000 & (560) & 4,560 & 0 & 6,000 & 1 & 6,781 & 71,947 & 145,600 & 11 \\
\hline & 17 & 0 & 2,000 & (560) & 0 & 4. 560 & 6,000 & 1 & 6,537 & 80,603 & 159.432 & 4.856 \\
\hline & 18 & 0 & 2,000 & (560) & 0 & 4. 560 & 6.000 & 1 & 6.186 & 90,037 & 174,578 & 10.028 \\
\hline & 19 & 0 & 2,000 & (560) & 0 & 4,560 & 6,000 & 1 & 5.705 & 100,320 & 191.163 & 15,53/ \\
\hline & 20 & 0 & 2,000 & (560) & 0 & 4.560 & 6.000 & 1 & 5,073 & 111,529 & 209,323 & 21,403 \\
\hline & & & & \multicolumn{4}{|r|}{20th Year After-Tax Balances:} & & 5,073 & 80,301 & 169.693 & 21.403 \\
\hline & & & & & & & & & & & Total - & 276.470 \\
\hline
\end{tabular}

Asamptions: IRA contributions are tax-deductible and limited to \(\$ 2.000\) per year. The IRA is no-load and earns interest at 9.0 per year.
The flexible premium annuity has a 3t load and earna interest at 9.54 per year.
The money market fund la no-load and earns interest at a tax-free rate of 6 . 5a per yenr The policyholder has \(\$ 6,000\) of after-cax cash flow to invest each year. The policyholder's marginal federal income tax rate is 28.

Table 5-1B: Optimal Allocation Among Investments and a \(\$ 100,000\) Issue Age 45 Increasing Death Benefit Policy From Company \(C\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{array}{r}
\text { UL } \\
\text { Prenium }
\end{array}
\] & \[
\begin{array}{r}
\text { IRA } \\
\text { Deposit }
\end{array}
\] & IRA Tax Credit & \[
\begin{array}{r}
\text { FPA } \\
\text { Premium }
\end{array}
\] & \[
\begin{array}{r}
\text { MM } \\
\text { Deposit }
\end{array}
\] & Net Cash Flow & \[
\begin{array}{r}
\text { UL } \\
\text { NCV }
\end{array}
\] & \[
\begin{array}{r}
\text { IRA } \\
\text { Balance }
\end{array}
\] & \begin{tabular}{l}
FPA \\
Balance
\end{tabular} & \[
\begin{array}{r}
\text { MM } \\
\text { Balanee }
\end{array}
\] \\
\hline 1 & 1,002 & 2,000 & (560) & 3,558 & 0 & 6,000 & 0 & 2,180 & 3,779 & 11 \\
\hline 2 & 207 & 2,000 & (560) & 4,353 & 0 & 6.000 & 0 & 4,556 & 8,762 & 1 \\
\hline 3 & 4.560 & 2,000 & (560) & 0 & 0 & 6,000 & 4,625 & 7,146 & 9,594 & 0 \\
\hline 4 & 4,560 & 2,000 & (560) & 0 & 0 & 6,000 & 9.641 & 9,969 & 10,505 & 0 \\
\hline 5 & 4,560 & 2,000 & (560) & 0 & 0 & 6,000 & 15,084 & 13.047 & 11,503 & 0 \\
\hline 6 & 4,560 & 2,000 & (560) & 0 & 0 & 6,000 & 20,986 & 16,401 & 12,596 & 0 \\
\hline 7 & 4,560 & 2,000 & (560). & 0 & 0 & 6,000 & 27,390 & 20.057 & 13,793 & 0 \\
\hline 8 & 4,560 & 2,000 & (560) & 0 & 0 & 6,000 & 34, 330 & 24,042 & 15,103 & 0 \\
\hline 9 & 4,560 & 2,000 & (560) & 0 & 0 & 6,000 & 41,851 & 28,386 & 16,538 & 1 \\
\hline 10 & 4,560 & 2,000 & (560) & 0 & 0 & 6.000 & 49.994 & 33,121 & 18,109 & 0 \\
\hline 11 & 4,560 & 2,000 & (560) & 0 & 0 & 6,000 & 59,348 & 38.281 & 19,829 & 0 \\
\hline 12 & 4.560 & 2,000 & (560) & 0 & 0 & 6,000 & 69,568 & 43,907 & 21,713 & 0 \\
\hline 13 & 4,340 & 2,000 & (560) & 220 & 0 & 6,000 & 80.501 & 50.038 & 24,010 & 0 \\
\hline 14 & 3,935 & 2,000 & (560) & 625 & 0 & 6,000 & 92,014 & 56, 122 & 26,955 & 0 \\
\hline 15 & 3,935 & 2,000 & (560) & 625 & 0 & 6,000 & 104,587 & 64,007 & 30.180 & 0 \\
\hline 16 & 3,935 & 2,000 & (560) & 625 & 0 & 6,000 & 118.315 & 71,947 & 33,712 & 0 \\
\hline 17 & 3,935 & 2,000 & (560) & 0 & 625 & 6.000 & 133.247 & 80,603 & 36,914 & 666 \\
\hline 18 & 3,935 & 2,000 & (560) & 0 & 625 & 6,000 & 149,542 & 90,037 & 40,421 & 1,376 \\
\hline 19 & 0 & 2,000 & (560) & 0 & 4,560 & 6,000 & 163.076 & 100,320 & 44,261 & 6,321 \\
\hline 20 & 0 & 2,000 & (560) & 0 & 4,560 & 6,000 & 177.793 & 111,529 & 48,466 & 11,589 \\
\hline & & & \multicolumn{4}{|r|}{20th Year After-Tax Balances:} & 147.841 & 80,301 & 37.698 & 11,589 \\
\hline & & & & & & & & \multicolumn{2}{|r|}{Total -} & 277.428 \\
\hline
\end{tabular}

Assumptions: IRA contributions are cax-deductible and limited to \(\$ 2,000\) per year. The IRA is no-load and carns interest ar 9.0 per year.
The flexible premium annuity has a 38 load and earns interest at 9.5 per year
The money market fund is no-load and earna interest at a tax-free rate of 6.58 per year The policyholder has \(\$ 6,000\) of after-tax cash flow to invest each year The policyholder's marginal federal income cax rate is 28 .

In this example, the leaft desirable policy under its most optimat etrategy performs better than any of the three policies under the typical strategy.

Examining Tablee 4-1, 5-1A and 5-2B, it becomes apparent that the optimal etrategy for each policy is guite different. In Table 4-1, once the IRA han been Eully funded, Policy A becomes the preferred investment during the fizet fourteen yeara. In contrat, in Table 5-1h, Policy B, with both a higher percent-ofpremium laad (6t) and lower interest crediting rate (94) then the flexible premium annuity, is funded only during the first two years. In Table 5-1B, Policy \(C\), with a relatively amall percent-of-premium load (2e) and an interest rate that increases from 98 to 10 in year eleven, is the preferfed invertipent, after the IRA, in yeare three through eighteen. Actually, premiuma paid into Policy c during yeari one and two would accumulate to more than if paid into the annuity or the money-market fund, but guideline premium limitations restrict the cumalative amount that can be paid into the policy. Given a choice between uaiag this "limited resource" (i.e, premiume up to the guideline premium limit) in the first two yeare of in later yeare, the linear programming solution chooses to defer inventment in the universel life contract to thote periode in which the difference between the after-tax accumulation on dollar paid into the universal life poliey and a dollar paid into the annuiey is greateat.

\begin{abstract}
5.2 Purchases of Multiple Universal Lifo Plans

Suppose a prospective forty-five year old policyholder it interested in purchesing \(\$ 100,000\) universal life contract and funding it with an annul premium of \(\$ 1,200\). If he intende to surrender the policy at age 65, which contract would he prefer to purchese, the policy from Company A, Company B, or company C?
\end{abstract}

Table 5.2 illustrates the buildup of cash surrender undex each of these policy designe over a twenty year period. since the contracts have identical twentieth year cash values, ignoring the differences in cash values through year nineten, the prospective purchaser presungly would find each of thene three
\[
\text { Policy A: } 5100,000 \text { Level Desth Senefit Policy }
\]

Policy E: 5100,000 Level Death EOmfit Policy

Policy C: \(\$ 100,000\) Level Death Penefit Policy
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Yeer & Premiu & Expense Charges & Cose of Insur ance & Interest Credited & Cesh Value & Surpencer Charge & \[
\begin{aligned}
& \text { Cesh } \\
& \text { value }
\end{aligned}
\] \\
\hline & & & & & & & \\
\hline 1 & 81,200 & 354 & 472 & 191 & 8965 & 5750 & 2215 \\
\hline 2 & 1,200 & 56 & 28 & 17 & 2.007 & 70 & 1.307 \\
\hline 3 & 1.200 & 56 & 303 & 270 & 3,132 & 650 & 2.402 \\
\hline 4 & 1.200 & 56 & 316 & 369 & 6.350 & 600 & 3.730 \\
\hline 5 & 1,200 & 56 & 332 & 676 & 5.685 & 550 & 5. 115 \\
\hline 6 & 1,200 & 56 & 350 & 592 & 7.008 & 500 & 6.508 \\
\hline 7 & 1,300 & 56 & 348 & 716 & 8.626 & 650 & 8. 176 \\
\hline 8 & 1,200 & 56 & 392 & 869 & 10,206 & 600 & 9.96 \\
\hline 9 & 1. 200 & 56 & 417 & 992 & 12,079 & 350 & 11,729 \\
\hline 10 & 1,200 & 56 & 451 & 1.145 & 16,013 & 300 & 13,713 \\
\hline 11 & 1.200 & 54 & 491 & 1.454 & 16,100 & 250 & 15, 050 \\
\hline 12 & 1.200 & 56 & 528 & 1.663 & 18.355 & 200 & 18,155 \\
\hline 13 & 1.200 & 56 & 564 & 1.000 & 20.704 & 150 & 20,646 \\
\hline 16 & 1,200 & 56 & 600 & 2, 135 & 23.636 & 100 & 23.336 \\
\hline 15 & 1,200 & 54 & 640 & 2,401 & 26,302 & 50 & 26.252 \\
\hline 16 & 1.200 & 56 & 680 & 2,499 & 29.412 & 0 & 29.612 \\
\hline 17 & 1.200 & 56 & 724 & 3,002 & 32.792 & 0 & 32,792 \\
\hline 18 & 1.200 & 56 & 767 & 3.342 & 36,471 & 0 & 36,671 \\
\hline 19 & 1.200 & 56 & 809 & 3.712 & 40.481 & 0 & 40,481 \\
\hline 20 & 1,200 & 56 & 845 & 4,115 & 46, 861 & 0 & 46,881 \\
\hline
\end{tabular}
 Nals dge 65, fect Ament \(=\$ 100,000\), Anmil Pramic. \(=\$ 1,200\)

Policy 8: \(5 \$ 1,165\) Level Deeth Uunfit Poligy

Policy A and Combined: s 100,000 Total Lovel Death eentit

Policy C: 3 , 000 Level Death Aenefit Policy

Policy A and C Cempined: \(\$ 100,000\) totel level Deach emefit
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Yeer & Prmiue & Expense Charges & cost of Ineurance & Interest credited & \[
\begin{aligned}
& \text { Cesh } \\
& \text { value }
\end{aligned}
\] & surrender Charfe & \[
\begin{aligned}
& \text { Met } \\
& \text { cosh } \\
& \text { velue }
\end{aligned}
\] \\
\hline 1 & \$1,200 & 572 & 8270 & 88 & 8932 & 370 & 50 \\
\hline 2 & 1,200 & \(\%\) & 26 & 186 & 1,957 & 700 & 1,257 \\
\hline 3 & 1,200 & 95 & 302 & 206 & 3,065 & 650 & 2,3\% \\
\hline 4 & 1.200 & 9 & 319 & 396 & 4,226 & 600 & 3.626 \\
\hline 5 & 1,200 & 9 & 334 & 512 & 5,510 & 550 & 4.960 \\
\hline 6 & 1.200 & 7 & 354 & 637 & 6.916 & 500 & 6.616 \\
\hline 7 & 1,200 & 54 & 373 & 770 & 8.459 & 450 & -,009 \\
\hline 8 & 1,200 & 54 & 380 & 913 & 10, 120 & 400 & 9,700 \\
\hline 9 & 1.200 & 54 & 424 & 1,067 & 11.909 & 350 & 11,599 \\
\hline 10 & 1,200 & 54 & 458 & 1,253 & 13, 330 & 300 & 13,530 \\
\hline 11 & 1,200 & 54 & 697 & 1,67 & 15.931 & 250 & 13.701 \\
\hline 12 & 1,200 & 34 & 535 & 1,602 & 18, 265 & 200 & 19,065 \\
\hline 13 & 1,200 & 5 & 57 & 1.910 & 20,730 & 150 & 20,300 \\
\hline 16 & 1,200 & 54 & 606 & 2,157 & 25,426 & 100 & 25,326 \\
\hline 15 & 1,200 & 54 & 645 & 2,426 & 26,351 & 50 & 26,301 \\
\hline 16 & 1.200 & 56 & 48 & 2.714 & 29.527 & 0 & 29,527 \\
\hline 17 & 1,200 & 54 & 726 & 3,090 & 32,976 & 0 & 12,976 \\
\hline 14 & 1.200 & 84 & 76 & 3.376 & 36.727 & 0 & 36,727 \\
\hline 19 & 1.200 & 54 & 07 & 3,745 & 40, 12 & 0 & 40,812 \\
\hline 20 & 1,200 & 5 & 61 & 4,152 & 45,268 & 0 & 45,268 \\
\hline
\end{tabular}

Iable 5-54: Optimal Combintion of Pollicies from compenies \(A\) and \(C\) Mal Me 45, Totel fice mount \(=100,000\), Totel Arrial Preatue \(=1.200\)

Poliey C: 3 58,500 Level Death Eenefit Policy
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Prain & Experse Charges & Cost of 1 nuir ance & Interest Credited & Coah
value & Sur render Charte & Met
ceat
value \\
\hline 1 & 3805 & 546 & 5159 & 483 & 8662 & 457 & 5225 \\
\hline 2 & 1,151 & 53 & 166 & 152 & 1.767 & 403 & 1,339 \\
\hline 3 & 1,142 & 53 & 173 & 260 & 2,911 & 370 & 2,532 \\
\hline 4 & 1,133 & 53 & 180 & 352 & 4,163 & 350 & 3,013 \\
\hline 5 & 1,122 & 52 & 186 & 463 & 5.510 & 321 & 5,189 \\
\hline 6 & 1,111 & 52 & 196 & 583 & 6.958 & 292 & 6.46 \\
\hline 7 & 1,096 & 52 & 201 & 712 & 8.516 & 262 & 8,253 \\
\hline 8 & 1,006 & 52 & 211 & 850 & 10,188 & 253 & 9,955 \\
\hline 9 & 1,068 & 51 & 220 & 99 & 11,983 & 206 & 11,779 \\
\hline 10 & 1,050 & 51 & 23 & 1.938 & 93,908 & 173 & 13,733 \\
\hline 11 & 1,031 & 51 & 248 & 1.477 & 16,116 & 146 & 15,971 \\
\hline 12 & 626 & 63 & 262 & 1,657 & 18.09\% & 117 & 17.979 \\
\hline 13 & 778 & 46 & 273 & 1,864 & 20,360 & 87 & 20,272 \\
\hline 16 & 1.011 & 50 & 279 & 2,118 & 23.160 & 58 & 23,101 \\
\hline 15 & 1,011 & 50 & 26 & 2,306 & 26,235 & 29 & 26.206 \\
\hline 16 & 1.011 & 50 & 286 & 2,706 & 29.617 & 0 & 29.617 \\
\hline 17 & 1.011 & 50 & 270 & 3.046 & 33,343 & 0 & 33,363 \\
\hline 18 & 1.011 & 50 & 265 & 3.617 & 37,456 & 0 & 37,656 \\
\hline 19 & 1,011 & 50 & 260 & 3,030 & 42,006 & 0 & 42,005 \\
\hline 20 & 8.011 & 50 & 199 & 4.287 & 47.055 & 0 & 47,055 \\
\hline
\end{tabular}

Policy 1 and \(C\) Combind: \& 100,000 Totel tevel Denth Benefit
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Premin & Expenst Charget & cost of Inturance & Interest Credited & \[
\begin{gathered}
\text { Cosh } \\
\text { valuen }
\end{gathered}
\] & Surrender Chare & \[
\begin{aligned}
& \text { Wet } \\
& \text { Cash } \\
& \text { valut }
\end{aligned}
\] \\
\hline 1 & \$1.200 & 870 & \$246 & \$1 & 3975 & \$750 & 5225 \\
\hline 2 & 1,200 & 56 & 260 & 179 & 2,059 & 700 & 1,339 \\
\hline 3 & 1.200 & 56 & 275 & 276 & 3,182 & 650 & 2,532 \\
\hline 4 & 1.200 & 57 & 24 & 377 & 4.413 & 600 & 3.813 \\
\hline 5 & 1.200 & 57 & 303 & 487 & 5,759 & 550 & 3,109 \\
\hline 6 & 1,200 & 58 & 320 & 605 & 7.166 & 500 & 6.646 \\
\hline 7 & 1.200 & 58 & 315 & 73 & 8,703 & 450 & 8,233 \\
\hline 8 & 1,200 & 59 & 360 & 67 & 10.355 & 400 & 9.95 \\
\hline 9 & 1,200 & 59 & 38 & 1.017 & 12.129 & 350 & 11,799 \\
\hline 10 & 1,200 & 60 & 412 & 1,176 & 14,033 & 300 & 13,733 \\
\hline 11 & 1,200 & 61 & 46 & 1,493 & 16,221 & 250 & 15,971 \\
\hline 12 & 1,200 & 77 & 475 & 1.705 & 18,573 & 200 & 18.373 \\
\hline 13 & 1,200 & 73 & 505 & 1,936 & 21,132 & 150 & 20.920 \\
\hline 14 & 1,200 & 62 & 532 & 2,192 & 23,930 & 100 & 23.30 \\
\hline 15 & 1.200 & 62 & 561 & 2,470 & 26,976 & 50 & 26.920 \\
\hline 16 & 1.200 & 62 & 58 & 2,776 & 30,302 & 0 & 50. 302 \\
\hline 17 & 1.200 & 62 & 613 & 3.10\% & 33,936 & 0 & 33.934 \\
\hline 18 & 1.200 & 62 & 46 & 3.449 & 37,907 & 0 & 57,907 \\
\hline 19 & 1,200 & 42 & 48 & 3.897 & 42,264 & 0 & 42,266 \\
\hline 20 & 1,200 & 42 & 452 & 4.30\% & 47,055 & 0 & 47,055 \\
\hline
\end{tabular}
teble 5-3c: aptimit copbinetion of molicies trea compeniee t and \(C\) Mal Ane 45. Totel Fece mocint \(=\$ 100,000\). Total Arrual Premina \(=\$ 1,200\)
policies equally palatable.
h more optlmal purehase than buying any single contraet would be to purchese two contracto which have a combined face amount of \(\$ 100,000\), and a combined annual premium payment of \(\$ 1,200\). Letting \(a, B\) f Company A, Company B, Company C\}, linear programing problem may be set up with the goal to:
\[
\text { MAXIMIZE: } \quad S=C V_{20}^{*}+C V_{20}^{*}
\]
aubject to the constrainta that the total policy face amount eçuale \(\$ 100,000\), the total annual premiume nqual \(\$ 1,200\), and the face mount of each policy meets the minimum face amount requirement of ach ifeuing company:
\[
\begin{gathered}
F^{2}+F^{b}=100,000 \\
\text { For } t=1 \text { to } 20: F_{t}^{t}+P_{t}^{B}=1,200 \\
F^{2} \geq 25,000 \\
F^{0} \geq 25,000
\end{gathered}
\]

Finally, each contract is required to have a non-negative caeh eurrender value at the end of each year, mut meet guideline premium constreinte, and is prohibited from entering the can Falue corridor.

Tables 5.3A through Table 5.3C illustrate the optimal face amounte and premium payment patterns for ench combination of policies from two companies. The twentieth year can \(\quad\) eurrender values of these combinations are summariged below:
\begin{tabular}{ll}
company \(A\) and company \(B\) & \(\$ 48,181\) \\
company \(A\) and company \(C\) & \(\$ 45.268\) \\
company \(B\) and company \(C\) & \(\$ 47,055\)
\end{tabular}

Because the linear programing eolution playm the mortality, expenge and intereet elements of each policy off agalnet each other, the resulting cash murfender Falue of ach combination of policies it greater than the \(\$ 44,861\) aviable on any single policy. For example, the policiet from company \(A\) and company \(s\) have identical 6 p percent of premium expenee chargen; however, they have different cost-of-ingurance scalen and different interest crediting rateg. since the
twentieth year caish values of the two plana are identical, the total expense recovery from the two plang in eimilar, but company A, with an interest crediting rate of 104 compared with the 9t rate for Company B, recovere more money from any expense margin in the cost-of-inaurance ratee than does company B, and leme money from the intereet spread. In the optinal purchase of plant from companiea and B shown in Table 5-3A, roughly equal face amounts are purchated from Company \(A\) (\$48,455) and Company (\$51,245), but the policy from company in generously funded, thus taking advantage of its high interest crediting rate, while the policy from Company \(B\) it marginally funded, thus taking advantage of its lower cott-of-inaurance rater.

In fact, for the firet ten yeare, the policy from company B is funded only to the extent necemaxy to cover the murender charge. Conversely, the policy from Company \(n\) is funded an generously at allowed: The min of the preanime paid through the first ten years, \(\$ 10,486\), matchee the guideline premium limit for a \(\$ 48,855\) face mount purchase, determined at this point by the guideline aingle premium. Funding of Policy \(B\) in yearg eleven and twelve, at \(\$ 1,200\) per year, is done only because no further funding of policy A is allowed: It is not until year thirten that the guidelina premiun limit for Policy \(h\) is determined by the gum of the guideline annual premium. In year thirteen, Policy \(h\) is funded with S 666, the amount by which thirteen guideline anual premium exceedi the guideline ingle premium. In yeare fourteen through eixteen it if funded with \(\$ 858\), which 1 the amount of the annual increment to the guideline premiun limit.

Funding for policy \(h\) ceases in year seventeen. Thi is becauee any further funding would bring the policy into the caeh value corridor. As it etands, the twentioth year cash value for Policy \(A\) of \(\$ 40,045\) exactiy equala the face amount of \(\$ 48,855\) divided by the corridor factor of 122 for an attained age forty-five inourad.

Purchases involving contracts from compeny \(C\) result in amaller gain in cash Eurrender value \((\$ 45,268\) when combined with Company \(A ; 5\) 4,055 when combined with Company C) than the \(\$ 48,181\) available when contracte from company

A and Company \(B\) are purchased together. One reason for this is the per policy charge on contracte purchased from company \(C\). Unlike other contract charges, this "overhead" is not reduced proportionally when a maller policy 1 ize is purchased, Many universal life contracts available on the market have per policy charges. At the \(\$ 100,000\) total face amount level, it is poseible that the overhead associated with the purchase of two policies, each with a per policy cherge, would exceed the gain that could be obtained through iinear programing by playing the various cost elemente off egainst each other. On the other hand, at larger face amounts the effect of a per policy charge would be diluted, and a linear programming etrategy could be expected to provide more mignificant gain.

One might expect that the greater the divergence of cost etructures on two policien, the larger the gain that could be expected from an optimal two policy purchase. As an example, one alght expect a linear programming solution to favorably exploit a combination of a plan with a select-and-ultimate coit-ofinsurance etructure with alan with a reverse select-and-ulitimate cont-ofinsurance structure.

There may be other advantages to purchasing multiple policien trom different companies. Firgt, such purchase providee limited hedge againet one company adjusting the nongueranteed cost leants of its contract, fince future premium payments could be rebalanced to offeet the effect of any adrerse change (or, for the optimist, to take further adyantage of any favorable change). Second, in cases in which an insured intends to heavily utilize the investrent Eeatures of a contract, but alao anticipetes a reduced inaurance need at gome future point in time, purchasing two contracts, one of which is for an amount equal to the future reduction in insurance need and if to be ouxrendered, can be euperior to purchesing a ingle contract with the intention of electing a future face decrease. Guideline premium limite allow for more generous funding of the contraet that remsins in force under the former option than is allowed for the bingle contract that undergoes a face reduction, which has ita guidelines adjusted downward under the an attained-age decrement approach mpecified in the

\begin{abstract}
"Dole-Bentsen colloquy" [10].
Of coures, these advantages may be offaet not only by the effecte of any per policy chargen, a discuseed above, but also by any effect eplitting a ingle policy purchase in two has on the policyholder' ability to purchase lower cost insurance due to the evailability of banded producte.
\end{abstract}

\subsection*{5.3 Compering Universel Life and Traditional Flans}

The 1 inear programming cost comparison method can be ueed to compare univereal life policies to traditional plans of insurance. In making the comparimon, a face amount needs to be selected for each traditional plan. Then, premiuna lese dividends for that plan are abtracted from the total funds availale ach year, and the remaining funde are allocated optimaliy among the inveatment alternatives, so an to maximize the after-tax account accumulationn. The ferategy above can be ued atifiactorily in compuring universal life with either permanent, cash value plane, or term insurance.

In comparing universal life and ordinary life policien, the premium flexibility of unipereal life will often caue it to be the favored contract. For the sake of illustration, uppose that one can purchase a \(\$ 100,000\) eurrent asenmption whole life policy on a life aged 45 from company h for 51,200 per year. Suppoee further that the asieumptions underiying the pricing of the whole life policy are identical to thoee used to price itg univereal life counterpart, so that the cash valuet that develop under the two policies are identical. If the prospective purchaser cannot afford the \(\$ 1,200\), the univerisal life contract is the preferred poliey by default, since it may be purchased at premium level lower than \(\$ 1,200\) per year. If the pronpective purchaser can afford more than \(\$ 1,200\) per year and the universal life contract is a better investent vehicle than any of the alternative intentmente, additional funde will be allocated to the univernal life policy, thutenhancing ite total account accumulation relative to the mecumulation of the current aseumption policy plus its side funde. Converesiy, 12 the uniferes life contract ia a dean ettractive lnveatant vehicle then one of the inveetments, it will be funded with lese than \(\$ 1,200\) per
year, with the balance going to one of the better invegtrents, thus again enhancing its ccumulated value relative to that of the current ampuption whole life policy.

In comparing univeralal life to "buy term and invest the difference" strategiea, univertal life enjoye advantageous tax treatment, becauee premiume required to cover cost-of-insurance chargen are added to the policy cont basis and thus can be used to offeet the taxability of an equal portion of the policy' investment income. This is illustrated in Tables 5.4A and 5.4B. Table 5.4A shows the optimal allocation of \(\$ 1,500\) par year \({ }^{1}\) between a \(\$ 100\), 000 increasing death benefit univeral life policy and a no-load flexible premium deferred annuity that also credits 10 intereat, Generally, one would expect the annuity to be preferred over the univereal life policy as an inventment vehicle, ince the credited interest rated are identical, but no load is deducted from contributions to the annuity. In opite of this, howarer, the universal life policy is funded with premium larger than the minimum neceseary to keep the policy in-force, so that the twentieth yoar can eurrender value will equal the en of the premiuns paid, thus taking full advantage of the basia offaet to invertment income. \({ }^{2}\) Table \(5-48\) illustrates an allocation between a 5100,000 yearly renewable term contract and the flexible promium annuity that results in a total after-tax account balance that is identical to that of the univeralalife and flexible premium annulty combination. \({ }^{3}\) In order to achieqe equality, the term rate wert eet at approximately 88 of the univereal life cobt-of-ingurance rates. Factoring in the universal life contract'e parcent-of-premium ioad, in this instance the investment incom offset effect of the universal life's

\footnotetext{
Is 1,500 per year was chosen as an amount that would be sufficient to fund an attalned-age yearly renewable term contract, without making withdrawals of previoualy accumaleted excese funde.
\({ }^{2}\) Thie effect can also be seen in optimal purchase of a policy from company B illustrated in rable 5-1A.
\({ }^{3}\) hemuming a 28 garginal tax rate, the after-tax balance for the univeral life policy combined with the annuity is \(\$ 7,369.30+\$ 22,630.70+\) \((1-.28) x\) (\(553025.15-\$ 22,630.70)=\$ 51,884.01\). For the term policy combined with the annuity, it is \(\$ 17,605.05+(1-.28) \times(565214.72-\) \(\$ 17,605.05)=\$ 51,884.01\).
}

Table 5.4A: Universal Life Policy Combined With a No-load Tax-Deferred Annuity
```

\$ 100.000 Issue Age 45 Increasing Death Benefit
Criversal Life Policy from Company A

```
No-Load Annuity
(C) 10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Prenium & \[
\begin{array}{r}
\text { Tax } \\
\text { Basis }
\end{array}
\] & NCV & Premium & \[
\begin{array}{r}
\text { Tax } \\
\text { Basis }
\end{array}
\] & Account Balance \\
\hline 1 & 1500.00 & 1500.00 & 1272.12 & 0.00 & 0.00 & 0.00 \\
\hline 2 & 1500.00 & 3000.00 & 2648.68 & 0.00 & 0.00 & 0.00 \\
\hline 3 & 1500.00 & 4500.00 & 4138.62 & 0.00 & 0.00 & 0.00 \\
\hline 4 & 1500.00 & 6000.00 & 5751.47 & 0.00 & 0.00 & 0.00 \\
\hline 5 & 1369.30 & 7369.30 & 7361.06 & 130.70 & 130.70 & 143.77 \\
\hline 6 & 0.00 & 7369.30 & 7684.29 & 1500.00 & 1630.70 & 1808.15 \\
\hline 7 & 0.00 & 7369.30 & 8003.29 & 1500.00 & 3130.70 & 3638.96 \\
\hline 8 & 0.00 & 7369.30 & 8311.27 & 1500.00 & 4630.70 & 5652.86 \\
\hline 9 & 0.00 & 7369.30 & 8602.18 & 1500.00 & 6130.70 & 7868.14 \\
\hline 10 & 0.00 & 7369.30 & 8866.68 & 1500.00 & 7630.70 & 10304.96 \\
\hline 11 & 0.00 & 7369.30 & 9096.26 & 1500.00 & 9130.70 & 12985.45 \\
\hline 12 & 0.00 & 7369.30 & 9280.68 & 1500.00 & 10630.70 & 15934.00 \\
\hline 13 & 0.00 & 7369.30 & 9411.21 & 1500.00 & 12130.70 & 19177.40 \\
\hline 14 & 0.00 & 7369.30 & 9476.59 & 1500.00 & 13630.70 & 22745.14 \\
\hline 15 & 0.00 & 7369.30 & 9460.25 & 1500.00 & 15130.70 & 26669.65 \\
\hline 16 & 0.00 & 7369.30 & 9343.84 & 1500.00 & 16630.70 & 30986. 62 \\
\hline 17 & 0.00 & 7369.30 & 9106.34 & 1500.00 & 18130.70 & 35735. 28 \\
\hline 18 & 0.00 & 7369.30 & 8720.43 & 1500.00 & 19630.70 & 40958.81 \\
\hline 19 & 0.00 & 7369.30 & 8153.64 & 1500.00 & 21130.70 & 46704.69 \\
\hline 20 & 0.00 & 7369.30 & 7369.30 & 1500.00 & 22630.70 & 53025.16 \\
\hline
\end{tabular}

Table 5.48: Yearly Renewable Term Policy Combined Uith a No-load Tax-Deferred Annuity YRT Premiums are approximately 88: of the Company A UL cost-of-insurance rate
```

\$ 100,000 Issue Age 45
YRI Policy

```
\begin{tabular}{rr}
Year & Premium \\
\hline 1 & 234.79 \\
2 & 253.97 \\
3 & 274.41 \\
4 & 296.40 \\
5 & 321.17 \\
6 & 347.66 \\
7 & 378.45 \\
8 & 414.60 \\
9 & 454.90 \\
10 & 501.65 \\
11 & 553.34 \\
12 & 610.69 \\
13 & 671.62 \\
14 & 737.47 \\
15 & 811.79 \\
16 & 894.70 \\
17 & 986.85 \\
18 & 1091.81 \\
19 & 1211.62 \\
20 & 1347.05
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Prenium} & \multicolumn{2}{|l|}{To - Load Anmuity
\[
\text { e } 10
\]} \\
\hline & & \begin{tabular}{l}
Account \\
Balance
\end{tabular} \\
\hline 1265.21 & 1265.21 & 1391.73 \\
\hline 1246.03 & 2511.24 & 2901.54 \\
\hline 1225.59 & 3736.83 & 4539.84 \\
\hline 1203.60 & 4940.43 & 6317.79 \\
\hline 1178.83 & 6119.26 & 8246.28 \\
\hline 1152.34 & 7271.60 & 10338.47 \\
\hline 1121.55 & 8393.15 & 12606.03 \\
\hline 1085.40 & 9478.55 & 15060.57 \\
\hline 1045.10 & 10523.65 & 17716. 23 \\
\hline 998.35 & 11521.99 & 20586.04 \\
\hline 946.66 & 12468.66 & 23685.97 \\
\hline 889.31 & 13357.96 & 27032.81 \\
\hline 828.38 & 14186.35 & 30647.31 \\
\hline 762.53 & 14948.88 & 34550.83 \\
\hline 688.21 & 15637.08 & 38762.94 \\
\hline 605.30 & 16242.39 & 43305.06 \\
\hline 513.15 & 16755.54 & 48200.04 \\
\hline 408.19 & 17163.72 & 53469.05 \\
\hline 288.38 & 17452.10 & 59133.16 \\
\hline 152.95 & 17605.05 & 65214.72 \\
\hline
\end{tabular}
contract's tax basis will mupport loadings within the univereal life contract of up to 21 of the term rate before buying term becomes the preferred atrategy. Recently, eeveral companies have introduced versions of traditional producte thet provide the policyholder some degree of premium flexibility through combining bease policy with term and paid-up aditione riders. To make fair comparison between aniveral life contract and these traditional combinationt, a cont comparison method ideally mould take into account any flexibility available in designing the traditional plan of insurance. section 7.4 dimeubeen how linear programming can be applied as tool to construct optimal combinations of traditional inmurance.

\subsection*{5.4 Concezne of the selling Compary}

Preswmably, anything that is geined by the purchaser of ingurance through the une of linear programing cott comparison techniques is lost by one of the other parties to the transaction. Whether inaurance companiet would embrace linear programing methode would depand upon the extent to which the gain of the policyholder cute into the profit of the insurer.

Univereal life policies are priced to recover expenees and generate profite through the margin between the earned interest rate and credited interest rate, the margin between the cost-of-insurance rate charged to the policyholder and the company' actual mortality experience, and a eombination of axplieit expense charges. The choice of where expenses are recovered is determined in pert by the intended market for the product -- for example, plane intended to attract eingle premium buyers typically will recover only a mall portion of total expenees through the interest margin, since a high credited rate is inetrumental in encouraging aingle premium ealé. Policies intended for a brod market require balancing expenee recovery between the various elemente, and generally company proit objective will be oreeeded under some poleible unee of the policy and tall short under others. Fven products priced for the anme market which have eimilar underlying assumptione my differ markedly at there expensen are recovered and prosits generated.

Linear programing techniques exploit imbalancen in the expense recovery teructure to the meximum benefit of the policyholder. All other things being equal, mot likely the policy selected from a et of alternatives ae the beft choice for proppetive policyholder will be one in which the imbalance in expense recovery is wort acute. Whether an insurer would be at risk for losing monay on a block of unifereal life iseues would be function both of the extent to which policy can be utilized in a maner that fevort the policyholder to the detziment of the insurer, and of the merket efficiency of the purchaers of insurance. In the two policy purchase example of section 5.2, the 7.4 increase in twentieth year ceth value obtained by combining polician from Companies A and C rather than purchasing a single policy from either company is of magnitude eufficient to entirely eliminate the profit margin priced into many univereal Life contracts.

Under certain circumetances, the use of the General Model may actually enhance the company" profitability as well at that of the polieyholder. for axample, in situations in which the tax adyantages granted life ingurance cause a univernal life contract to be the investment vehicle of choice, the cenaral Model may result in the purchiete of a larger face amount than would have been contmuplated had only a etrict need for inaurance bean congidered. In auch a

\footnotetext{
4ro a leseer extent, this is true ad wil when traditional coet comparison methode are applied to tlexible promium policies. For example, the figures below give the interent-adjueted-net-cost at at for poilciee from companien h, and C. for a \(\$ 100,000\) level death benefit policy purchased on a forty-five year old under several level premium acenaxion:
}

Under the low premiun metnario, the policy from Company B is preferced, as might be expected bince relative to the other policiet, company b recoveri elarger portion of ita expenses fron percent-of-premium ehergen and the lnterent margin. Convereely, undex the high promiun meenario, Compay h is preferred, which is to be expected ince Company \(\boldsymbol{A}\) hes the malleet intereat margin.

Onfortunately, indices such a the intereft-adjusted-net-cost axt often preented tt interest rates that do not reflect the current environment, thus leading to distortions in the ratings. For example, mumerous etates mandate that the interemt-adjusted-net-cont, calculated at 5s, be provided to prospective purchaters of inturence.
case, a portion of the policyholder'e gain is funded with lost tax revenue, rather than at the expenee of the company. Ae another example, the General model will not allocete diseretionary funde to the univer事號 dife contract in the few yeare before murrender if the percent-of-preminm load charged would reduce the overall return on those premium to below what would be available had the money been depoieited into one of the alternative investmentis. This will enhance the proficability of the product \(1 f\), as is often the case, the percent-of-premium load on the contract is insufficient to cover the am of premium taxes, commisaions, and any percent-of-premium based home office expenses. such circumstances, however, are the exception rather than the cule.

\section*{Chapter 6 \\ Mnximising the zeturn on an In Force Plan on an Impared Ifife}

Thi chapter develops a model (the "Impaired Life Model") to be used by the owner of aniversal life policy on an inmured who it in ill-health. The model recognizes that eeveral optiona available within the typical universal life contract allow mom manipulation of the net-amount-at-risk, and aolves for the set of transactions that optimizes the owner's return, in the aense of maximizing the actuarial present value of future cash flows.

\begin{abstract}
6.1 The Model

The approach taken to developing cash values in the Impaired Life Model differs from the approach taken in the models that have preceded it, in that cash values are explicitly calculated on monthly basis, by using the relationghips in (2.2.2). (2.1.8), or (2.5.1) within the conetraint equations. Thim month-bymonth approach is taken for geveral reasong. Firet, the insured will be asisumd to be very ill; the resulting mort expected future lifetime invites a more frequent approach to transaction processing, and ankes the number of constraints defined by monthly cash value accumulation equations manageable. Second, a month-by-month epproech allows precise recognition of the cash value corridor requiremente of IRS Section 7702. As a result of thif monthly proceseing, lubscripts referring to time will be in months ince the commencement of the model. rather than in yeare.

To bimplify the presentation, it is amomed that the contract has been in force for fifteen yeare. Under current tax law, much an masuption ignificantly reduces the amount of overhead required to account for the tax treatment of the poliey. Firgt, withdrawale can unambiguously be treated as tax-free until the accumulated withdrawals exceed the tax batis. Second, asimming that the contract is not a modified endowment contract, one does not need to guard againgt the poseibility that the policy could become one. Third, in keping track of the guideline premium limits of section 7702, it is fairly safe to assume that the
\end{abstract}
limiting factor is the sum of the guideline annual premiums; thus, developing the mechanice required to allow premiums up to the maximum of the guideline ingle and the tum of the guideline mnual premiume in unneceseary. Technigueg for handilng the taxation of withdrawal䒠 within the first fifteen years of a policy have already been developed within the context of the General Model, as have the mechanics of fully accounting for guideline premium limitations; these techniques could be adopted for uee in the Impeired life Model if necereary.

The following notation is used to describe the asisumtion regarding the future ilfetime of the insured in 111-health:
[P] \(n\) Maximum number of monthe the ingured could live
\([P] \quad\) t? Probability the inmured will live through month \(t\)
\(\left.t\right|^{9}=t^{P}-t+7\)
= Probability that the inmured will die in month \(t+1\)
The following notation is used to deecribe characterigtica of the ineurance policy and the policyowner's atatus at the time the model commences (i.e., sometime after issue, when the insured hat fallen into ill health):
\begin{tabular}{|c|c|c|}
\hline [P] & \(\mathrm{CN}_{0}\) & = Initial end-of-month cash value \\
\hline [P] & \(F_{0}\) & = Initisl face amount \\
\hline [P] & \(\mathrm{ECRP}_{0}\) & = Initial 7702 tum of guideline annual premiuns \\
\hline [P] & \(\mathrm{GAP}_{0}\) & = Initial guideline annual premium \\
\hline (P) & TaxBasico & - Poliey* tax basis \\
\hline [P] & TaxDBInd & = 1 if the death benefit will be mbject \\
\hline & & to income tax, 0 otherwise \\
\hline [P] & PitRate & = Policyowner's federal income tax rate \\
\hline [P] & 7702Eatico & = Initial sum of preniums paid, 7702 basis \\
\hline [P] & Dsind & - 1 for an incremelng death bentit policy \\
\hline & & O for a level death benefit policy \\
\hline [P] & E & = Percent of premium expense charge \\
\hline [P] & EP & = Amount per thousand of face amount deducted at \\
\hline
\end{tabular}

\footnotetext{
In this chapter, "q" will be used to denote a rate of death. ro avoid confusion between this " \(q\) " and a cost-of-insurance rate, in this chapter the cost of ineurance rate will be denoted COI.
}

\footnotetext{
2hile death proceede generally eacape federal income tax, there are exceptione, notably the "transfer-for-value rule" under which death procesde lose their federal incem tax exemption if transferred for a consideration.

Recently, som firm heve offered to purchase, at a ignificant discount from the expected death benefit, the life insurance contracte of people who are diegnoesd at terminally ill. Though oftennibly providing a mervice by offering a (poseibly taxable) "living death benefit," these fime have also come under come criticien for what many consider to be their lese than altzuistic motives [2]. Such purchaee will come under the transfer for value rule. This model provides a fethod for maximizing the return on such a purchase.

3yodeliing estate tax treatment would require eome care. If the insured mantaine incidente of ownership in the policy, so that the death benefit in includable in the grose estate, taxation of death proceeda my be modelled if the marginal etcte tax rate can be entimated.

In addition, the impact of eash that may optionaliy be held either within or outbide of the insurance contract bhould be modelled. For eximple, preaumaly money peid as premiun no longer will be includable in the eftate and thus escaper estate taxe (except to the extent it may have an impact on the universal life contract's death benefit, in the cese of increasing death benefit contracts or contract in the cash value corridor). Conversely, som or all of the money withdrawn from the contract could end up being bubject to income tax, and then be includable in the eatate as well.
}
\begin{tabular}{|c|c|c|}
\hline (D) & \(\mathrm{CV}_{\mathrm{t}}\) & = Cash value, end of month \(t\) \\
\hline (P) & Sce & \(=\) Surrender charge, end of month \(t\) \\
\hline (S) & \(\mathrm{F}_{t}\) & * Month t face amount \\
\hline [D] & \(\mathrm{DB}_{t}\) & = Month \(t\) death beneilt \\
\hline [P] & Corr \({ }_{\text {c }}\) & - Month t IRS Section 7702 corridor factor \\
\hline (P) & \(\mathrm{COI}_{t}\) & ```
= Montht annual cost-of-insurance rate, per dollar
 net-amount-at-risk
``` \\
\hline (D) & \(\mathrm{EGMP}_{t}\) & = Sum of guideline annual premiume month t \\
\hline (D) & GAP \({ }_{\text {c }}\) & = Guideline annual premium, month \(t\) \\
\hline [P] & GAPAdj000, & = Time \(t\) guideline annual premium adjustment required for each thousand dollar change in face (Needed for level death benefit policien only) \\
\hline [D] & TaxBasist & * Policy's tax basia at time t \\
\hline [D] & 77028asist & = Sum of premiuma paid, 7702 barie \\
\hline futur & objective, flows : 6 & desired to maximize the actuarial present value of \\
\hline
\end{tabular}

\section*{MAXIMI2E:}
\[
\begin{aligned}
& +\sum_{t=1}^{n} e-1 g v^{\frac{c}{22}}\left(\mathrm{DB}_{t}-\text { FitRate } \cdot \operatorname{TaxDBInd}\left(\mathrm{DB}_{\mathrm{e}}-\text { TaxBasis }_{e}\right)\right)
\end{aligned}
\]

This maximization id done subject to the following constrainte:
(II) It is necessary to define the policy's death benefit, including IRS section 7702 corridor considerations. The following constraint equation will account for the mechanice of the corridor:
```

For t = 1 to n:
CorrExcPolt - PolExcCorr

```


\footnotetext{
'It is implicitly assumed that since the insured is in ill-health, it is desirable to keep the coverage in force at all cost.
}
and
\[
D B_{t}=F_{t}+D B I n d\left(C V_{t-1}+(1-E t) P_{t}-E P-E F \cdot F_{t} / 1000-W_{t}\right)+\text { CorrexcPol }_{t}
\]
whare:
Correxepol \(=\) Amount by which the death benefit defined by the corridor exceeds the "normal" policy death benefit, month \(t\)

PolExcCorr \({ }^{\prime}\) = Amount by which the "normal" policy death benefit exceeds the death benefit defined by the corridor, month \(t\)

The effect of these constrainte is to define variable, correxcpol \({ }_{\mathrm{t}}\), that it the increase in death benefit required under IRS eection 7702 when the policy is in the corridor, and to add it to the death benefit that would be in effect in the absence of cash value corridor requirementa.
(I2) The following contraints relate each month's cash value to the cash value of the previous month, per (2.1.1), (2.1.8) and (2.5.1):

For \(t=1\) to \(n\) :
\[
C V_{t}-\left(\left(1+\frac{C O I_{t}}{12}\right)\left(C V_{\varepsilon-2}+(1-E \psi) P_{t}-E P-E F \frac{F_{z}}{1000}-W_{z}\right)-\frac{C O I_{t}}{12} \frac{D B_{t}}{\left(1+i_{g}\right)^{1 / 22}}\right)\left(1+i_{e}\right)^{1 / 12}
\]
(I3) The following eet of constraints ensures that the policy has sufficient cash value to avoid lapaing:
\[
\text { For } t=1 \text { to } n: \quad C V_{t} \geq S C_{t}
\]
(I4) The following conatraints, required only for level death benefit policies, reduces the policy face amount each time there ia a withdrawal at the beginning of the month: \({ }^{5}\)
\[
\text { For } t=1 \text { to } n: \quad F_{t}=F_{t-1}-W_{t}
\]
(15) The zollowing conetraints, required only for level death benefit policies, adjust the guideline annual premium for the reduction in face amount due to a

\footnotetext{
SWithdrawale of cash value when the policy is in the corridor would not reduce the face mount of the policy if the policy were etill in the corridor after the withdrawal. No attempt has been made to distinguish in this set of constrainte between withdrawale that occur outside the corridor and withdrawale that occur when the policy ia in the corridor. It would appear unlikely that an optimal solution maximizing the return on the policy on an impaired iffe would involve withdrawing money when the policy was in the corridor, bince thie would result in more than dollar-for-dollar reduction in the death benefit.
}
cash value withdrawal:
\[
\text { For } t=1 \text { to } n: \quad G A P_{t}=G A P_{t-1}-\text { GAPAdj000 }_{t} \cdot W_{t} / 1000
\]
(I6) The following constrainte define the wof of guideline annual premiums. Each annivernary, the aum of the guideline annual premium in incremented by the current guideline annual premium, adjusted at neceasary for level death benefit policies for the effecta any withdrawals for the current month have on the face amount. On monthiversaries that are not policy anniversaries, withdrawals on level death benefit policies cauce the am of the guideline annual premiuma for the current year to be adjusted downard to account for the reduction in face. As developed here, mid-year downard adjustments to the guideline annual premiums are treated effectively an if they occurred on the prior policy anniversary: For \(t=1\) to \(n\) :

> If PolAnnInd \(=1, \operatorname{EGAP}=\operatorname{EGAP}_{t-1}+\) GAP \(_{t}\)
> If POLAnnInd \(=0, \operatorname{EGAP}_{t}=\operatorname{EGNP}_{t-1}-\) GAPAdj000 \(_{t} \cdot W_{t} / 1000\)
(I7) The following constraints relate \(W_{t}, W_{t}^{\text {TAXFAEE }}\), and \(W_{t}^{\text {TaXABLE }}\) :
For \(t=1\) to \(n:\)
\[
\begin{aligned}
& w_{t}=w_{t}^{\text {TAXFREE }}+w_{t}^{\text {TAXABLE }} \\
& W_{t}^{\text {TAXFREE }} \leq \text { TaxBasiE }_{t-1}
\end{aligned}
\]

As noted in developing the General Model, the optimal nolution to linear programming problem in which withdrawala up to the tax basis may be taken taxfree is to take any such withdrawals before taking taxable withdrawals. Thus, no additional constraints are required to ensure the proper treatment of the order of withdrawals.
(17) The following conetrainte adjuet the tax basi for the effects of any premium payments or withdrawale:
\[
\text { For } t=1 \text { to } n: \quad \text { TaxBasis } t=\text { TaxBagie } t_{t-1}+P_{t}=W_{t}^{\text {Taxfate }}
\]
(I8) The following constraints adjust the 7702 basis for the effecta of any premium payments or withdrawals and ensure that the 7702 basis doea not exceed guideline premium limitations:
\[
\begin{array}{rl}
\text { For } t=1 \text { to } \mathrm{n}: ~ & 7702 \mathrm{BaBin}_{t}=7702 \mathrm{Basis}_{t-1}+P_{t}-w_{t}^{\text {TAXFAEE }} \\
& 7702 \mathrm{Basif}_{t} \leq \text { 2GAP }_{t}
\end{array}
\] premium changes and the payment of unscheduled premiums. The following contraet
```

language is typical:

```

Planned annual premiums are hown on the firgt page of thim contract. Paymente can be annual, emi-annual or quarteriy, or can be at any frequency igreed to by the Company. You may increase or decreate the amount of subsequent payments, aubject to the Limits on Premium below, Unscheduled peyments may be made at any time prior to the maturity date, subject to the Limits on Premiums below.

Limite on Premiums:
* Total planned and unscheduled payment will be limited to the Company'm published maximums.
- Proof that the Incured is insurable will be required if an unseheduled payment increasef the Death Benefit by more than it incressea the cash value.

Many companies allow the planned premium to be adjusted to any "reasonable" level without evidence of insurability; unacheduled paymente, however, are allowod without underwriting only when the payment does not bring the policy into the corridor to buch an extent that the net-amount-at-risk increaneen. Interestingly enough, undecwriting if generally not required if a permon pays the largest premium euch that the policy enters the corridor but the net-amount-at-ribk reming the same." Following such an unscheduled premium payment, the policyholder could resume his eheduled premium payment, and drive up the net-amount-at-risk with each payment. Under some circumstances, the policyholder will benefit by thi strategy.

The limitations on premium payments contained in the contraet language above may be modelled using the following constraint equations:

\footnotetext{
SAny premium payment on a level death benefit policy not in the cam value corridor will reduce the policy' net-amount-at-risk until the policy reachen the corridor. When the policy reaches the corridor, any further payment will reault in an increase in the net-amount-at-risk. Thus, for a level death benefit policy not in the corridor, one may solve for the premium payment that brings the policy into the corridor and results in the net-anount-at-riek being equal to the net-amount-at-risk before the payment wae made.

On an increasing death benefit policy, a premium payment will have no effect on the net-amount-at-risk until the policy reachen the corridor. Ihus, for an increaning death benefit policy one may solve for the largest premium payeent that kepp the net-amount-at-risk from increasing.
}
```

Fort=1 to n:
PLanPrem + CPExCPP - PPExcCP =
{F
and
Pt}\leqP\mathrm{ PlanPrem, + CPExCPPt
where: CPExCPP: Amount by which the premium necesmary to bring the policy
Into the corridor, keeping the net-amount-at-risk level,
exceed; the month t planned premium
PPExCCP, = Amount by which the month t planned premium exceeds the
premium necessary to bring the policy into the corridor,
keeping the net-amount-at-risk lovel.
Assuming the policy is not already in the corridor, the right hand side of the
first equation expresees the premium required to bring the policy into the
corridor without changing the net-mount-at-risk.7 If this amount exceeds the
planned premium, the second equation adds the amount by which it exceeds the
planned premium to the planned premium to get the total premium allowed for the
month.
Several commente should be made regarding this model. Fizte, in running the model, it is desirable to have the planned premium as high as posable, o that the option is there to pay qeneroun premiune, should euch a strategy be optimal. This euggest that at the time the model commences, a policyholder should request that the planned premium be increased to the maximum a codpany would allow for the contract under considecation. These maximum would then be reflected in the input factore PlanPrem. Second, under the premise thet the inmured ie very 111 when the model coumencen, it is unlikely that either withdrawals or premium needed to bring a policy not already into the corridor

```

\footnotetext{
TIf the cash value of the policy is already sufficiently large that the death benefit is determined by the product of the cash value and the corridor factor, the expression on the right hand side ia negative. In this case, CPExcPP will be zero, PPExCCP will a meaningless positive number, and the premiun for the month will be conetrained to be not larger than the planned premium.
}
into the corridor will occur after the first month. \({ }^{\text {s }}\) Aesuming that both withdrawale and payments neceseary to bring a policy not in the corridor into the corridor occur only in the firtht month mignificantly reduces the programing required for the model.

\subsection*{6.2 Examples}

Tables 6.1 through 6.3 show the optimal etrategy of a policyholder who owne a 5100,000 level death benefit policy from Company \(\boldsymbol{A}\) on an insured who wat age 45 at issue and who, having just reached age 65, has fallen into ill health. It if assumed that the insured's death will occur within the next thirty-six monthe, with death being equally likely to occur in any of those monthe. The policyowner will recover the death bencfit tax-free; present values of future cash flown are taken at 88. The tables differ in that the premium paid during the first twenty years are not identical; thuls, the model comences with different etarting cash values and different tax bases.

In Table 6.1, the policyholder paid 51,200 each year for five yearn, and then atopped paying premium. As a result, the policy has almost no cash value. Not surpriaingly, the optimal etrategy is to pay nothing until premiun is required to keep the poiicy from lapaing, and then to pay only the minimum required each month to keep the policy in force. The resulting actuarial present value of future cash flows of \(\$ 87,720\) comparen with an actuarial present value of \(\$ 34,536^{\circ}\) had the policyowner not reacted optimally, but rather had continued with hie prior behavior of not paying premium. This comparison, of course, in misleading eince a rational policyholder would not fail to react to a lapse

\footnotetext{
8/n will be eeen, withdrawals are sometmes desirable if by getting money out of a policy, the policyowner can cause future net-amounts-at-rifk to be greater than what they would have been had the withdrawal not been taken. In these cases, it is desirable to take the withdrawal as early as poseible, wo that the impact on future net-amounte-at-ribk can commence as arly as posibible. Paying premium to put a policy into the corridor can be denirable if, by doing so, the policyowner can cause an increase in future net-amounta-at-risk, due to the operation of the corridor factor. Again, when this it deairable, it should be done as early an posibible.
\({ }^{9}\) This tigure essumes a two month grace period, but ignores certain adjustmenta to the death benefit that would be made by the insurer upon death.
}

Table 6.1: Optimal Iransactions for an Age 65 Level Death Benefic Policyholder
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Face Amount & \[
\begin{aligned}
& \text { Premium } \\
& \text { (BOM) }
\end{aligned}
\] & \[
\begin{array}{r}
\text { Withd } \\
\text { Tax-free } \\
\text { (BOM) }
\end{array}
\] & \begin{tabular}{l}
awals \\
Taxable \\
(BOM)
\end{tabular} & Cash Value (EOM) & Deach Benefi= (EOM) & \[
\begin{array}{r}
\text { Tax and } \\
7702 \\
\text { Basis }
\end{array}
\] & Maximum Guideline Premium \\
\hline Start & 100,000 & & & & 1,547 & & 6.000 & 36,876 \\
\hline 1 & 100,000 & & & & 1,420 & 100,000 & 6,000 & 36.876 \\
\hline 2 & 100,000 & & & & 1,291 & 100.000 & 6.000 & 36,876 \\
\hline 3 & 100.000 & & & & 1,162 & 100.000 & 6.000 & 36.876 \\
\hline 4 & 100,000 & & & & 1.031 & 100,000 & 6.000 & 36.876 \\
\hline 5 & 100,000 & & & & 899 & 100,000 & 6,000 & 36,876 \\
\hline 6 & 100,000 & & & & 766 & 100,000 & 6,000 & 36,876 \\
\hline 7 & 100,000 & & & & 631 & 100,000 & 6,000 & 36,876 \\
\hline 8 & 100.000 & & & & 495 & 100,000 & 6,000 & 36,876 \\
\hline 9 & 100,000 & & & & 358 & 100,000 & 6,000 & 36.876 \\
\hline 10 & 100,000 & & & & 220 & 100,000 & 6,000 & 36,876 \\
\hline 11 & 100,000 & & & & 80 & 100,000 & 6.000 & 36.876 \\
\hline 12 & 100,000 & 64 & & & 0 & 100.000 & 6.064 & 36.876 \\
\hline 13 & 100,000 & 165 & & & 0 & 100,000 & 6.230 & 38.632 \\
\hline 14 & 100,000 & 165 & & & 0 & 100,000 & 6.395 & 38,632 \\
\hline 15 & 100,000 & 165 & & & 0 & 100,000 & 6,561 & 38.632 \\
\hline 16 & 100,000 & 165 & & & 0 & 100,000 & 6,726 & 38.632 \\
\hline 17 & 100,000 & 165 & & & 0 & 100,000 & 6,892 & 38,632 \\
\hline 18 & 100,000 & 165 & & & 0 & 100,000 & 7.057 & 38,632 \\
\hline 19 & 100,000 & 165 & & & 0 & 100,000 & 7.223 & 38,632 \\
\hline 20 & 100,000 & 165 & & & 0 & 100,000 & 7.388 & 38,632 \\
\hline 21 & 100,000 & 165 & & & 0 & 100,000 & 7,554 & 38,632 \\
\hline 22 & 100,000 & 165 & & & 0 & 100,000 & 7.719 & 38,632 \\
\hline 23 & 100,000 & 165 & & & 0 & 100,000 & 7.885 & 38,632 \\
\hline 24 & 100,000 & 165 & & & 0 & 100,000 & 8,050 & 38,632 \\
\hline 25 & 100,000 & 183 & & & 0 & 100,000 & 8,233 & 40,388 \\
\hline 26 & 100,000 & 183 & & & 0 & 100.000 & 8.416 & 40,388 \\
\hline 27 & 100,000 & 183 & & & 0 & 100,000 & 8.599 & 40.388 \\
\hline 28 & 100,000 & 183 & & & 0 & 100,000 & 8.782 & 40,388 \\
\hline 29 & 100,000 & 183 & & & 0 & 100,000 & 8,965 & 40,388 \\
\hline 30 & 100,000 & 183 & & & 0 & 100,000 & 9,148 & 40,388 \\
\hline 31 & 100,000 & 183 & & & 0 & 100,000 & 9.330 & 40.388 \\
\hline 32 & 100,000 & 183 & & & 0 & 100,000 & 9.513 & 40,388 \\
\hline 33 & 100,000 & 183 & & & 0 & 100,000 & 9.696 & 40.388 \\
\hline 34 & 100,000 & 183 & & & 0 & 100,000 & 9.879 & 40,388 \\
\hline 35 & 100,000 & 183 & & & 0 & 100,000 & 10,062 & 40,388 \\
\hline 36 & 100,000 & 183 & & & 0 & 100,000 & 10,245 & 40,388 \\
\hline
\end{tabular}

Assumptions: Policy vas issued at age 45; policyholder paid \(\$ 1,200\) per year for five years, and then stopped paying premium.

Deach is assumed to occur during the next 36 months, and is equally likely in any month. Present values assume death occurs end-of-month.

BOM - Beginning-of-month, EOM - End-of-month
Actuarial present value of future cash flows e8: - \(\$ 87,720\).

Table 6.2: Oprimal Transactions for an Age 65 Level Death Benefit Policyholder
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Face Amount & Premium (BOM) & \begin{tabular}{l}
Withd Tax-free \\
(BOM)
\end{tabular} & \begin{tabular}{l}
awals \\
Taxable \\
(BOM)
\end{tabular} & Cash Value (EOM) & \begin{tabular}{l}
Death Benefit \\
(EOM)
\end{tabular} & \[
\begin{array}{r}
\text { Tax and } \\
7: 02 \\
\text { Basis }
\end{array}
\] & Maximum Guideline Premíum \\
\hline Start & 100,000 & & & & 44,861 & & 24,000 & 36.876 \\
\hline 1 & 76,000 & & 24,000 & & 20,950 & 76,000 & 0 & 35,629 \\
\hline 2 & 76,000 & & & & 21,039 & 76,000 & 0 & 35,629 \\
\hline 3 & 76,000 & & & & 21,129 & 76,000 & 0 & 35,629 \\
\hline 4 & 76,000 & & & & 21,219 & 76,000 & 0 & 35,629 \\
\hline 5 & 76.000 & & & & 21,311 & 76,000 & 0 & 35,629 \\
\hline 6 & 76,000 & & & & 21,403 & 76,000 & 0 & 35,629 \\
\hline 7 & 76,000 & & & & 21,497 & 76,000 & 0 & 35,629 \\
\hline 8 & 76,000 & & & & 21,591 & 76,000 & 0 & 35.629 \\
\hline 9 & 76,000 & & & & 21.686 & 76,000 & 0 & 35.629 \\
\hline 10 & 76,000 & & & & 21,782 & 76,000 & 0 & 35.629 \\
\hline 11 & 76,000 & & & & 21,879 & 76,000 & 0 & 35,629 \\
\hline 12 & 76,000 & & & & 21.977 & 76,000 & 0 & 35,629 \\
\hline 13 & 76.000 & & & & 22,068 & 76,000 & 0 & 36,139 \\
\hline 14 & 76.000 & & & & 22.159 & 76,000 & 0 & 36,139 \\
\hline 15 & 76,000 & & & & 22,251 & 76,000 & 0 & 36,139 \\
\hline 16 & 76,000 & & & & 22,344 & 76,000 & 0 & 36,139 \\
\hline 17 & 76,000 & & & & 22,438 & 76,000 & 0 & 36,139 \\
\hline 18 & 76,000 & & & & 22,533 & 76,000 & 0 & 36,139 \\
\hline 19 & 76,000 & & & & 22,629 & 76,000 & 0 & 36,139 \\
\hline 20 & 76,000 & & & & 22,726 & 76,000 & 0 & 36,139 \\
\hline 21 & 76,000 & & & & 22,824 & 76,000 & 0 & 36,139 \\
\hline 22 & 76,000 & & & & 22.922 & 76,000 & 0 & 36,139 \\
\hline 23 & 76,000 & & & & 23,022 & 76,000 & 0 & 36,139 \\
\hline 24 & 76,000 & & & & 23,122 & 76,000 & 0 & 36,139 \\
\hline 25 & 76,000 & & & & 23.215 & 76,000 & 0 & 36.648 \\
\hline 26 & 76,000 & & & & 23,309 & 76,000 & 0 & 36,648 \\
\hline 27 & 76,000 & & & & 23.403 & 76,000 & 0 & 36.648 \\
\hline 28 & 76,000 & & & & 23,499 & 76,000 & 0 & 36,648 \\
\hline 29 & 76,000 & & & & 23,595 & 76,000 & 0 & 36,648 \\
\hline 30 & 76,000 & & & & 23.692 & 76,000 & 0 & 36,648 \\
\hline 31 & 76,000 & & & & 23,791 & 76,000 & 0 & 36,648 \\
\hline 32 & 76,000 & & & & 23.890 & 76,000 & 0 & 36,648 \\
\hline 33 & 76,000 & & & & 23,990 & 76.000 & 0 & 36,648 \\
\hline 34 & 76,000 & & & & 24,091 & 76,000 & 0 & 36,648 \\
\hline 35 & 76,000 & & & & 24,193 & 76,000 & 0 & 36,648 \\
\hline 36 & 76,000 & & & & 24,296 & 76,000 & 0 & 36,648 \\
\hline
\end{tabular}

Assumptions: Policy was issued at age 45; policyholder paid \(\$ 1,200\) per year for cwenty years.

Deach is assumed to occur during the next 36 monchs, and is equally likely in any month. Present values assume death occurs end-of-month.

BOM - Beginniag-of-monch, EOM = End-of-month
Actuarial present value of future cash flows © 8 : \(\mathbf{~} \mathbf{\$ 1 , 6 4 7 .}\)

Table 6.3: Optimal Iransactions for an Age 65 Level Death Benefit Policyholder
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Face Amount & Premium (BOM) & \[
\begin{array}{r}
\text { Withd } \\
\text { Tax-free } \\
\text { (BOM) }
\end{array}
\] & \begin{tabular}{l}
awals \\
Taxable \\
(BOM)
\end{tabular} & Cash Value (EOM) & Death Benefit (EOM) & \[
\begin{array}{r}
\text { Tax and } \\
7702 \\
\text { Basis }
\end{array}
\] & Maximum Guideline Premium \\
\hline Start & 100,000 & & & & 81,738 & & 16,000 & 36,876 \\
\hline 1 & 100,000 & 10.186 & & & 92,015 & 109.575 & 26,186 & 36,876 \\
\hline 2 & 100,000 & 146 & & & 92,862 & 110,583 & 26,332 & 36,876 \\
\hline 3 & 100,000 & 146 & & & 93,715 & 111.599 & 26,479 & 36.876 \\
\hline 4 & 100,000 & 146 & & & 94.575 & 112,623 & 26,625 & 36,876 \\
\hline 5 & 100,000 & 146 & & & 95,441 & 113,655 & 26,771 & 36.876 \\
\hline 6 & 100,000 & 146 & & & 96,314 & 114,694 & 26,918 & 36.876 \\
\hline 7 & 100,000 & 146 & & & 97.194 & 115.742 & 27,064 & 36,876 \\
\hline 8 & 100,000 & 146 & & & 98,080 & 116,798 & 27,210 & 36.876 \\
\hline 9 & 100,000 & 146 & & & 98,974 & 117,862 & 27,357 & 36,876 \\
\hline 10 & 100,000 & 146 & & & 99,874 & 118.934 & 27,503 & 36,876 \\
\hline 11 & 100,000 & 146 & & & 100,781 & 120,014 & 27.649 & 36,876 \\
\hline 12 & 100,000 & 146 & & & 101,695 & 121,102 & 27,796 & 36,876 \\
\hline 13 & 100,000 & 146 & & & 102,615 & 121,181 & 27,942 & 38,632 \\
\hline 14 & 100,000 & 146 & & & 103,542 & 122,276 & 28,088 & 38,632 \\
\hline 15 & 100,000 & 146 & & & 104,476 & 123,378 & 28,235 & 38,632 \\
\hline 16 & 100,000 & 146 & & & 105,417 & 124,490 & 28,381 & 38,632 \\
\hline 17 & 100,000 & 146 & & & 106,365 & 125,610 & 28,527 & 38.632 \\
\hline 18 & 100,000 & 146 & & & 107,321 & 126,738 & 28,674 & 38,632 \\
\hline 19 & 100,000 & 146 & & & 108,284 & 127,875 & 28,820 & 38,632 \\
\hline 20 & 100,000 & 146 & & & 109,254 & 129,021 & 28,966 & 38,632 \\
\hline 21 & 100,000 & 146 & & & 110,232 & 130,176 & 29,113 & 38,632 \\
\hline 22 & 100,000 & 146 & & & 111,217 & 131,339 & 29,259 & 38,632 \\
\hline 23 & 100,000 & 146 & & & 112,210 & 132,512 & 29,405 & 38,632 \\
\hline 24 & 100,000 & 146 & & & 113.210 & 133,693 & 29,552 & 38,632 \\
\hline 25 & 100,000 & 146 & & & 114,217 & 133,751 & 29.698 & 40,388 \\
\hline 26 & 100,000 & 146 & & & 115,231 & 134,938 & 29,844 & 40.388 \\
\hline 27 & 100,000 & 146 & & & 116,253 & 136,135 & 29,991 & 40,388 \\
\hline 28 & 100,000 & 146 & & & 117,283 & 137,341 & 30.137 & 40,388 \\
\hline 29 & 100,000 & 146 & & & 118.321 & 138,557 & 30,283 & 40,388 \\
\hline 30 & 100,000 & 146 & & & 119.367 & 139.781 & 30.430 & 40.388 \\
\hline 31 & 100,000 & 146 & & & 120,421 & 141.015 & 30,576 & 40,388 \\
\hline 32 & 100,000 & 146 & & & 121,483 & 142,259 & 30.722 & 40.388 \\
\hline 33 & 100,000 & 146 & & & 122,553 & 143,512 & 30,869 & 40.388 \\
\hline 34 & 100,000 & 146 & & & 123,631 & 144.775 & 31,015 & 40,388 \\
\hline 35 & 100,000 & 146 & & & 124, 718 & 146,047 & 31,161 & 40,388 \\
\hline 36 & 100,000 & 146 & & & 125,813 & 147,329 & 31,308 & 40,388 \\
\hline
\end{tabular}

Assumptions: Policy was issued at age 45 ; policyholder paid a single premium of \(\$ 16,000\) at issue.

Death is assumed to occur during the next 36 months, and is equally likely in any month. Present values assume death occurs end-of-month.

BOM - Beginning-of-month, EOM - End-of-month
Actuarial present value of future cash flows © \(\quad\) ( \(=\$ 100,451\).
notice bent by Company \(A\) if the insured was ill-health. Rather, the Impaired Life mpdel confirme the behavior that one would expect of a rational policyholder in this situation, perheps improving it slightly by guiding the policyholder to pay only the bare minimu required to kepp the coverage in force.

In Table 6.2, the policyholder has paid \(\$ 1,200\) per yar for twenty years and hat a cash value of 5 44, 861. The optimal etrategy is to withdraw an anount that precisely equala the tax basis of \(\$ 24,000\), and then pay no more premium. By halting prewium payments and taking the maximum tax-free withdrawal, the policyholder sow the growth of cash value and thus slows the orosion of the insurance element in the policy. 10 The actuariel preaent value of future cath flows of \(\$ 91,647\) compares with present value of 586,726 had the policyholder continued his behavior cif paring a 51,200 annual premium each year, and a present value of \(\$ 89,009\) had the policyholder ceased premium payments but not taken the withdrawal.

In Table 6.3, the palicyholder paid aingle premium of \(\$ 16,000\) at isave, and has paid no promium sance. The resulting \(\$ 81,738\) eash value almost putathe policy into the corridor. Under the essumption that company A would allow premium of \(\$ 1,756\) per year \({ }^{11}\) even if the policy ill in the corridor, the optimal strategy if to pey \(\$ 10.186\) in month one, thut bringing the policy into the corridor with neither an increate nor decrease in net-amount-at-rink, and then to pay each fucceeding month one-twalfth of the maximum allowable planned premium of \(\$ 1,756\). The resulting actuarial present value of future cash flow of \(\$\) 100,451 compares with a present vilue of \(\$ 98,846\) had the policyholder continued hit prior bahavior and pald no future premium.

Several vaciablea play a key role in determining whether the optimal etrategy for particular policy involves funding the policy to the maximum

\footnotetext{
\({ }^{10}\) nad the polieyholder tacen afficiently larger withdrawal, the interegt on the remaining cash value would be insufificient to cover the monthly deductione, and the net-amount-at-risk would, in fact, increase with time. In the current situation, however, thia is lese than optimil, due to taxation of any withdrawals above the tax basis: It is better to leave the money in the policy. and receive it tax-fre as a death bentifit upon the insured's death.

11rhis figure is the guideline annual premium for the policy at iseue.
}
extent allowed, so as to take advantage of net-amount-at-risk manipulation due to the impact of the corridor on the death benefit. Among then are:
(1) The inmured's attained-age. The corridor factor of 1.20 at attainedage 65 yields an increase of twenty cente in net-amount-et-riak for each dollar of corridor cash value. By comparison, at attained-age 40, the corridor factor of 2.50 yielde an increase of one dollar and fifty cents for each dollar of corridor cash value. Thus, all other thinge being equal, the lower the attainedage, the greater the return on a dollar of corridor cash value, and the greater the potential for net-amount-at-risk manipulation.
(2) The policy's percont-of-premium load factor. Paying the premium required to get the policy into the corridor involves a cost. The lower the percent-of-premium load factor, the more likely this cost can be recouped.
(3) Limitation: on premium paymente, either due to guideline premium limitations or a company's maximum allowable planned promilums. The more generously a contract can be funded, the greater the opportunity to take advantage of the operation of the corridor.
(4) The policy'g eredited interest rate. A substantial portion of the growth in net-amount-at-risk due to the operation of the corridor comes from interest credits on these high cash value policies. The greater the intereat rate, the more rapid the growth in cash value due to interest credita, and hence the greater the growth in net-amount-at-rimk.
(5) The asamed future lifetime randon variable of the insured. Very short expected future lifetimes allow only very limited funding in exceat of the amount required to bring the policy into the corridor, and thus limit the opportunity to manipulate the net-amount-at-rink. Convergely, very long expected future lifetimes may result in eignificant insurance charges being incurred before death occurs and may bring the insured's attained-age at death up to apoint at which the corridor factor adde little to the death benefit.
(6) The policy' atarting cash value, compared with the caeh value required to put the policy in the corridor. On low and moderate cath value policies, expenses involved in paying premium eufficient to bring the policy into the

Table 6.4: Optimal Transactions for an Age 65 Increasing Dearh Benefit Policyholder
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Monch & Face Amount & Premian (BOM) & \[
\begin{array}{r}
\text { Withd } \\
\text { Tax-free } \\
\text { (BOM) }
\end{array}
\] & \begin{tabular}{l}
avals \\
Taxable \\
(BOM)
\end{tabular} & \begin{tabular}{l}
Cash \\
Value \\
(EOM)
\end{tabular} & Death Benefit (EOM) & \[
\begin{array}{r}
\text { Tax and } \\
7702 \\
\text { Basis }
\end{array}
\] & Maximum Guideline Premiun \\
\hline Start & 55,139 & & & & 44,861 & & 24,000 & 37,400 \\
\hline 1 & 55,139 & & & & 45,299 & 100,438 & 24,100 & 37,400 \\
\hline 2 & 55,139 & & & & 45,647 & 100,786 & 24, 100 & 37,400 \\
\hline 3 & 55,139 & & & & 45,998 & 101,137 & 24,100 & 37,400 \\
\hline 4 & 55,139 & & & & 46,352 & 101.491 & 24.100 & 37,400 \\
\hline 5 & 55,139 & & & & 46,708 & 101,847 & 24,100 & 37,400 \\
\hline 6 & 55,139 & & & & 47,068 & 102,207 & 24,100 & 37,400 \\
\hline 7 & 55,139 & & & & 47,430 & 102,569 & 24,100 & 37,400 \\
\hline 8 & 55,139 & & & & 47,795 & 102,934 & 24,100 & 37,400 \\
\hline 9 & 55,139 & & & & 48,163 & 103,302 & 24,100 & 37,400 \\
\hline 10 & 55,139 & & & & 48,533 & 103,672 & 24,100 & 37,400 \\
\hline 11 & 55,139 & & & & 48,907 & 104.046 & 24,100 & 37.400 \\
\hline 12 & 55,139 & & & & 49,283 & 104,422 & 24,100 & 37,400 \\
\hline 13 & 55.139 & & & & 49,662 & 104,801 & 24,100 & 39,680 \\
\hline 14 & 55.139 & & & & 50,043 & 105.182 & 24, 100 & 39.680 \\
\hline 15 & 55.139 & & & & 50.428 & 105.567 & 24,100 & 39.680 \\
\hline 16 & 55,139 & & & & 50.815 & 105,954 & 24,100 & 39.680 \\
\hline 17 & 55,139 & & & & 51,205 & 106,344 & 24,100 & 39.680 \\
\hline 18 & 55,139 & & & & 51,599 & 106,738 & 24,100 & 39,680 \\
\hline 19 & 55,139 & & & & 51,995 & 107.134 & 24,100 & 39,680 \\
\hline 20 & 55.139 & & & & 52,394 & 107,533 & 24,100 & 39,680 \\
\hline 21 & 55.139 & & & & 52,797 & 107,936 & 24.100 & 39,680 \\
\hline 22 & 55,139 & & & & 53,202 & 108,341 & 24.100 & 39,680 \\
\hline 23 & 55,139 & & & & 53,611 & 108,750 & 24.100 & 39,680 \\
\hline 24 & 55,139 & & & & 54, 023 & 109,162 & 24,100 & 39,680 \\
\hline 25 & 55,139 & & & & 54,437 & 109,576 & 24,100 & 41,960 \\
\hline 26 & 55.139 & & & & 54, 854 & 109.993 & 24.100 & 41,960 \\
\hline 27 & 55,139 & & & & 55,275 & 110,414 & 24,100 & 41,960 \\
\hline 28 & 55,139 & & & & 55,699 & 110,838 & 24,100 & 41,960 \\
\hline 29 & 55,139 & & & & 56,126 & 111.265 & 24,100 & 41,960 \\
\hline 30 & 55,139 & & & & 56.556 & 111,695 & 24,100 & 41,960 \\
\hline 31 & 55,139 & & & & 56,990 & 112,129 & 24, 100 & 41,960 \\
\hline 32 & 55,139 & & & & 57,427 & 112,566 & 24, 100 & 41,960 \\
\hline 33 & 55,139 & & & & 57,867 & 113,006 & 24, 100 & 41,960 \\
\hline 34 & 55,139 & & & & 58,311 & 123,450 & 24,100 & 41,960 \\
\hline 35 & 55.139 & & & & 58,758 & 113,897 & 24,100 & 41,960 \\
\hline 36 & 55,139 & & & & 59,208 & 114,347 & 24.100 & 41,960 \\
\hline
\end{tabular}

Assumptions: Policy was issued at age 45 as a level death benefit policy; policyholder paid \(\$ 1,200\) per year for twency years. Dearh benefit option change was elected before the model was run.

Death is assumed to occur during the next 36 months, and is equally likely in any monch. Present values assume death occurs end-of-month.

BOM - Beginning-of-month, EOM - End-of-month
Actuarial present value of future cash flows e 8 - \(\mathbf{~} \mathbf{~ 9 5 , 0 8 1 .}\)
corridor may be too large to be able to be recouped. Also, guideline premium limite may not allow ufficient funding to bring the policy into the corridor.

Tables 6.1 through 6.3 illuetrate the optimal etrategy for a level death benefit policy. Moet universal life contracts allow the policyholder to change the death benefit option without evidence of insurability. Although upon electing a change in death benefit option the face amount of the policy is adjusted to equate the net-amount-at-risk before and after the change, electing the option can have an impact on future net-amounts-at-riak. Thus, this option can sometimes be used to a policyholder' advantage.

Table 6.4 illuatrates the optimal strategy on the policy illutrated in Table 6.2, after a change in death benefit option has been elected. The actuarial present value of future cash flows of \(\$ 95,081\) exceeds the present value of 591,647 that was obtained under the optimal level death benefit strategy. The increase is made up of two components. Firat, under the level death benefit solution, the \(\$ 24,000\) withdrawal slowed but did not halt the erosion in net-amount-at-risk due to interest credits; conversely, when an increasing death benefit option is elected, the net-amount-at-risk in the future remains constant. Second, under the level death benefit case, the \(\$ 24,000\) withdrawal contributes axactly \(\$ 24,000\) to the present value. Under the increasing death benefit option, that \(\$ 24,000\), which stay in the policy, contributes more than \(\$ 24,000\), because it accumulates at 108 as caah value, is received tax-free upon the death of the insured, and then 1 s discounted at 8 t . This example illustrates that in solving for an optimal solution, it would be advantageous to run the Impaired Life Model once under the policy' current death benefit option, and once assuming a death benefit option change has been elected. 12

While the examples above illuntrate common optimal atrategies, other

\footnotetext{
\({ }^{12}\) Examplee can be developed in which it is optimal to change from an increasing death benefit policy to level death benefit policy.

Changen in death benefit option can have an impact on the maximum funding allowed for a policy. Due to an anomaly in the attained-age-decreamentmethod epecified for adjusting guideline premiums when an edjustment in benefita is olected, change from a level death benefit to an increasing death benefit policy doen not necesmarily cause an increase in guideline promiums.
}

Table 6.4: Opeimal Transactions for an Age 65 Increasing Deach Benefit Policyholder
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Face Amount & \[
\begin{gathered}
\text { Pramilm } \\
\text { (BOM. })
\end{gathered}
\] & \[
\begin{array}{r}
\text { Withd } \\
\text { =ax-free } \\
\text { (BOM) }
\end{array}
\] & awals Taxable (BOM) & \begin{tabular}{l}
Cash value \\
(EOM)
\end{tabular} & Deach Benefit (EOM) & \[
\begin{array}{r}
\text { Tax and } \\
7702 \\
\text { Basis }
\end{array}
\] & Maximum Guideline Premium \\
\hline Siart & 55.139 & & & & 44.861 & & 24,000 & 37.400 \\
\hline 1 & 55,139 & & & & 45.299 & 100,438 & 24.100 & 37,400 \\
\hline 2 & 55,139 & & & & 45,647 & 100,786 & 24,100 & 37,400 \\
\hline 3 & 55,139 & & & & 45,998 & 101,137 & 24,100 & 37.400 \\
\hline 4 & 55.139 & & & & 46.352 & 101,491 & 24,100 & 37,400 \\
\hline 5 & 55,139 & & & & 46.708 & 101,847 & 24,100 & 37,400 \\
\hline 6 & 55.139 & & & & 47,068 & 102,207 & 24,100 & 37.400 \\
\hline 7 & 55,139 & & & & 47,430 & 102,569 & 24, 100 & 37.400 \\
\hline 8 & 55,139 & & & & 47,795 & 102,934 & 24, 100 & 37,400 \\
\hline 9 & 55.139 & & & & 48.163 & 103,302 & 24,100 & 37,400 \\
\hline 10 & 55,139 & & & & 48,533 & 103,672 & 24,100 & 37.400 \\
\hline 11 & 55,139 & & & & 48,907 & 104,046 & 24, 100 & 37.400 \\
\hline 12 & 55,139 & & & & 49,283 & 104,422 & 24.100 & 37,400 \\
\hline 13 & 55,139 & & & & 49,662 & 104,801 & 24.100 & 39,680 \\
\hline 14 & 55,139 & & & & 50,043 & 105,182 & 24.100 & 39,680 \\
\hline 15 & 55,139 & & & & 50,428 & 105,567 & 24.100 & 39,680 \\
\hline 16 & 55,139 & & & & 50,815 & 105,954 & 24,100 & 39,680 \\
\hline 17 & 55,139 & & & & 51,205 & 106,344 & 24.100 & 39.680 \\
\hline 18 & 55,139 & & & & 51,599 & 106,738 & 24, 100 & 39,680 \\
\hline 19 & 55,139 & & & & 51,995 & 107,134 & 24,100 & 39,680 \\
\hline 20 & 55,139 & & & & 52,394 & 107,533 & 24.100 & 39.680 \\
\hline 21 & 55,139 & & & & 52,797 & 107,936 & 24,100 & 39,680 \\
\hline 22 & 55.139 & & & & 53,202 & 108,341 & 24,100 & 39.680 \\
\hline 23 & 55,139 & & & & 53,611 & 108,750 & 24.100 & 39.680 \\
\hline 24 & 55,139 & & & & 54, 023 & 109,162 & 24, 100 & 39.680 \\
\hline 25 & 55,139 & & & & 54,437 & 109,576 & 24,100 & 41,960 \\
\hline 26 & 55,139 & & & & 54,854 & 109,993 & 24.100 & 41,960 \\
\hline 27 & 55,139 & & & & 55,275 & 110,414 & 24, 100 & 41,960 \\
\hline 28 & 55,139 & & & & 55,699 & 110,838 & 24, 100 & 41,960 \\
\hline 29 & 55,139 & & & & 56,126 & 111,265 & 24, 100 & 41,960 \\
\hline 30 & 55,139 & & & & 56,556 & 111,695 & 24, 100 & 41,960 \\
\hline 31 & 55.139 & & & & 56,990 & 112,129 & 24,100 & 41,960 \\
\hline 32 & 55,139 & & & & 57,427 & 112,566 & 24,100 & 41,960 \\
\hline 33 & 55,139 & & & & 57.867 & 113,006 & 24.100 & 41,960 \\
\hline 34 & 55,139 & & & & 58,311 & 113,450 & 24.100 & 41.960 \\
\hline 35 & 55,139 & & & & 58,758 & 113,897 & 24, 100 & 41,960 \\
\hline 36 & 55.139 & & & & 59,208 & 114,347 & 24,100 & 41.960 \\
\hline
\end{tabular}

\footnotetext{
Assumptions: Policy was issued at age 45 as a level death benefit policy; policyholder paid \(\$ 1,200\) per year for twenty years. Death benefit option change was elected before the model was run.

Death is a:ssumed to occur during the next 36 months, and is equally likely in any monch. Present values assume death occurs end-of-month.
}

BOM = Beginging-of-month, EOM - End-of-month
patterns are possible. For example, even when the cash value corridor cannot be reached, the optimal etrategy on an increasing death benefit policy may be to fund the contract to the maximum extent allowed for several monthe. Thit would be true if the credited intereat rate exceeds the prepent value interest rate, the percent-of-prenim load is emall, and the expected future lifetime is long enough to that premium deposited into the contract in the early monthe can be expected to be recovered tax-fre upon death, having accumulated to a greater amount than it would have had it been kept outside the contract. In such a case, the policy' tex-free death benefit statu allow it to be used as a proxy for a tax-free inveftment, with the funde earning a higher rate than would typically be available on a tax-free investment. As econd example, on level death benefit policies in which the tail end of the future lifetime random variable is long, the optimal etrategy could involve withorawing money at the time the model compences, in order to draw down the cash value to such an extent that the net-amount-at-riak increases with time. Several yoars in the future, if the inaured is still living, premium would then have to be repaid in order to keep the policy in force.

\subsection*{6.3 Other Options With Potential for Fet-Rnonnt-it-Risk Mandpalation}

As noted in the previous section, the ability to change death benefit options contributes to the potential for net-amount-at-risk manipulation within the typical univerasl life contract. Several other options exigt that can also be used to manipulate the net-amount-at-risk.

First, companies will routinely allow polieyholder to change his planned premium billing mode. The table below illustrated the present value of future cash flows under the optimal eolution to the Impaired Life Model for the examplas in tables 6.1 and 6.3 , as the billing mode í varied:
\begin{tabular}{rrrrrr} 
& Monthly & Quarterly & Semi-Annual & Annual \\
Table 6.1 & \(\$ 87,720\) & \(\$ 87,621\) & \(\$ 87,476\) & \(\$ 87.192\) \\
Table 6.3 & \(\$ 100.451\) & \(\$ 100.431\) & \(\$ 100,402\) & \(\$ 100.348\)
\end{tabular}

As can be geten, the billing mode has mome impact on the present values. for example, if a level death benefit policy hat virtually no cash value and in to be funded so as to just birely keep the policy in force, the billing mode mould be mitched to monthly, no that premium can be paid as slowly as possible, in order to avoiding paying any unneceasary premium. is If the optimal etrategy involvee funding a poliey so as to take advantage of cash value corridor considerationg, the billing mode should be witched to the mode that will allow cash valuea to build mont: rapidly. \({ }^{14}\)

Second, on corridos policies in which it appare denirable to allow the cash value to grow an large as poesible and as gickly as possible, any ridera on the poliey that appear unlikely to provide a benefit payout could be removed. By reducing the amount of each monthly deduction, this would increase each month ' cesh value, thus increesing the death benefit by more than a dollar-fordollar bawis due to the operation of the corridor.

Finally, holdera ff cash palue rich policies who are unable to take advantage of corridor manipulation due to a lack of available funde may be able to take advantage of the policy loan option. taking a policy loan and paying

\footnotetext{
\({ }^{13}\) on an increasing death benefit option poliey, the death benefit will incresee as presium are paid, but paying for the policy as bowly as possible is \(\operatorname{till}\) the most efficient approach bince the percent of premium load would be lost from any unnecessary premium.

It is interesting to note that billing mode ia generally ircelevent to the holder of etraditional sontract, due to provisione for the return of uncarned frectional premium upon death. The univerisl life counterpett, the zeturn of the unearned portion of the month of death" cost-of-insurance deduction, doef not have the effect of puttinj policyholdere with different billing modes in an equal position.

14the mode eelected will depend upon the month of the policy year that the model comences. For example, if the model commences at the etect of a policy year, and premiumb in exceses of the planned prenium are peid, no further funding that year would be allowed if the bililng mode were annual. However, \(11 / 12 \mathrm{th}\) of the planned premium would be alowed if the payment mode had been changed to monthly. If the model ecraences at the tetart of the sixth month and the billing mode is monthly, \(6 / 22 t h\) cif the planned premium can be paid in subsequent monthe. If the billing mode is changed to remi-annual, \(6 / 12 t h\) of the premium can still be paid, but eince it will be paidearlier in the year, the funds (plus interest earninge) will impent the death benefit earlier.

Actually, in the former example, the beet etrategy would be to commence with monthly mode, bitch to guarterly mode et the beginning of month four, to semi-annual mode at the beginning of month seven, and to annual mode at the beginning of month thirteen.
}

\begin{abstract}
premium with those funds will reduce future cash surrender values due to the deduction of the percent-of-premium load on the money loaned and redeposited and due to the generally lower interest rate credited on cash value held as collateral for the loan. The interest due on the loan will also add to the holding cost of the policy. However, the cash value of the policy will increase, remulting in a greater than dollar-for-dollar increase in the death benefit when the policy reaches the corridor that could axceed the cort of laning and redepositing funds. Subject to limitations on the payment of premiums, this borrowing and redepositing could be repeated.
\end{abstract}

\section*{Chapter 7}

\section*{som Additionnl Considerations}

\begin{abstract}
7.1 Linitatieas of Lineaz Prograning Cost Comparison Methods

Whil linear programang methode are of greater value than traditional cost comparition methode when compering policiee with flexibility, linear programang cost comparimon methode nonetheleag share equeral of the significant drawbacke of the traditional methoct.
\end{abstract}

First, creditional cost compurison methode have been criticized becauge the interest rate used to discount or accumulate cash flow is often choeen arbitraxily, yot a ranking of policies can be affected by the sate chosen. Similarly, both the alocation of funde anong investment alternativee under the General Model. and the runking of policien when the General Model is used as a cost comparison method, are affected by the interest rates assumed to be


A related issue is that policies are usually compared using interest rates representing the "curcent" environment. This is a palatable ameumption, and may be a recessary astumption when comparing contracts with non-guazanteed elements in which an interest asamption underlies the current rate acale, but in period of volatile intereat rates, it is probably not a good" asmumtion. For univerial life products, one could theoreticaliy confront this problem by baning purchase decisions on tha relative performance of policies under several future interest rate ecenariole. Eowever, there are practical difficultien with this approach. On portfolio rate products, it would be difficult to model the rates credited to policy as toe interest environment changen in the abence of rather apecific information about a company" invattment and interest crediting strategie象. On new mxney products, the mechanice of following different generation of canh flow mat be difficult to model uning linear programing techniquen. In either caes, it would be neceseary to make an aasuption regarding how the relationship between the ratee on the various product: and investment alternatives changes as market rates vary. Would epreads remain
constant? The multiple ecenario approach could add ignificantly to the work without adding much to the final product.

Another drawback of all cost comparison methods is that on contracts with non-guaranteed elementa, they are necemearily besed upon the cont etructure at iabue. Faith is thus placed not only in the ptability of underlying assumptions, but also in the integrity of the iseuing company's illustrationa. If the nonguaranteed elements are changed, retrospective study may bhow that in fact a different contract would have been better purchase.

While linear programoing cannot undo a prior purchase decision that turne out, with the benefit of hindsight, to have been lese than the optimal purchase, with only minor modification the General Model can be uned to optimize the allofation of funds between an existing univeral life contract and inveatment altefnatives. Thus, the best can be made of the situation at hand. since interent rates and policy cost gtructures will change over time, as will tax law and other elemente affecting investment decisions, it eeeng elear that any purchase decision based on linear programoing should be followed up frow time to time with an exereise to reoptimize the allocation of funde under then curgent conditione .

\subsection*{7.2 Computational Is \\ Linear programming propides convenient language to phrage policyholder optimization probleme. Linear programing routines such as the Simplex hlgorithm theoretically should solve these probleme fairly directly, and the size of the problem: involved are manageable within m minframe computer environment. However, the clear trend in insurance sales and financial planning illuetzatione is towarde the uee of pereonal computers, especially laptope. Implementing a linear programming based illustration system for use on pereonal computer may require the development of computational and memory management fhortcuts. \\ Several etreamined versione of the simplex Algorithm exist for solving linear programoing problens in which the conetreints aet mpecified conditions. For example, the Danzig-Nolfe decomposition algorithm [26, page 448) can be used}
to solve aone linear programoing problems in which the congtraints can be grouped into \(k+1\) subeeta \(C_{j}\), such that if \(A\) and \(g\) are distinct elemente of \(\left\{C_{1}, \ldots, C_{k}\right\}\), then there is no overlap in the variablea used to express the constrainta in \(A\) and A. (The constraints in \(C_{k+1}\), called the central constrainte, may involve any of the variables.) The constraints in the General Model may be decomponed in this manner by letting \(k\) be the number of investment alternatives (including the inaurance policy) and letting \(c_{j}\) for \(j=1, \ldots, k\) contain those conetraints involving only inveatment \(j\). \(C_{k+1}\) is left for the constrainte that link the investmente.

Similarly, some of the constraints in the models in this paper are upper bound constrainte, that is, they are of the form
\[
x_{i} \leq u_{i}
\]
where \(x_{i}\) is a variable and \(u_{i}\) in a constant. (For example, any annual limit on the amount of money contributed to any single investment is an upper bound constraint.) Techniques exiet that aignificantly enhance the efficiency of the Simplex Algorithm when solving linear programing probleme with upper bound constraints. (See, for example, [27, page 467], or (13, page 2731.)

Ueing etandard computer implementations of the Simplex Algorithm, the time required to solve linear programing problem typically increasee somewhat leas than linearly with the number of variables, and roughly with the cube of the number of constrainte. This suggeste that in setting up the linear programing models presented in tris paper, it would be worthwhile checking for and eliminating any redundancies in the conatraints, before commencing with the solution. For example, in the General model there were constraints for the annual limit on mounts allocable to each investment. If theae limits are sufficiently etringent to prevent the policy'a guideline premium limitationa being exceeded, the guideline conatraintg could be eliminated.

Investigating the utility of various stramlining techniqueg would be a reasonable avenue of further research. Alternatively, one might explore the featibility of developing solution routines that are independent of etandard linear programing wetheds ouch an the Simplex Algoritho. For example, conaider
the optimal solution under the rather simple Term Model. Under thit model, money was applied to the insurance policy to the fullept extent posisible, ar moon as the mean rate of return over the period tho fund wre to remain in the contract exceeded the rate used in the discounting procese. Logic would have yielded a molution, in the absence of formally setting up a linear prograuming problem. The applicability of this idea becomes significantly more clouded under the full version of the General Hodel, when meveral alternative inventments are available, arbitrary pattern of future withdrawala are allowed, tax considerations are brought in, and so forth; however, even within this more complicated eetting, an approach more direct than linear programming to the solution of optimal allocation of funds might be found. tren if this approach did not \(y\) ield an algorithm independent of etandard techniguef for deriving an optimal solution, it might yield rules that could be used to set up an initial basic feasible molution that is fairly close to the optimal eolution, thus reducing the number of iterations required to cone up with the optimal eolution.

This author has not attempted to program a full implementation of the General Model, as deecribed in tection 4.2. such an undertaking would in iteelf constitute rather ubstantial oftware development project. In programing mubet of the model whi develoging the examplen presented in thie paper, the athor ran into everal inetances in which cumulative roundofferror materially impacted rebults derived by Simplex Algorithm technieques (using the code in (251). In some instances, the algorithm derived an optimal solution that wat, in fact, suboptimal; in others, the algorithm concluded chat no teasible eolution exieted when in fact a feasible alution could be developed by inspection. Performing a transformation of variablen so that the all the coefficients of the initial simplex tableaux were of the same relative magnitude eliminated the cumulative zoundoff errox in many, but not all, ceses. Any implementation of the modele in thit paper hould be done keeping the potential for roundoff error in mind.

\section*{7.3 modelling Its saction 7702 and 7702 n}

In the General Model, compliance with the cath ralue corridor provinion of the definition of life dnsurance was ensured by including constrainte (G12) that prohibited the policy from entering the corridor.

When a policy is in the corridor, additional death protection it purchered. From the atandpoint of an insurance and investment program in which the policy face amount Eully meta the policyowner's need for insurance, the cont of the edditional protection subrtacts from the policy's investment eleaent, and is therefore undesirable. Bowever, if the insurance policy is a competitive inventment vehicle relative to the other available option and if the cont of purchasing the additional death benefit is relatively rmall, it is poseible that the optimal etrategy would be to allow a policy to enter the corridor, in epite
 annual return on a dollax of corridor cash value; for example, the return on a corridor dollar at attained age 65 for aniveralel life policy from company \(n\) ie reduced from 10.00 to \(9.64 \%\).
several methods can be used to develop forms of the General Model that permit policies to enter the corridor. Firat, a month-by-month approach in which cath values are explicitly calculated through iterative equations, in a manner similar to that used in the Implired Life model, could be uged. whie this approach would have the advantage of accounting exactly for the inpact of the corridor, it has the disadvantage of greatly increasing both the number of variables and the number of constrainta, thus increasing oubstantially the computer resourcen required for a solution.

Alternatively, on could avoid increseing the number of variablea and conctrainte by approximating the buildup of cath value by an annual account mechanim. Dnder thi approach, deductions for the year could be based upon an annual desth benefit variable that is subject to two constrainte; fiset. the death benefit must be greater than the face mount (in the case of level death

\footnotetext{
'Additionally, though not meeded," the extra death benefit purchased presumably has eomeconcmic value.
}
benefit policy), or the face amount plus the cash value fin the care of an increasing daath benefit policy), and second, the death benefit must be greater than the prior end-of-year caen value times the corridor factor for the current year. Since the objective is to maximite cash accumulation, annual deductione will be based upon the mallest death bencit each your that meets theee two conatraints. \({ }^{2}\) of course, the savings in computation time is at a cont of lack of precision in the caph value calculation, and the resulting molution would only be approximately optimal.

The General Model includes conetraints (G13) to ensure that the contract does not become a modified endowment. \({ }^{3}\) In many circumetances, the tax consequences of becoming a modified endownent art not so onerous an to warrant excluding eontrect \(f\) rom becoming one. Yor example, a policyholder who doen not intend to take any pre-retirement withdrawal and whoee objective in to maximige an age 65 after-tax cas burrender value will not be adreriely affected by a policy becoming a modified endowment and thus should not be constrained to the premium limits required to avoid beconing one. From a linear programoing etandpoint, however, handling contrects that could become modified endowments in a ingle model that allows for intermediate withdrawals cannot be done, because the abrupt change in taxation that occure when policy crosees the modified endowment limite rebults in an objective function that is diecontinuous.

One approach to handling thi problen would be to build a mecond model (the

\footnotetext{
2This same technique can be used it a monthly accumulation mechanim is used In developing aeneral Model, and is more efficient than the techniqua ueed in the Impmired ilfe sodel. in which the death benefit was eplit into two componente, the fece mount (level) or face amount plus cash value (increasing), plus any excese of the canh value time the corridor factor over the face abount or face amount plue cheh value. Thie technique could not have been ueed in the Impared Life Model. because asolution" to the objective function in that model (Of maximizing the actuarial present value of future cain flowi would then have involved attempting to maximize an unbounded death benefit.
\(3_{\text {h policy becomet a modified endownent contract if during any of the firft }}\) eeven policy yeare, the cumulative premiums paid exeesd thone that would be peid on a seven-pay lite plan, ealeulated on basis pretecribed in the regulation. The tax rules for modified endowments are very similer to the rulen for premeture withdrawale from ennuities, i.e. withdrawals are treated firet as taxable income and then as non-taxablib return of invertment, and taxable withdrawals before age 59 1/2 are subject to a ten percent penalty tax.
}
"MEC General Model") in which the constraints causing avoidance of modified endowment status are rempved, and all withdrawale are taxed under the lese favorable modified endowment rules. Then take as the optimel overall solution the better of the optimal solutions from the General Model and the mac General Model.

The MEC General Model will allow solutions under which the contract does not. in fact, become a modified endowment. However, ince the taxation of modified endowmente is leas favorable than the taxation of policien that avoid becoming modified endowmente, the value of the objective function under the General Model will be at least as great as the value of the objective function under the MEC General Model for any point that is in the feapible region of both modele. Thus, if the optimal solution under the MEC Gentrel Model in fact does not cause the contract tc become modified endowment, the eolution under the General Model will be the pore optimal of the two, and the eolution under the Nec General Model would not be choeen. 6

\begin{abstract}
7.4 Modelling Traditionsl Plans

Partly in rebponse ts the development of universal life, recently forme of traditional participating insurance bave been introduced that exhibit a significant degree of flexibility. Thene plene typically combine a baee policy with the purchese of paid-up additione (both through dividends and through premium paid on a paid-up additions rider) and a flexible death benefit yearly renewable term rider. this efction outlines an approach to developing the insurance portion of the beneral model in which such a flexible traditional plan
\end{abstract}

\footnotetext{
\({ }^{4}\) h contraet becomes modified endowment if it metes any one of the following meven condition:

It would not be poseible to modify the ceneral Model to meet this set of or"
 endowment tax rules actually apply. Linear programing theory recuires that the feasible region be convex; "or" conditiong define non-convex fexibible fegion.
}
is substituted for aniversal life plan.
This development is not intended to be complete; rather, it is meant to give the flavor of one polsible approach, highlighting along the way mimilarities and differences between building a model for universal life plant end building one for traditional plans. For the eake of tuplicity, the policy loan option is ignored, and the mechanics of policyholder taxation are not explored. In real life" uses, it would be denirable to account for taxation; with eufficient effort, methods imilar to those used in the General Model could be dereloped.

The key difference between modeliing traditional contracta and universal Iife contracts is that in traditional contracts, the caloh flow elements are inextricably tied to the amounts of each type of coverage (baee policy, term, or paid-up additions) that are purchased. Any premium flexibility is obtained by varying the mix of these three types of coverage, mbject to meeting the total coverage needs of the invured and any dministrative mules imposed by the insurer. Since generally the base policy is not divisible, i.e., it cannot be surrendered in part,'s any intermediate noed for funde must be provided through the investment alternatives or through cash value on surrendered paid-up addition.

Define the following notation:
[P] FMin, \(\quad\) Minimum total coverege reguired by insured, year \(t\)
[S] Pas
[P] Premper000pu Paid-up additione purchase rate, beginning of year \(t\)

\footnotetext{
\({ }^{5}\) sowe companies will process a "partial eurzender" of a traditional plan by effectively mplitting the policy in two and surrendering one piece. This give the policyholder the ability to reduce the face amount or to gain accese to a portion of the cash value, without replacing the policy. Then thit it done, however, it is ueually don axtracontractualiy. It is doubtful that a company would be willing to process a seried of annual policy surrenders in order to provide an income merean.
}
\begin{tabular}{|c|c|c|}
\hline [P] & Polpee & - Policy fee, assumed fixed by duration \\
\hline (P) & DivPer000\% & - Dividend per thousand, end of year \(t\), me (mast, TERK, PUA \} \\
\hline [P] & crier \(000{ }_{8}^{\text {\% }}\) & - Cash value, end of year \(t\), "e\{BASE, PJA \} \\
\hline [D] & Inmurancecr: & - Insurance policy cash flow, beginning of year \(t\) \\
\hline [P] & Per & - Period of time in yeare the policy in to stay in force \\
\hline
\end{tabular} An objective function involving maximizing a future aum of insurance camb valuen and inveatment fund belances would be developed, subject to the following eets of constraints:
(TR1) The total coverage in force each year at least meets the insured's need for ineurance:
\[
\text { For } t=1 \text { to Per: FBASE }+\mathrm{F}_{\mathrm{t}}^{\text {TERM }}+\mathrm{F}_{\mathrm{t}} \geq \text { FMin }_{t}
\]
(TR2) The total peid-up additions face amount in force each year ia not leas than zero:

For \(t=1\) to Per
\[
F_{k}^{r \operatorname{con}}-\sum_{j=1}^{\mathrm{t}} F B u y_{j}^{p o n}-\sum_{k=1}^{\mathrm{t}-1} F S u \leq Y_{k}^{p a n} \geq 0
\]

In the absence of congtraints eet (TR2), the optimal solution could involve surrendering noneximtent paid-up additions and "replacing" them with cheap term incurance.
(TR3) Each year' indurance plan cesh flow, combined with the caeh flow from investments, matches the policyholder's desired net (positive or negative) cash flow. In constructing these constraints, the cash flow into the ingurance contract would be the sum of the premiun paid on the base policy, the yearly renewable term, and the current year purchase of paid-up additione, laea any dividende payable on coverage in force through the previous year, leme any cash value made available through the surrender of paid-up additions:
for \(t=1\) to Per:
1000 . Ingurancear \(=\) Flase . Premper \(000_{t}^{\text {ense }}\)
\(+F_{t}^{\text {TEMN }}\). Premper000 \({ }_{t}^{\text {TER }}\)
+ FBuyt \({ }_{\text {pla }}\). Premper000 pua
+ Polpee
- Fense - DivPer000 \({ }_{t-1}^{\text {Puse }}\)

- Fpum Divper000 \(\mathrm{mu}_{t-1}\)
- FSurymu . cvper \(000_{t-1}^{\text {pun }}\)

Constraints impoeed by the iesuing company's administrative rules, of courge, will vary from company to company, but (TR4) through (TR8) give mamplaf that would be typical of thic type of plan:
(TR4) The deeired minimum total death benefit ie level, or increages annually under mone fixed schedule. Rather than defining constrainte, thee conditiong could be met through appropriately entexing the parameter: Fing. In a molution maximizing an accumulation of cash values plus investment fund balanees, term ingurance would never be purchased if it would put the total death benefit above FMint, ince such term insurance comes at a cont but is unnecessary. Paid-up additions might be purchased, however, if company e adminietrative zules allow such a purchate (Beve (TR7)) and if the rate credited to additions dividends make them more attractive than other investments, in epite of the cost of the additional death benefit. This is analogous to the situation in the ceneral Model for universal life in which it would be desirable to allow premium payments that would put the policy into the corridor, when the added cost of protection does not diminigh the return on the univereal life policy to a point that makea it leas desirable than other investments.
(TR5) The base plan coverage is no leas than a fixed percentage \(k\) ' of the total plan coverage at istue:
fease \(\mathbf{z} \boldsymbol{K}^{\prime} \cdot\) FNing
(TR6) The total term coverage in any year cannot exceed a fixed percentage k" of the total plan coverage at insue:

(IR7) A given year' purchaé of paid-up additions is limited to the amount required to \(f 111\) in the gap between the minimum planned or delired coverage,

FMint, and the exigting base policy face plus paid-up additions face: \({ }^{6}\)

Ihe intent of this set of conctraints is to limit lump eum purchasen of paid-up additions when euch purchaee would result in total coverage that exceeded the amount for which the ingured wee originally underwritten. \({ }^{7}\) A particular company's rulea for the purchase of paid-up additiona are likely to be more liberal than the rule etated above. For example, the prior year'a dividend may be allowed to be applied to purchase paid-up additions, even if this raisea the total death benefit above the anticipated total plan coverage; aimilarly, the insured may have the right to such purchases up to some pre-defined ennual premium limit. Constraints (TRT) may be modified to account for one or both of these poesibilities.
(TR8) The eurcender of paid-up additions is allowed only to the extent that the total coverage in force for the previous year exceeds the desired minimup coverage for the coming vear. The amount by which the previous year's coverage exceede the coming year's minimum coverage may be obtainta by adding the tet of conatrainta:

```

 where Presxecom, Anount by which previous year's coverage in force
 exceeds the minimum coverage for the coming year.
 Comexcpre, \(=\) Amount by which the minimum coverage for the coming year
    ```
        exceeds the previou year' coverage in force.

For each vinlue of \(t\), one or both of PrekxcCom, and consxcPreq will be zero. Then the desired restriction on the amount of paid-up additione that may be surrendered in any year is obtained by adding the set of constraints:
```

For t : 1 to Per = 1: FSurremp S Prerxccom,

```

The intent of the above constraints is to guard against paid-up additions baing

\footnotetext{
\({ }^{6} \lambda\) tern for the raduction in face amount due to surrenders of paid-up additions is not necesesry, lince it would be bub-optimal to both surrender and purchase paid-up additions imultaneouly.
\(7_{\text {A }}\) company would likely allow such a purchase only with evidence of insurability.
}
murgendered and repleced with term insurance, which a company may with to avoid Eince much a transaction will result in an increase in the net-amount-at-ritek. policyholder taration considerations also will need to be modelled. Generally, there will be no problea with meeting the definition of life insurance (each component part would be expected to meet the net single premium tept of IRS section 7702); howerer, as with the ceneral Model for universal life plans, there is the possibility that urrenders of peld-up additions within the firat fifteen policy yeare will trigger a taxable event. Additionaliy, conetreinte to prohibit the contract from becoming a modified endownent contract, which reaulta in an abrupt, non-linear change in tax status, would need to be developed.

\subsection*{7.5 Son Final Thoughts and fuggestions for Further lesearch}

Making inturance purchate decisiont based upon linear programing modelt ultimately will be worthwhie only if the resulting savings fuetify the effort required to obtain those navinge. Thi官 paper has iliustrated several ingtances in which linear programing modela enhance policyholder value; however, e policyholder must have both the desire and the sophistication neceseary to utilize these techniques for them to be worthwhile. Some further etudy of the potential of linear programing techniquet in enhancing policyholder value, using policies ectually available in the inourance marketplace, would be useful. For example, in chapter five of thi paper, an example was given in which purchating two universal life policien was shown to be suparior to purchasing a oingle policy, when both the death benefite of the two policies and the premium treams were carefully constructed. It would be interesting to teft the savinge potential of this method by using combinations of policies that are actually available. It seme unlikely that the purchaeer of modent face amount would find it worth the inconvenience of keeping track of the varying prenium payment required on two policies in order to obtain a fall increase in caph eccumulation. On the other hand, on large ale within nophitelcated markets, the use of meh techniques ma not be outside the zealm of posibibility. The broker offering linear programing based ineurance salea along with trangparent
administration of the mutiple contracts (including re-optimization of the allocation of premium between contracts as companies adjust cost etructurea) could offer a better "product" than any single product on the maret.

The Impaired Iife Model illustrated the potential for net-anount-at-risk manpulation that exiete in flexible premium univereal life contracta. Again, it mat be hard to vigullize the average policyholdes utilizing linemr programing technigues to earn few extra dollarg on the policy of an ingured who is near death. However, even at an unsophisticated level, it is likely that a material percentage of policyholder will recognize that premium payments can be sipped when it is clear that the cash value it tufficient to fund the policy until death, or that promium can be resuned on low cash value policies that had, in effect, lepeed for extended term and wert bout to go out of torce. Furthermore, given the long torm nature of ineurance contracte, the sophistication of consumere and their accese to information when currently iamued contracts approach elaims time could be mbetantial. The development of a secondery market for insurance contracta by firme willing to purchase contractis on impaired livea could also give rise to gophisticated techniques being used to utilize options in these contracts to their fulleat.

The fact that the semingly innocuous flexibility of the univeral life contract my result in adverse mortality experience euggesta everal related areat for further researih. firit, alhough mortility etudies generally use a contract's face amount as the measure of exposure, the considerations above suggest that both induntry-wide and company mortality studies ahould be done separately for univeriel life products, using the net-amount-at-risk rather than the face mount. Second, until much actual data is available eome modeling to entimete future univerged. Iffe mortality experience, at compared with experience

\footnotetext{
The option within the univereal life contract to lapese for extended term and then to reinstate han been recognized and was an elemat of concern duxing the developrent of univereal life valuation and nonforfeiture regulatione. See [6]. including the discustions.
somenti-melection may almo be present at issue, when the plan if set up. For example, those in lete good health may be more likely to tet the planned premium low, treating the contract more as term insurance; thoes in good health may be more likely to fund the contract with single pramiums or generous annul premiume.
}
```

on etandard ordinary lives, would be of value, along with the development of
appropriate methodology to recognlee any difference in pricing. Finaliy, if it
appears univeremi life mortality experience can be expected to be mignificantly
less favorable than traditional experience, valumtion and nonforfeiture mortality
tables dietinct for univereal life type contracts ehould be developed, ae well
as the regulatory apparatus neceseacy to permit their adoption.
It has been noted that -ilexible premium univereal life may be even more
'consumer-oriented' than companiles realize.me This author egreeg with that
asmesament of the universal life product. The linear programming modela
premented in this paper--the Term Model, the cenersl Model and its asmociated
cost comparimon method, and the Impaired Life Model--provide a viable means to
utilize this very conaumer-oriented product to the consumer's beet advantage.

```

\footnotetext{
\({ }^{9}\) See Thoman C. Kabele's discusalion of [6].
}

\section*{Appendix}

Thia appendix describes the cost structure of each of the chree sample universal life flans used in the examplen in thig paper. The finear coefficiental \(\Delta C V C\)
 two to exprese cash valuen as linear function of prior transactions are aleo 1isted.

The Company a plan chargem a 6t load on premiume, credite interast at 104, and has no monthly per policy fee. The Company B plan charges a 68 load on promiume, credits interest it 94, has no monthly per policy fee, and charges cost-oiindurance rates that are lower than thone of Company \(A\). The company \(C\) plan charges at load on promiums, credita interest at 98 during years \(1-10\) and 10 : from yeara 11 on, and chargee a monthly fee of \(\$ 2.50\); ite cost-of-ineurance charges fall momewhere between those of company A and company B. The planm were designed so that \(\$ 100,00 C\) level death benefit policies issued to a person aged 45 will develop identical 20th year cash values if \(\$ 1,200\) of annual premium is paid.
IRS aection 7702/7702A compliance factors are also lieted.

Product Specifications and Linear Coefficients for Compeny A
\begin{tabular}{|c|c|}
\hline Portfollo Aate, years 1. 10 & 10.0x \\
\hline Portfolio Rate, yeare 11 - 10 & 10.0\% \\
\hline Lown Cherged ot & 0.0x \\
\hline Lowned Flund Earme ot & 6.0\% \\
\hline Guaranteed Interest mate & 4.0x \\
\hline Percent of Premiun Loed & 6.08 \\
\hline Per Month Charge & \$0.00 \\
\hline Surrender Charge Per \$1,000 Face (lasue Age 65)" & 57.50 \\
\hline Minimam lasue face & \$25,000 \\
\hline
\end{tabular}
- Surrender charge ahown is for year 1. Surrender cherge gradet down limearly in arruel fncrementa over is years.
\begin{tabular}{|c|c|c|}
\hline 45 & 2.6563 & 1.102985490 \\
\hline 46 & 2.8733 & 1.103164796 \\
\hline 47 & 3.1046 & 1.103419924 \\
\hline 68 & 3.3533 & 1.103606306 \\
\hline 49 & 3.6336 & 1.104003623 \\
\hline 50 & 3.9333 & 1.104334436 \\
\hline 51 & 4.2016 & 1.104719013 \\
\hline 52 & 4.8906 & 1.105170767 \\
\hline 53 & 5.1466 & 1.105674633 \\
\hline 54 & 5.6755 & 1.106259315 \\
\hline 55 & 6.2602 & 1.106906013 \\
\hline 56 & 6.9091 & 1.107624123 \\
\hline 57 & 7.59\%4 & 1.103387410 \\
\hline 58 & c. 3434 & 1.109212918 \\
\hline 59 & 9.183 & 1.110145366 \\
\hline 60 & 10.1222 & 1.11116222 \\
\hline 61 & 11.1688 & 1.112344321 \\
\hline 62 & 12.3523 & 1.113604720 \\
\hline 63 & 13.7075 & 1.185173676 \\
\hline 66 & 15.2400 & 1.11608159 \\
\hline 65 & 16.9334 & 1.110771987 \\
\hline 68 & 18.7565 & -.120610466 \\
\hline 67 & 20.7331 & 1.123024385 \\
\hline 68 & 22.8567 & 1.125405194 \\
\hline 69 & 25.129 & 1.127\%3510 \\
\hline 70 & 27.743 & 1.130954930 \\
\hline 71 & 34.2280 & 1.134647653 \\
\hline 72 & 34.1693 & 1.158180488 \\
\hline 73 & 36.1026 & 1.142652388 \\
\hline 74 & 42.5232 & 1.147690020 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & -2.192414264 & -40.049060336 & 1.100005534 \\
\hline & \(\cdot 3\) & & \\
\hline OSS17 & -3.264368463 & -40.057347931 & 1.100011144 \\
\hline f.055321241 & -3.526275993 & -40.061966193 & 1.100012036 \\
\hline 1.055483853 & -3.021534470 & -40.067129478 & 1.100013042 \\
\hline 1.055657731 & -4.1373135\% & -40.072672402 & 1.100016118 \\
\hline 1.055859080 & -4.50441099 & -40.079115361 & \\
\hline 1.056097309 & -4.935636 & -40.006682722 & \\
\hline 1.056362006 & -5.616609330 & -40.095121738 & 1.100018475 \\
\hline 1.056669200 & -5.974731734 & -40.104912574 & 1.100020372 \\
\hline 1.057009004 & -6.592056662 & -40.115739722 & 1.100022470 \\
\hline 1.057386172 & -7.277358137 & -40.127759622 & 1.100024800 \\
\hline 1.05770000 & -8.006192341 & -40.140533047 & 1.100027274 \\
\hline 1.058220584 & -8.7423142 & -40.15434393 & 1.100029948 \\
\hline 1.058709008 & -9.604368115 & -40.169939559 & 1.100032\%6 \\
\hline 1.059255969 & - 10.67800738 & -40.187342783 & 1.100036333 \\
\hline 1.059063511 & -11.703580306 & -40.206699433 & 1.100040075 \\
\hline 1.060535943 & -13.044131043 & -40.228750012 & 1.100046338 \\
\hline 1.061346036 & -14.484712327 & -40.253950413 & 1. 100049203 \\
\hline 1.062241 & -16.115275632 & -40.282466690 & 1.100056703 \\
\hline 1.063231962 & -17.920095909 & -40.314001505 & 1. 100060782 \\
\hline 1.066294991 & -19.066333262 & -40.34794911 & 1.100067326 \\
\hline 1.065457240 & -21.990173374 & -40.384860670 & 1.100074621 \\
\hline 1.066702028 & -24.253412209 & -40.424503409 & 1.100002037 \\
\hline 1.068038747 & -26.696221302 & -40.467059736 & 1.100090204 \\
\hline 1.069600627 & -29.552707720 & -40.516777099 & 1.100099732 \\
\hline 1.071631228 & -33.269974819 & -40.581402922 & 1.100112097 \\
\hline 1.073368120 & -36.452763792 & -40.636670960 & 1.100122652 \\
\hline 1.075696271 & -40.7235624 & - & \\
\hline (1) & -45.542603070 & & \\
\hline
\end{tabular}
t.053383069 1.053383479 1.053383915 1.053304305 1.053384915 1.053385481 1.053306139 1.053386911 1.053387773 1.053388772 1.053309076 1.053391102 1.053392406 1.053393811 1.053395400 1.053397171 1.053390141 1.053408304 1.053403045 1.053406039 1.053410038 1.053413482 1.053417215
1.05342127 1.053425524 1.033425524
1.053430535 1.053437042 1.053437042
1.053442597 1.053442597
1.053450027 \(1.055350027-40.007584018\) 1.053458378 -44.649731735

\subsection*{40.000159970 40.000173039 40.00018696} 40.000201946 40.000218 .026 -40.000236875 .40 .000257051 40.000202682 \(+60.000309944\) \(-40.0003617 \%\) 40.000377009 \(\begin{array}{r}40.00041600 \\ \hline\end{array}\) -40.000457600 -40.000502467
-40.005531 -40.003502467
-40.000553109 -40.000553109
-40.000609593 40.000609591
40.000672382 40.000672502 40.000125532 .40 .000917600 .40 .001019793 40.00112950 \(-40.001246629\) -40.001376403 \(-40.001513420\) -40.001673291 40.0018752739 40.002057935 40.002057635 40.002296713

Product Specifications and Lineer Coeffictent: for Comperry
\begin{tabular}{|c|c|}
\hline Portfolto Rate, yeers 1-10 & 9.08 \\
\hline Portfolio Eate, veors 11 - 10 & 9.08 \\
\hline Lomers Charged at & 8.08 \\
\hline Lound Fund Earme tt & 6.08 \\
\hline Ouerenteed Interest Rate & 4.0x \\
\hline Percent of Preminm Leed & 6.0\% \\
\hline Par Month Charge & 80.00 \\
\hline Surrender Cherge Per \$1.000 Fince (lsout Age 45)* & 87.50 \\
\hline Minimem iatue ince & \$25,000 \\
\hline
\end{tabular}
- Surronder charge mown is for year i. surrender charge oredes down linearly in armual incremente over 15 yeara.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 45 & 2.1248 & 1.092318289 & 1.049331219 & -2.221950166 & -30.029380601 & 1.090007357 & 1.048112224 & -2.219760468 & -30.000095814 \\
\hline 46 & 2.2863 & 1.092696680 & 1.049426260 & -2.391014043 & -30.031615159 & 1.090000132 & 1.048112527 & -2.300470922 & -30.000103097 \\
\hline 47 & 2.4573 & 1.092681476 & 1.049522763 & -2.570050555 & -30.033901301 & 1.090008740 & 1.048192848 & -2.567121891 & -30.000910008 \\
\hline 48 & 2.6401 & 1.092881196 & 1.049620055 & -2.761473146 & -30.036511135 & 1.090009350 & 1.048113191 & -2.738092372 & -30.000119051 \\
\hline 49 & 2.8455 & 1.093105643 & 1.049746400 & -2,976600629 & -30.039353956 & 1.090010121 & 1.068143576 & -2.972673116 & -30.000128313 \\
\hline 50 & 3.0636 & 1.093346017 & 1.049872090 & -3.205076509 & -30.042372906 & 1.090010496 & 1.048113986 & -3.200521657 & -30.000138140 \\
\hline 51 & 3.3170 & 1.093621032 & 1.050018122 & -3.470585048 & - 30.045080961 & 1.090011790 & 1.048114661 & -3.465248212 & -30.000149574 \\
\hline 52 & 3.6141 & 1.093945001 & 1.050189379 & -3.764065502 & -30.04999656 & 1.090012854 & 1.048115019 & -3.775624343 & -30.000162972 \\
\hline 53 & 3.9639 & 1.096306630 & 1.050379522 & -4.127117673 & -30.056561787 & 1.090014027 & 1.046115638 & -4.120170466 & -30.600177843 \\
\hline 54 & 4.3253 & 1.094723935 & 1.050599465 & -4.527690037 & -30.059044614 & 1.090015306 & 1.048116354 & -4.518619549 & -30.000195042 \\
\hline 55 & 4.7446 & 1.095142ars & 1.050661519 & -6.0\%73005\% & - 30.065653695 & 1.0900160775 & 1.048187141 & -4.95666334 & . 30.000213950 \\
\hline 56 & 5.2074 & 1.095609633 & 1.051100338 & -5.653314614 & - 30.072067010 & 1.090018521 & 1.048118010 & -5.46152351 & -30.000234819 \\
\hline 57 & 5.6950 & 1.0962237\% & 1.051389769 & -5.965295497 & -30.07882574 & 1.090020256 & 1.045118925 & -5.969550752 & -30.000256807 \\
\hline 58 & 6.2104 & 1.095797400 & 1.051691015 & -6.515126991 & -30.006002035 & 1.090022117 & 1.048119907 & -6.4\%350449 & - 30.001280409 \\
\hline 59 & 6.8065 & 1.097462274 & 1.052031550 & -7.133241091 & -30.094239490 & 1.090026209 & 1.048121011 & -7.110763732 & - 30.000306928 \\
\hline 60 & 7.4591 & 1.08159273 & 1.052400579 & -7.818545195 & -30.103293055 & 1.090026530 & 1.048122236 & -7.792522023 & -30.00033636 \\
\hline 61 & 8.1805 & 1.000950253 & 1.052823531 & -0.578307361 & - 30.113306603 & \(1.0900290 \%\) & 1.0481235\%0 & -8.54617791 & -30.000360037 \\
\hline 62 & 8.9987 & 1.098949139 & 1.053296557 & -9.460311117 & -30.124667767 & 1.090032006 & 1.048125126 & -9.400064 178 & -30.000605783 \\
\hline 63 & 9.9287 & 1.100071666 & 1.053836721 & -10.420466731 & -30.137597625 & 1.090035314 & 1.048126471 & -10.372552133 & -30.000497720 \\
\hline 64 & 10.9746 & 1.102022448 & 1.054442093 & -11.523570963 & - 30.152122620 & 1.090039934 & 1.048120834 & -11.465017265 & -30.000494875 \\
\hline 65 & 12.1020 & 1.103363793 & 1.055167673 & -12.090566531 & -50.1690500\% & 1.090063364 & 1.048131119 & -12.737074373 & -30.00054p7er \\
\hline 66 & 13.5047 & 1.704014578 & 1.053900339 & -14,197220297 & -30.187320\%51 & 1.090048034 & 1.048133583 & -16.100690095 & -30.000600977 \\
\hline 67 & 14.9278 & 1. 100383092 & 1.056734307 & -15.703709427 & -30.207151516 & 1.090053095 & 1.048136254 & -15.595250074 & - 30.000675150 \\
\hline 68 & 16.4554 & 1.100072264 & 1.057621519 & -17.323041454 & -50.229447170 & 1.090058529 & 1.048139121 & -17.191191035 & -30.000742037 \\
\hline 89 & 18.0935 & 1.109036291 & 1.65857387 & -99.062085763 & -30.251303403 & 1.090064355 & 1.048142196 & -18.902505375 & -30.0003t5908 \\
\hline 70 & 20.0047 & 1.112006165 & 1.05966159 & -21.094365183 & -30.277996544 & 1.690071153 & 1.048145783 & -20.0903009\% & - 30.000902091 \\
\hline 71 & 22.4867 & 1.144762477 & 1.081131432 & -23.73699498 & -50.312676127 & 1.090079075 & 1.048150430 & -23.400502930 & -30.001013928 \\
\hline 72 & 24.6019 & 1.117124522 & 1.062367042 & -25,997666332 & -30.342320726 & 1.090007506 & 1.048154612 & -25.702274971 & -30,001 109401 \\
\hline 73 & 27.4337 & 1.120291603 & 1.064022220 & -29.020454846 & -30.302025431 & 1.09009757 & 1.048159720 & -28.650056020 & -30.001237102 \\
\hline 74 & 30.6167 & 1.123044509 & 1.065886124 & -32.444650352 & -30.626729146 & 1.090100900 & 1.046165702 & -31.906392558 & -30.001380641 \\
\hline
\end{tabular}

Product Specificetions and Lineer Coefficiente for compery c
\begin{tabular}{|c|c|}
\hline Portfollo late, yeare 1-10 & 9.08 \\
\hline Portfollo Rete, yours 11. 10 & 10.0\% \\
\hline Lome Charged et & 0.08 \\
\hline Loened fund torme at & 6.08 \\
\hline cuarmiteed Intereat mate & 4.0x \\
\hline Percent of Pranium Loed & 2.08 \\
\hline Per Month Cherfe & \$2.50 \\
\hline Surrander Charge Par \$1,000 liace (lasue Age 65)* & \$7.50 \\
\hline
\end{tabular}

MInlmin Issuv Fsce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825,000
* Surrender charge ahown is for year 1. surrender charge aradea down linearly in anmul Incraments over 15 yeara.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Acteined Age & Current Arrucel COI Rete Per \$1,000 & \({ }^{\text {acve }}\) & 'acvert' & \(1000{ }^{\text {'13CVP, }}\) & \(1000{ }^{\text {/ }} \mathrm{CVL}_{3}\) &  & 'scyctis & \(1000{ }^{\prime} \mathrm{ACVF}_{1}\) & 1000 'scvi \\
\hline 45 & 2.7626 & 1.093015050 & 1.049690634 & -2.809769641 & -30.030206547 & 1,090009026 & 1.048113421 & -2.886067727 & -30.000124575 \\
\hline 46 & \[
2.9451
\] & \(1.0932146 \%\) & 1.040803792 & -3.000932365 & -30,040732578 & 1.090010475 & 1.048113763 & -3.076726976 & -30.000132806 \\
\hline 47 & 3.1356 & 1.093422720 & 1.049913573 & -3.200509663 & -30.043369614 & 1.090011153 & 1.048114121 & -3.27573915 & -30.000141396 \\
\hline 48 & 3.3365 & 1.093642352 & 1.050029362 & -3.491020446 & -30.046150917 & 1.090011867 & 1.048116498 & -3.485619838 & -30.000150656 \\
\hline 49 & 3.5246 & 1.093848026 & 1.050137783 & -3.604154761 & -30.048755296 & 1.090012536 & 1.048114051 & -3.682127735 & -30.000158936 \\
\hline 50 & 3.7760 & 1.096122971 & 1.050282716 & -3.951603220 & -30.052236535 & 1.090013430 & 1.040115323 & -3.94476526i & -30.000170272 \\
\hline 31 & 4.0247 & 1.094395026 & 1.050626112 & -6.212442092 & -30.055880066 & 1.090014315 & 1.048115790 & -4.2045422\% & -30.000181487 \\
\hline 52 & 4.3623 & 1.004764625 & 1.050520002 & -6.566500091 & -30.060357166 & 1.090015516 & 1.048116423 & -6.557273522 & -30.000196711 \\
\hline 53 & 4.7349 & 1.005172256 & 1.050035723 & -4.957410318 & -30.0655102\% & 1.090016041 & t.048t17423 & -6.946529723 & -30.000213512 \\
\hline 54 & 5.2215 & 1.005705075 & 1.051116475 & -5.468116378 & -30.072262429 & 1.090015572 & 1.040118036 & -5.656032603 & -30.000235455 \\
\hline 55 & 5.0185 & 1.106417446 & 1.056732355 & -6.125679786 & -60.107560262 & 1.100020385 & 1.053309042 & -6.109134725 & -40.000350408 \\
\hline 36 & 6.4235 & 1.10709493 & 1.057105069 & -6.766661281 & -40.118801295 & 1.100023066 & 1.053390180 & -6.746460673 & -40.000386964 \\
\hline 57 & 7.0665 & 1.10779375 & 1.057477682 & -7.44309677 & -40.130676125 & 1.100025365 & 1.053391390 & -7.419464532 & -40.000425567 \\
\hline 58 & 7.7594 & 4.100365761 & 1.057880331 & -8.176447074 & -40.443517200 & 1.100027552 & 1.053392706 & -8.147006953 & -40.00046729 \\
\hline 59 & 0.5873 & 1.109483297 & 1.050362314 & -9.052540552 & -40.158066650 & 1.100030223 & 1.053394272 & -9.016274575 & -40.000517155 \\
\hline 60 & 9.5149 & 1.110312153 & 1.058902295 & -10.034516553 & -40.176072976 & 1.100034153 & 1.053396026 & -9.990226497 & -40.000573019 \\
\hline 61 & 10.6056 & 1.111726166 & 1.059536200 & -11.191535299 & -40.193334642 & 1.100038072 & \(1.0533900 \%\) & -11.136481975 & -60.000638765 \\
\hline 62 & 11.6502 & 1.113485146 & 1.060267111 & - 12.519469769 & -40.2195791 \({ }^{\text {d }}\) & 1.100042564 & 1.053400451 & -12.450632816 & -60.000716162 \\
\hline 63 & 13.2966 & 1.114715726 & 1.061106927 & -14.047510171 & -40.246312994 & 1.100047727 & 1.05340316 & -13.960925482 & -40.000000768 \\
\hline 64 & 14.9352 & 1.116541647 & 1.062063766 & -15.790722663 & -40.276793007 & 1.100053609 & 1.053406263 & - 95.681432399 & -40.0006P9652 \\
\hline 65 & 16.5047 & 1.118393651 & 1.063033835 & -17.55803288 & -60.30769176 & 1.100059566 & 1.053409398 & -17.423892763 & -40.000009304 \\
\hline 66 & 18.3814 & 1.120390739 & 1.064079350 & -19.465626017 & -40.340990056 & 1.100065979 & 1.053412773 & -19.299921842 & -40.001106998 \\
\hline 67 & 20.3184 & 1.122359558 & 1.065214117 & -21.536357338 & -40.377126914 & 1.100072932 & 1.053416432 & -21.333776946 & -40.001223656 \\
\hline 68 & 22.3976 & 1.124691857 & 1.06433700 & -23.763262156 & -40.415960118 & 1.10000039 & 1.053420360 & -23.516055739 & -40.001348874 \\
\hline 69 & 24.6273 & 1.127397911 & 1.067743300 & -26.136150705 & -40.657654258 & 1.10006e400 & 1.053426372 & -25.058176283 & -40.001483158 \\
\hline 70 & 27.2286 & 1.130320009 & 1.06927335 & -28.0341169\% & -40.506362650 & 1.100097737 & 1.053629465 & -20.589602001 & -40.001639025 \\
\hline 71 & 30.6042 & 1.134840069 & 1.071262693 & -32.595029205 & -60.569674963 & 1.100109055 & 1.053635862 & -32.134094860 & -40.001043122 \\
\hline 72 & 33.4859 & 1.137405106 & 1.072964175 & -35.712277306 & -40.623818063 & 1.100120199 & 1.053461306 & -35.160004327 & -40.002018676 \\
\hline 73 & 37.3406 & 1.141764765 & 1.075264776 & -39.894916979 & -40.696374800 & 1.100134036 & 1.053448507 & -39.207437297 & -40.002248820 \\
\hline 74 & 41.6727 & 1.146725728 & 1.077844557 & -44.693949045 & -40.778112059 & 1.10014958 & 1.053456772 & -43.73664260 & -40.002509742 \\
\hline
\end{tabular}

\section*{IRS Section 7702/7702A Compliance Factors}

\section*{Companies \(A\) and \(B\) \\ Company C}

Guideline Premiums Per Thousand:
\begin{tabular}{llrr} 
Issue Age 45 & Single & \(\$ 214.64\) & \(\$ 205.88\) \\
& Annual Level & 17.56 & 16.84 \\
& Annual Increasing & 40.72 & 39.05
\end{tabular}

Guideline Premiums Per Pclicy:
\begin{tabular}{llrr} 
Issue Age 45 & Single & \(\$ 0.00\) & \(\$ 49.87\) \\
& Annual Level & 0.00 & 29.02 \\
& Annul Increasing & 0.00 & 29.62
\end{tabular}

Seven Pay Limit Per Thousiand:
Issue Age 45 \$46.86 \$46.86

Cash Value Corridor Factors:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & \(c\) & Age & Fac \\
\hline 45 & 215 & S0 & 185\% & 55 & 1508 & 60 & 1304 & 65 & 1204 & 70 & 58 \\
\hline 46 & 209* & 51 & 178* & 56 & 146\% & 61 & 128: & 66 & 119t & 71 & 1138 \\
\hline 47 & 203* & 52 & 171* & 57 & 142* & 62 & 126* & 67 & 118* & 72 & 111: \\
\hline 48 & 197* & 53 & 164* & 58 & 138\% & 63 & 124* & 68 & 117\% & 73 & 109\% \\
\hline 49 & 191\% & 54 & 157: & 59 & 134: & 64 & 122* & 69 & 116* & 74 & 107: \\
\hline
\end{tabular}

\section*{Bjbliography}
(1) Babbel, David F., and Ohtauka, Eisaku, "Aspecte of Optimal Multiperiod Life Inmurance," The Joumpl of Biek and Ineurance, September, 1989, PP. 460-481.
[2] Belth, Jomeph M., "A System for the Exploitation of the Terminaliy III," The Inturance Forum, March, 1989.
[3] glack, Kenneth Jr., and Skipper, Harold Jr., Life Ingurance, 11th ed., Englewood Cliffe, NJ: Prentice-Hall, Inc.. 1987.
[4] Bradiay, Stephen P., Hax, Arnoldo C., and Magnanti, Thomas L., Apolied Kathematical Progranming, Reading, MA: Addison-Wesley, 1977.
[5] Bronson, Richard, gperations Research, New York: McGraw-Rill. 1982.
[6] Chalke, Shane A., and Davlin, Michael F., Oniveral Life and Nonforfeiture: A Generalized Model, "Tranfactiont, Vol. XXXV (1983), pp. 249-320.
[7] Cherin, Antony C., and Hutchins, Robert C., "The Rate of Return on Untversal Life Insurance," The Journal of Rick and Ingurance, December, 1987, Pp. 691-711.
[8] Chung, Yosup, and Skipper, Harold D. Jr.. "The Effect of Interest Rates on Surrender Valuef of Univermal Life Policies," The Journal of Rigk and Inturance, June, 1987, Pp. 341-347.
[9] D'Arcy, Stephen P. and Lee, Kuen Chang, "Universal/Variable Life Ineurance Versub Similar Unbundled Invemtment Strategies," The Journal of Rilk and Inturance, September, 1987, Pp. 452-477.
(10) DeeRochere, Christian J., "The Definition of Life Insurance Under Section 7702 of the Internal Revenue Code," Iraniections, Vol. II (1988), PR. 209-264.
[11] Bckley, Douglas A., "Life Insurance Trangormationa," Trangactione, Vol. Xxxix (1987). pp. 19-40.
[12] Eakansmon, Nile E., "Optimal Entrepreneurial Decioions in a Completely Stochantic Environment," Management Science, March, 1971. pp. 429-449.
[13] Billier, Frederick S., and Lieberman, Gerald J, Introduction to operations Regearch, th ed., Oakland, CA: Eolden-Day, Inc., 1936.
[14] Lee, Kuen Chang and D'Arcy, Stephen \(P .{ }^{\text {P The Optimal Investment Strategy }}\) Through Variable Universal Life," The Journal of Rigk and Inqurance. June, 1989, PP. 201-217.
(15) Prese, William T., et al., Mumerical Recipes in C: The Art of Seientific Computing, New York: Cambridge Oniversity Prese, 1988.
[16] Press, William I. , ot al., Mumarical Recipen in Fortran: The Aet of Scientific computing, Now York: Cambridge Univeraity Preas, 1989.
[17] Prean, William T., t al. Mumerical gecipes in Pasal: The Art of Scientific Computing, New York: Canbridge Onivereity Press, 1989.
[18] Rockett, Andrew M., and Steventon, John C., "Karmarkar'm Algorithm: \(\lambda\) Method for Solving Large Linear Programing Problem," Byte, September, 1987.
[19〕 Saul, Ken, "Making the Beat Dee of Resources," Lotyg, January, 1990.
[20] Schleef, Rarold J., "The Joint Determination of Marginal Rate of Return and Interest Adjusted Cost for Whole Life Ineurance," Management Scienee, May, 1983.
[21] Schleaf, Harold J. "Uaing Linear Programing for Planning Life Insurance Purchaes," pecition Sciences, July, 1980, pp. 522-534.
(22) Schleff, Harold J. Whole Life cont Comparison Based upon the Year of Required Protection," The Journal of Riek and Ingurnnce, March, 1989, pp. 83-103.
[23] Strang, Gilbert, Introduction to Applied Mathematice, Cambridge, MA: Wellesley-Cambridge Prese, 1986.
(24) Swart, E. R., "How I Implemented the Rermarkar Algorithm in One Evening." ApL ouote Guad, March, 1985, Pp. 13-16.
[25] Tilley, Jaraes A., "The Katching of Ansete and Liabilitien," Tranneciong, Vol. EXXII, Fï. 263-295.
[26] Whittenore, David, "Oniversal Life Coupetitive Enhancements (11)" "New From the Individual Idife Insurance and Anouity Product Developpent Section, Society of Aetuaries, April, 1988.
(27) Winston, Wayne L., Operations Research: Apolicatione and Algarithme, Boston: pwS-Kent Publistiing Company, 1987.```


[^0]:    The mound outley method is often used to compare two or more ineurance plans with different premium structures. Re the name implies, an equal annual contribution is allocated to each plan; any excess is deposited in eide fund that carn interest. The plan with the greatent cash value plus ride fund balance at some future point is aseumed to be the preferred purchape.

[^1]:    ${ }^{2}$ Since this gtudy was done, however, the univeraal life marketplace hat become significantly more competitive [see 26]. It is not clear that this conclusion would tilll be valid in today's environment.

[^2]:    $S_{\text {Silley }}$ a paper also contains ApL code to colve linear programing problems using the Simplex Method. For simplex Method code in C, Fortran, and pascal, set [15]. [16] and [17].

    The simplex Method operates along the boundary of a linear programing problem' feteible region by making succesaive movemente from one cornerpoint to an adjecent cornerpoint that is at least as optimal. in contrast, recent advancementa in linear prograwing theory have included the developaant of everal new algorithme thet operete ingtead largely within the interior the feasible region. The most promising of these interior point methods, karmarkar's

[^3]:    Algorithm，may prove to be bignificantly more efficient than the Simplex Method for certain clasees of problems．For a comparison of the Simplex Method and Karmarker＇t Algorithm，eev［23］．For Karmarkar＇algorithm code in ApL and Batic，aee［24］and［18］．

    As thi paper is being written，epreadeheet software hat begun to eupport molutione to Ifnear programaing probleme．borland International＇e ouattro pro Vertion 1.0 if capable of colving line⿻日乚㇒日，programing probleme containing up to 256 variables and 90 constraints．For Lotus $1-2-3$ ueert，（19］contains Lotus macro to solve linear programing problem using 1－2－3＇oxifting matrix manipulation functions；however，the maximum muggested size 120 variables and 20 constraints）is too nmal to allow the macro to be aplied to the probleme in this paper．
    h vaxiety of software designed mpecifically to solve innear programming problem it aleo available such software generally will recognize when the format of a linear programing problem＇s constrainte allow a computational mhortcut to be ueed．Thus，from the etandpoint of computational efficiency，one would expect this software to outperform the relatively eimplintic codes listed above．Some computetional istuef are discused in fection 7.2 ．

[^4]:    IAll universel life contracts in this paper will be ansumed to meet the definition of life insurance through the guideline premium/eath value corridor test.

[^5]:    ${ }^{2}$ In the came of a withdrawal, thim assumes that the face amount btays constant. In fact, on a level death benefit policy, to minimize the potential for net-amount-at-ribk manipulation on the part of an unhealthy inaured, a withdrawal will generally result in dollar-for-dollar reduction in the face amount. This aspect of the impact of the withdrawal on future cash values will be handled using the face amount coefficients developed in the next eection by explicitly recognizing the reduction in face aount that accompanies the withdrawal.

[^6]:    ${ }^{3}$ Notice that lacve $_{t}$ for arbitrary falues of $t$ and $u$ may be obtained by division from a table of the velues of facve $_{n}$. A transition to a commatation function approach may be made by letting $D_{0}=1$ and $D_{i}=1 / \operatorname{lacvC}_{0}$ for $j=1,2,3, \ldots$, where $D$ denotes the usual commutation function.

    The use of eubseripte here is a mild departure from International actuarial Notation. While the lower right mbacript properly refer: to an initial time frame ( $t$ ) for the base ymbol, under the International Notation, the lower left subseript would refer not to an ultimate time frame (u), but to an amount of elapeed time (u-t). In this paper, it will be more natural to think in terme of "the impact on cash value at age 65 of premium paid at age $50^{\circ}$ than in terms of "the impact in fifteen yearm of a premium paid at age 50.1 Defining the lower left ubscript in terms of an ultimate time frame will eliminate the need for some mental addition.
    ${ }^{5}$ Alterpatively, under a commutation function approach, define $D_{j}^{(12)}=$ $\mathrm{D}_{\mathrm{j}+1}{ }^{-1} \mathrm{Acve}{ }^{(12)}$.

    Notice that, at geometric progressions, the sumations in sections 2.1 through 2.3 may be reduced to fractions.

[^7]:    7It ia eonmon to think of loand canh falue an caraing rate lean than the rate farned on unloaped cab value; certainly, this has been the erperience given the high interest environent that has exinted aince the introduction of
     value, i typleally qreater than 1 , the guaranteed interent rate, it is poseible that in a low intereat gnvironment, the fate crediced on loaned cash value would be greater than the rete credited on unloaned cash value. In such a caee, this "deduction" mould in fact be credit.

[^8]:    ${ }^{\text {ans }}$ presented, thia formula effectively converts the "time line" approach used for bubscripting in the derivation of the verious linear coefficients to the policy year approach that is used in the models developad in chaptere three through five. Dnder the convention adopted, premiume can occur modally throughout the policy year, withdrawals are taken at the beginning of the policy year, loane remain outstanding throughout the policy year, and eaeh values quoted are end-of-year.

    Formula (2.4.1) will not be repated in thia paper; rather, $C V_{i}\left(P_{j}, F_{j}, L_{j}, W_{j} \mid j=1, \ldots, t\right)$ will be used whenever it is desired to express cash value as a lihear function of prior transactions.

[^9]:    In thit chapter, it is atiund that a policy ha fixed face amount and hat no withdrawal or loan activity. Thus, given an expente etrueture, eash values are function tolely of the annual premiuns.

[^10]:    ${ }^{2}$ In this model and in the ceneral Model developed in chapter four, it is assumd that end-of-year testing for cash value aufficiency is adequate to keep the policy frem lapaing. Mont univeral life adminimtrative myterat will check for lapaation on a monthly basis. Whether end-of-year teating is in fact the mont approprlate check to enaure that a policy etays in force will depend on several things, including the pattern of the surrender charge (which may also vary monthly) and the premius payment mode.

    Some univeralal life plant may in the oarly years substitute a mimum premium requirement for a murrender charge test. For euch pland, the constrainta requiring that cash value exceed the surrender charge would be repleced by constrainte requiring that cumulative premium paid exceed the lower bounds epecified for the yeare in which the minimum premium requirement is in effect.

    Onder some plan deeigne, the surrender charge will vary with the firgt year premium. In euch a case, $S C_{i}$ ehould be modelled ae a function of premium.

[^11]:    3Three illustrative univernal life producte, herein reterred to an the producti of Company $A$, Company B, and Company C, are used in the examplen in this paper. Details on the rate etructure of these sample products are given in the tppendix.
    ${ }^{4}$ Sinee the objective Iunction does not involve life continganciet, the cont of coverage is effectively minisized for the case in which the ingured eurviven the tern period. One ehould recognize, though, that the "eavinge" that occure through any prefunding has cost, napely, the zeduction in the net death benefit ehould the ineured in fact die.

[^12]:    ${ }^{5}$ The solution becomes more complicated when the lacve factore are not monotonically increaring, temight be the caee, for example, for a policy issued to male in his early twenties, or to an insured who is aseigned a temporary flat extra. In wuch a case, given an insured aged $x$ at issue and preeent value intereat rate 1 , the coat of insurance for policy year n will be funded with pronium at the beginning of the year m (msn) that maximizes $n=10 C_{x+m-1}(1+i)^{-1}$.

[^13]:    IMore common than surgender charge upon making a withdrawal it a fixed fee for the traneaction．The imposition of such a charge cannot be modelled using linear programming techniquef，because making withdrawal then refults in a discontinuity in the acount value．Such charge can be modelled using integer programming techniques．Cenerically，a mathematical programing problem in which there is a fixed cont ateociated with one or more variables only when they are non－zero is called，upropriately enough，at fixed charge problea．

[^14]:    ${ }^{2}$ m withdrawal from an IRA or annuity is generally coneidered premature if it in made before the owner reaches age $591 / 2$; however, there are exceptions to thif rule. The taxable portion of any premature withdrawal is hit with an extra ten percent penalty tax. This model can be used to help determine whether in situations in which funde need to be withdrawn from the investment program, it would be worthwhile taking a premature withdrawal from an IRA or annuity, even with the tax penalty.
    ${ }^{3}$ current tax law requires that dietributions from an IPA commence by age 70 1/2. IRAMinkt is thue zero if the policyholder is lest than age $701 / 2$ at the beginning of year $t$; in yearg in which the policybolder is $701 / 2$ or older, IRAMinNt, if the reciprocal of the joint and lat murviror life expectancy of the insured ind the inmured's IRA beneficiary, baeed upon tablee promulgated by the IRS. For technical compliance with IRS regulations, some work would be required to enaure that the TPInd, and IRAMinWt factorn, as well as the timing of any required withdrawals, are consimtent with IRS timing conventions. IRS requirements are defined in calendar year terms on an age-lamt-birthday basis, which probably will not coincide with the insurance policy year and the insured's insurance age.

