ACTUARIAL RESEARCH CLEARING HOUSE 1994 VOL. 2

ESTIMATION OF A MULTIVARIATE COPULA

Jacques F. Carriere

The University of Manitoba Dept. of Actuarial and Management Sciences Winnipeg, Manitoba, Canada R3T 2N2

Key words and phrases: multivariate copula, kernel distribution estimators, measures of association.

ABSTRACT

Let $C(\mathbf{u})$ be the multivariate copula of a distribution function $H(\mathbf{z}) = C(F(\mathbf{z}))$ where $F(\mathbf{z}) = (F_1(x_1), \ldots, F_p(x_p))^T$ are continuous marginal distributions. Given a random sample X_i for $i = 1, \ldots, n$ we will construct an estimate $\tilde{C}(\mathbf{x})$ based on kernel distribution estimators of $H(\mathbf{z})$ and $F(\mathbf{z})$ and we will show that for all $\mathbf{u} \in \mathbb{R}^p$, $\tilde{C}_n(\mathbf{u}) \to C(\mathbf{u})$ a.e. as $n \to \infty$.

1. INTRODUCTION

Let $p \ge 1$ be an integer and let $X = (X_1, ..., X_p)^T$ be a random vector that maps a probability space (Ω, \mathcal{F}, P) into $(\mathbb{R}^p, \mathfrak{B}^p)$ where \mathfrak{B}^p are the Borel sets of the p-dimensional Euclidean space \mathbb{R}^p . The distribution of X evaluated at $\mathbf{z} = (\mathbf{z}_1, ..., \mathbf{z}_p)^T \in \mathbb{R}^p$ will be denoted as $H(\mathbf{z}) = P(X \le \mathbf{z})$, where $X \le \mathbf{z}$ if and only if $X_k \le \mathbf{z}_k \forall k=1,...,p$. The marginals of $H(\mathbf{z})$ will be denoted as $F_k(x_k) = P(X_k \le \mathbf{z}_k)$ for k=1,...,p. We suppose that $H(\mathbf{z})$ is continuous $\forall \mathbf{z} \in \mathbb{R}^p$. We start the discussion with a lemma about continuous distribution functions that is useful in the ensuing discussion. **Lemma 1.1.** The following three conditions are equivalent for any $p \ge 1$:

- i) $H(\mathbf{z})$ is continuous $\forall \mathbf{z} \in \mathbb{R}^p$,
- ii) $H(\mathbf{z})$ is uniformly continuous on \mathbb{R}^p ,
- iii) F(x) is uniformly continuous on \mathbb{R}^p .

Proof: It is obvious that ii) implies i). That iii) implies ii) follows from the inequality $|H(x) - H(y)| \leq \sum_{k=1}^{p} |F_k(x_k) - F_k(y_k)|$. This well known inequality may be found in Schweizer and Sklar (1983, p. 82). It is well known that F(x) is uniformly continuous on R^p whenever F(x) is continuous $\forall x \in R^p$. Let $\epsilon > 0$ and x, Therefore, it is sufficient to show that i) implies that F(x) is continuous $\forall x \in R^p$. Let $\epsilon > 0$ and x, $x^* \in R$. Let $v_k(x) = (x^*, \dots, z^*, x, x^*, \dots, x^*)^T$ be a vector with the k-th coordinate equal to x and all other coordinates equal to x^* . There exists $\delta > 0$ such that if $h \in R^p$ and $||h|| = \max_{1 \le k \le p} |h_k| \le \delta$ then $|H(v_k(x) + h) - H(v_k(x) - h)| < \epsilon/3$. Also there exists $x^* \in R$ such that $|F_k(x + \delta) - H(v_k(x + \delta))| < \epsilon/3$ and $|F_k(x - \delta) - H(v_k(x - \delta))| < \epsilon/3$. Therefore, if $|h| \le \delta$ then $|F_k(x + h) - F_k(x - h)| \le |F_k(x + \delta) - H(v_k(x + \delta))| + |F_k(x - \delta) - H(v_k(x - \delta))| + |H(v_k(x + \delta)) - H(v_k(x - \delta))| \le \epsilon/3 + \epsilon/3 = \epsilon$. So $F_k(x)$ is continuous $\forall x \in R$ and $\forall k = 1, \dots, p$.

Let $\mathbf{u} \in \mathbb{R}^p$. Define $C(\mathbf{u}) = P(F(\mathbf{X}) \leq \mathbf{u})$. Then $C(\mathbf{u})$ is a distribution function with uniform marginals. Lemma 1.1 states that $C(\mathbf{u})$ is uniformly continuous on \mathbb{R}^p because the marginals are continuous. Schweizer and Sklar (1983) call the function $C(\mathbf{u}) = \mathbf{p} - \text{dimensional copula}$. An example of a copula is $C(\mathbf{u}) = \prod_{k=1}^{p} u_k$ and another is $C(\mathbf{u}) = \text{Min}(u_1, \dots, u_p)$ where $\mathbf{u} \in [0, 1]^p$. Examples of 2 - dimensional copulas may be found in Barnett (1980). Note that a copula relates a multivariate distribution function to its marginals. That is

$$H(\mathbf{z}) = C(F(\mathbf{z})). \tag{1.1}$$

This identity is true because F(x) is uniformly continuous on \mathbb{R}^p and so $P(X \le x) = P(F(X) \le F(x)) = C(F(x))$. For $u \in [0, 1]$, define $F_k^{-1}(u) = \inf\{x \in [-\infty, \infty]: F(x) \ge u\}$. For $u \in [0, 1]^p$, define $F^{-1}(u) = (F_1^{-1}(u_1), \dots, F_p^{-1}(u_p))^T$. Then another useful identity is

$$C(\mathbf{u}) = H(F^{-1}(\mathbf{u})). \tag{1.2}$$

This identity is true because $F \circ F^{-1}(\mathbf{u}) = \mathbf{u}$. We now present some results about kernel distribution estimators of distribution functions.

2. KERNEL DISTRIBUTION ESTIMATORS

Let $X_i = (X_{1i}, \dots, X_{pi})^T$ for $i=1,2,\dots$ be a sequence of independent and identically distributed random vectors each with a distribution equal to H(x). With a finite sample X_1,\dots,X_n , we can estimate H(x) with the empirical distribution function

$$\hat{H}_{n}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} l(\mathbf{X}_{i} \le \mathbf{z}).$$
(2.1)

For any $\mathbf{x} \in \mathbb{R}^p$, $\hat{H}_n(\mathbf{x})$ converges to $H(\mathbf{x})$ almost everywhere (a.e.). This implies that $\hat{H}_n \Rightarrow H$ a.e. as $n \to \infty$ where the notation \Rightarrow means that the sequence of distribution functions converges weakly. Let $\delta_0(\mathbf{x})=\mathbf{I}(\mathbf{x} \geq \mathbf{0})$ denote the distribution function of a measure that assigns unit mass at $\mathbf{0}$. Let $K_n(\mathbf{x})$ for $n=1,2,\ldots$ be a sequence of distribution functions such that $K_n \Rightarrow \delta_0$ as $n \to \infty$. This definition of a kernel sequence is a generalization of one presented in Rao (1983). A trivial example of a kernel sequence is one where $K_n(\mathbf{x}) = \delta_0(\mathbf{x}) \forall n=1,2,\ldots$ A kernel distribution estimator of $H(\mathbf{x})$ is

$$\tilde{H}_n(\boldsymbol{x}) = \int_{R^p} K_n(\boldsymbol{x} - \boldsymbol{y}) \ d\hat{H}_n(\boldsymbol{y}). \tag{2.2}$$

That is, $\tilde{H}_n(x)$ is the convolution of $\tilde{H}_n(x)$ and $K_n(x)$. The following is a generalization of a result found in Rao (1983). This result will be useful in proving the main result given in Theorem 3.1. Note that H(x) is not necessarily continuous in the following lemma.

Lemma 2.1. $\tilde{H}_n \Rightarrow H$ a.e. as $n \to \infty$.

Proof: Let $g(\mathbf{z})$ be bounded and continuous $\forall \mathbf{z} \in \mathbb{R}^p$. Then $\int_{\mathbb{R}^p} g(\mathbf{z}) d\tilde{H}_n(\mathbf{z}) = \int_{\mathbb{R}^p} g(\mathbf{x} + \mathbf{y}) dK_n(\mathbf{y}) d\hat{H}_n(\mathbf{z})$. Let $g_n(\mathbf{z}) = \int_{\mathbb{R}^p} g(\mathbf{x} + \mathbf{y}) dK_n(\mathbf{y})$. Then by the definition of a kernel sequence $g_n(\mathbf{z}) \to g(\mathbf{z})$ as $n \to \infty$. We know that if $A \in \mathfrak{B}^p$ then by the strong law of large numbers $\hat{H}_n(A) \to H(A)$ a.e. as $n \to \infty$. So by a generalized Lebesgue convergence theorem (Royden, 1968, p. 232) this implies that $\int_{\mathbb{R}^p} g_n(\mathbf{z}) d\hat{H}_n(\mathbf{z}) \to \int_{\mathbb{R}^p} g(\mathbf{z}) dH(\mathbf{z})$ a.e. as $n \to \infty$.

We now present a corollary that is useful for proving Theorem 3.1. Let $\tilde{F}_{kn}(x)$ for $k=1,\ldots,p$ be the marginal distributions of the kernel distribution estimator $\tilde{H}_n(x)$. Note that $\tilde{F}_{kn}(x)$ is itself a kernel distribution estimator of $F_k(x)$. Let $\tilde{F}_n(x) = (\tilde{F}_{1n}(x_1),\ldots,\tilde{F}_{pn}(x_p))^T$.

Corollary 2.2. Suppose $H(\mathbf{z})$ is uniformly continuous on \mathbb{R}^p . Then $\sup_{\mathbf{x} \in \mathbb{R}^p} |\tilde{H}_n(\mathbf{x}) - H(\mathbf{x})| \to 0$ a.e. and $\sup_{\mathbf{x} \in \mathbb{R}^p} ||\tilde{F}_n(\mathbf{x}) - F(\mathbf{x})|| \to 0$ a.e. as $n \to \infty$.

Proof: Using a generalization of Polya's Theorem (Rao, 1962), we know that if $H(\mathbf{x})$ is uniformly continuous on \mathbb{R}^p and $\tilde{H}_n \Rightarrow H$ a.e. as $n \to \infty$ then $\sup_{\mathbf{x} \in \mathbb{R}^p} |\tilde{H}_n(\mathbf{x}) - H(\mathbf{x})| \to 0$ a.e. as $n \to \infty$. This is true for any $p \ge 1$. So for each $k=1, \ldots, p$ $\sup_{\mathbf{x} \in \mathbb{R}} |\tilde{F}_{kn}(\mathbf{x}) - F_k(\mathbf{x})| \to 0$ a.e. as $n \to \infty$.

3. AN ESTIMATOR OF A COPULA

We now show how to estimate a p-dimensional copula with kernel distribution estimators. For $u \in [0, 1]$ define $\tilde{F}_{kn}^{-1}(u) = \inf\{x \in [-\infty, \infty]: \tilde{F}_{kn}(x) \ge u\}$. For $u \in [0, 1]^p$ define $\tilde{F}_n^{-1}(u) = (\tilde{F}_{1n}^{-1}(u_1), \ldots, \tilde{F}_{pn}^{-1}(u_p))^T$. Using the identity $C(u) = H(F^{-1}(u))$ presented in equation (1.2), we define our estimator as

$$\tilde{C}_n(\mathbf{u}) = \tilde{H}_n\left(\tilde{F}_n^{-1}(\mathbf{u})\right). \tag{3.1}$$

We now show that under certain conditions on $H(\mathbf{z})$ and the kernel $K_n(\mathbf{z})$, the estimator $\tilde{C}_n(\mathbf{w})$ converges weakly. The major theorem of this paper now follows.

Theorem 3.1. Suppose H(x) and $K_n(x)$ are continuous $\forall x \in \mathbb{R}^p$. Then $\tilde{C}_n(x)$ is a copula and $\tilde{C}_n \Rightarrow C$ a.e. as $n \to \infty$.

Proof: If $K_n(\mathbf{z})$ is continuous $\forall \mathbf{x} \in \mathbb{R}^p$ then $\tilde{H}_n(\mathbf{z})$ is continuous $\forall \mathbf{x} \in \mathbb{R}^p$. Therefore, by Lemma 1.1 $\tilde{F}_n(\mathbf{z})$ is continuous $\forall \mathbf{z} \in \mathbb{R}^p$. This means that the marginals of $\tilde{C}_n(\mathbf{u})$ are uniformly distributed and so $\tilde{C}_n(\mathbf{u})$ is a copula. Let $g: [0, 1]^p \to \mathbb{R}$ be continuous. Then $g(\mathbf{u})$ is bounded and uniformly continuous on $[0, 1]^p$. We need to show that $\int_{[0, 1]^p} g(\mathbf{u}) d\tilde{C}_n(\mathbf{u}) \to \int_{[0, 1]^p} g(\mathbf{u}) d\tilde{C}(\mathbf{u})$ a.e. as $n \to \infty$. This is equivalent to showing that $\int_{\mathbb{R}^p} g(\tilde{F}_n(\mathbf{z})) d\tilde{H}_n(\mathbf{z}) \to \int_{\mathbb{R}^p} g(F(\mathbf{z})) dH(\mathbf{z})$ a.e. as $n \to \infty$. From Lemma 2.1 we know that $\int_{R^{p}} g(F(\mathbf{x})) d\tilde{H}_{n}(\mathbf{x}) \to \int_{R^{p}} g(F(\mathbf{x})) dH(\mathbf{x}) \quad \text{a.e. as } n \to \infty \text{ because } g(F(\mathbf{x})) \text{ is continuous and bounded on } R^{p}.$ All we need to show is that $\int_{R^{p}} |g(F(\mathbf{x})) - g(\tilde{F}_{n}(\mathbf{x}))| d\tilde{H}_{n}(\mathbf{x}) \to 0$ a.e. as $n \to \infty$. This will happen if we can show that $\sup_{\mathbf{x} \in R^{p}} |g(F(\mathbf{x})) - g(\tilde{F}_{n}(\mathbf{x}))| \to 0$ a.e. as $n \to \infty$. By the uniform continuity of $g(\mathbf{u})$ there exists $\delta > 0$ such that if $||\mathbf{u}_{1} - \mathbf{u}_{2}|| < \delta$ then $|g(\mathbf{u}_{1}) - g(\mathbf{u}_{2})| < \epsilon$. By Corollary 2.2 there exists N such that $\forall n \ge N ||\tilde{F}_{n}(\mathbf{x}) - F(\mathbf{x})|| < \delta \forall \mathbf{x} \in R^{p}$. So $\forall \mathbf{x} \in R^{p}$ and $\forall n \ge N ||g(F(\mathbf{x})) - g(\tilde{F}_{n}(\mathbf{x}))| < \epsilon$.

An immediate application of Theorem 3.1 occurs when the marginals F(x) are known. Define

$$\tilde{\tilde{H}}_{n}(\boldsymbol{x}) = \tilde{C}_{n}(F(\boldsymbol{x})). \tag{3.2}$$

Then the marginals of $\tilde{\tilde{H}}_n(z)$ are equal to F(z) and $\tilde{\tilde{H}}_n \Rightarrow H$ a.e. as $n \to \infty$.

4. ESTIMATORS FOR CORRELATION COEFFICIENTS

We now show how to apply our results to the estimation of correlation coefficients. Suppose $H(\mathbf{x})$ is a 2 - dimensional copula. Consider Kendall's correlation coefficient equal to

$$\tau(H) = 4 \int_{R^2} H(\mathbf{x}) dH(\mathbf{x}) - 1.$$
(4.1)

Corollary 4.1. Suppose H(z) is continuous $\forall z \in \mathbb{R}^2$. Then $\tau(\tilde{H}_n) \rightarrow \tau(H)$ a.e. as $n \rightarrow \infty$.

Proof: From Lemma 2.1 we know that $\int_{R^2} H(\mathbf{z}) d\tilde{H}_n(\mathbf{z}) \to \int_{R^2} H(\mathbf{z}) dH(\mathbf{z}) \text{ a.e. as } n \to \infty \text{ because } H(\mathbf{z}) \text{ is bounded and continuous } \forall \mathbf{z} \in \mathbb{R}^2.$ Applying corollary 2.2, we find that $\int_{R^2} |\tilde{H}_n(\mathbf{z}) - H(\mathbf{z})| d\tilde{H}_n(\mathbf{z}) \leq \sup_{\mathbf{z} \in \mathbb{R}^2} |\tilde{H}_n(\mathbf{z}) - H(\mathbf{z})| \to 0 \text{ a.e. as } n \to \infty.$ So $\int_{R^2} \tilde{H}_n(\mathbf{z}) d\tilde{H}_n(\mathbf{z}) \to \int_{R^2} H(\mathbf{z}) dH(\mathbf{z}) \text{ a.e. as } n \to \infty.$

Now consider Spearman's correlation coefficient equal to

$$\rho(C) = 12 \int_{\{0,1\}^2} uv \ dC(u, v) - 3. \tag{4.2}$$

Corollary 4.2. Suppose H(x) and $K_n(x)$ are continuous $\forall x \in \mathbb{R}^p$. Then $\rho(\tilde{C}_n) \to \rho(C)$ a.e. as $n \to \infty$.

Proof. The function g(u,v)=uv is continuous on $[0, 1]^2$. So by Theorem 3.1,

 $\int_{[0,1]^2} uv \ d\tilde{C}_n(u, v) \to \int_{[0,1]^2} uv \ dC(u, v) \text{ a.e. as } n \to \infty. \text{ Therefore, } \rho(\tilde{C}_n) \to \rho(C) \text{ a.e. as } n \to \infty.$

BIBLIOGRAPHY

Barnett, V. (1980). "Some Bivariate Uniform Distributions." Commun. Statist. - Theor. Method A, 9, 453 - 461.

Rao, B.L.S.P. (1983). Non-Parametric Functional Estimation. New York: Academic Press.

Rao, R. (1962). "Relations between weak and uniform convergence of measurement with applications." Ann. Math. Statist., 33, 659-681.

Royden, H. L. (1968). Real Analysis. New York: MacMillan.

Schweizer, B. and Skiar, A. (1983). Probabilistic Metric Spaces. New York: North Holland.