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Abstract

A variety of equity-linked insurance contracts such as variable annuities (VAs)
and equity-indexed annuities (EIAs) have gained their attractiveness in the recent
decade because of the bullish equity market and low interest rates. Pricing and risk
management of these products are quantitatively challenging and therefore have
become sources of concern to many insurance companies. From a financial engineer’s
perspective, the options in VAs and those embedded in EIAs can be modeled as puts
and calls respectively, whose values move in opposite directions in response to changes
in the underlying equity value. Therefore, for insurers that offer both businesses, there
are natural offsets or diversification benefits in terms of economic capital usage. In this
paper, we consider two specific products: the guaranteed minimal account benefit
(GMAB), and the point-to-point (PTP) EIA contract, which belong to the VA and EIA
classes respectively. Taking into account mortality and dynamic lapse risk, we build a
model that quantifies the natural hedging benefits based on risk-neutral option pricing
theory and risk-adjusted performance measure (RAPM). Through a double-tier
simulation framework, an optimum product mixture of those two contracts is achieved
that provides the best RAPM and therefore deploys capital the most efficiently.



1. Introduction

The market for equity-linked insurance such as variable annuities (VAs) and
equity-indexed annuities (EIAs) has grown tremendously over the recent past and has
become a significant segment of our capital markets. This has been evidenced by the
growing sales that have reached $113 billion for VAs and $13 billion for EIAs in 2003.?
This is partly thanks to the bullish U.S. equity market along with relatively low interest
rates over the past decade, which have led policyholders to be more aware of
investment opportunities outside the traditional insurance sector so that they can enjoy
the benefits from financial markets in conjunction with investment guarantees and tax
advantages. Different from traditional insurance products, these equity-linked
insurance contracts provide policyholders mortality or maturity protection, as well as
the beneficial return based on the equity market’s performance. The pricing and risk
management of these products are quantitatively challenging and therefore have
become sources of concern to both the regulator and many insurance companies. For
instance, the limited capital of a life insurance company constrains the volume of its VA
and EIA business; thus how to deploy the economic capital more efficiently turns out to
be an urgent problem to frame.

It is important to stress that, from an option-pricing perspective, the options in
VAs and those embedded in EIAs can be modeled as puts and calls respectively, which
will be shown in detail later. The values of these embedded options move in opposite
directions in response to underlying equity price changes. Suppose both products share
the same underlying equity process, then these two types of options have payoffs which
can partially offset each other, therefore natural diversification benefits exist in a
portfolio that contains both VA and EIA products. This means that the economic capital
that annuity writers need to hold decreases. From the insurance company’s (risk
management) point of view, it will be very useful to quantify these diversification
benefits and derive an optimal business mix based on the most efficient way to deploy
the capital. The framework of this paper, which differs from previous literatures, is
based on this purpose.

Perhaps the best way to illustrate this intuition is through a simple numerical
example. Table 1.1 provides the value at risk (VaR) of a European put, a European call
and a 50/50 mixture of these two options (called a straddle) at time horizons of both one
and two years. This example assumes both options are at-the-money, have maturity of
four years, and are based on the same underlying asset price which follows a geometric

2 Source: National Association for Variable Annuities (NAVA).
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Brownian motion with drift 1z = 8%, non-dividend-paying, volatility o =0.2, risk-free
rater = 2%, initial priceS; =1.

TABLE 1.1
Diversification of a Put and Call

Year Value at Risk (level 99%)
Put Call 50/50 Mix
1 0.30 0.76 0.38
2 038 1.22 0.61

It is shown in Table 1.1 that the straddle portfolio has a much lower VaR than the
average of these two options, which can be explained by Figure 1.1. The correlation
between the prices of a put and a call is negative: when one option is in-the-money
(therefore has a higher price), the other option is more likely to be out-of-the-money
(with a lower price). This natural diversification lowers the VaR of that straddle
portfolio (red line in Figure 1.1). It will be shown later that a similar diversification
effect also exists in a portfolio that contains both VAs and EIAs.

Figure 1.1
Diversification of a Put and a Call (one-year time horizon)

Diversification example (1 year time horizon)
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There have been some previous literatures in this area. For research on VA,
Brennan and Schwartz (1976) first introduced the famous Black-Scholes-Merton (1973)
formula into this field. They assumed complete markets both for financial and mortality
risk and derived risk-neutral price formulae. More recent work on equity-linked life
insurance was done by Bacinello and Ortu (1993, 1996), Aase and Persson (1994) and
Nielsen and Sandmann (1995). These authors allowed the risk-free interest rate to be
stochastic. Follmer and Sonderman (1986) assumed an incomplete mortality market and
introduced the concept of risk-minimizing strategies, which was extended by Moller
(1998). Hardy (2003) offered risk-neutral pricing and dynamic hedging analyses on
VAs. Milevsky analyzed VAs with mortality and lapse taken into account (Milevsky &
Salisbury, 2002) and concluded that in today’s market, the guaranteed minimum death
benefit (GMDB) products were overpriced (Milevsky, 2001) and in contrast the
guaranteed minimum withdrawal benefit (GMWB) products were underpriced
(Milevsky, 2004).

In the field of EIA research, Tiong (2000) used Esscher transforms and derived
closed form pricing formulae for several types of EIA products: point-to-point (PTP),
cliquet and lookback, which were also covered by Hardy (2003). Lin and Tan (2003)
extended the model to include stochastic interest rates.

The rest of this paper is organized as follows. We present the framework in
Section 2. Analysis including risk-neutral pricing, VaR calculating and risk-adjusted
performance measuring (RAPM) are implemented on two specific products: guaranteed
minimum account benefit (GMAB) in Section 2.1, and the PTP EIA contract in Section
2.2, which belong to the VA and EIA classes respectively. In Section 2.3 we conduct the
same analysis on the mixture of GMAB and PTP, and an optimal combination of these
two products is achieved which provides the best RAPM. We conclude in Section 2.4
with closing remarks and summary. Numerical examples are listed at the end.



2. Formulation
2.1 GMAB Contract, Economic Capital and RAPM
2.1.1 Product Description

VAs are complex structured equity and interest rate products, but the basic idea
behind them is an investment guarantee on a separate mutual fund account. The
simplest VA product is the GMDB, which provides the beneficiary a minimal guarantee
(which is put-like) in the event that the policyholder dies before the contract’s maturity.
The GMAB is similar to GMDB and its benefit is claimable on mortality or maturity,
whichever one comes first. In this paper we focus on a GMAB account.

An example of a GMAB contract is as follows: at initiation, t =0, the
policyholder enters into a contract by paying the insurance company an initial amount
P. The insurance company immediately invests the amount P into a mutual fund (such
as an index fund), and there is no further payment from the policyholder. The insurance
company guarantees a rate of returnr, up to the end of contract (which can be caused by

mortality or maturity, but can NOT be caused by policyholder’s lapse behavior), when
the beneficiary will receive the greater of either the current mutual fund account value
or the guaranteed amount. In exchange, the insurance company charges a certain
percent of the account amount as the contract fees. If the policyholder decides to lapse
the VA contract before maturity, he can get his mutual fund account value back after
some penalty fees are charged, but the guarantee is not redeemable.

2.1.2 GMAB without Mortality and Lapse

Consider a GMAB contract with $1 initial account value and maturity time N (in
years). Ignoring any mortality and lapse risk, the embedded option in GMAB turns to
be a plain vanilla European put.

For the rest of this paper, the underlying equity price is assumed to satisfy a
geometric Brownian motion; the interest rate is assumed to be constant; and continuous
compounding will be used for simplicity. Given time horizon n prior to maturity, let G,

be the guaranteed amount



As we discussed before, G, is going to be the strike price for its embedded

option. Let {F, } be the account value process that satisfies

L 0<n<N

At any time n prior to N, suppose the underlying stock price is S, . The
embedded put option value in GMAB can then be calculated as

H,=E2[e"™™H,]

here

Hy :(GN -k )+ =[er"N —e™ SS—N]

0

_ e—mN (e(m+rg)NSO B SN )+
Sy

In the formula above, the H term, which is the final cash flow of the GMAB

contract that happens at maturity N, is equivalent to the payoff of a vanilla European
put option. Using notation V ,,(S,, K, r,d,o,t) as the price of a vanilla European put,

then under the Black-Scholes-Merton (B-S-M) framework (Black & Scholes, 1973), the
closed form of such an option value can be written as

e—mN
H, =V, (S,,.e™™"s ,r,d,o,N —n)

n SO
e—mN

=" "V (-d,) - S S,e "N Md(-d))

0
here

g _1og(S,/Sy)—(M+1 )N +(r—d +%)(N —n)
b O'\/N—n

d,=d,—ovN-n

For a GMAB contract, the net value of adding the guarantee to the VA product at
time n, noted by NV, (S,), can be formulated as the difference between two parts: the



embedded option (guarantee) value from time n to maturity N, and the present value of
the benefit charge (noted as f,), as a portion of the total management fees charged to

the policyholder’s account. NV, (S,)has the following form
NV, (S,)=H, - f,
and

&

N-1 N 1 N
f =EQ) e " "EAtlx | e ""VEQ[F ladt=—S | e ™edt = S [e™—eg™
=BV At~ | IR Jat = . Sl ]

0

The corresponding economic capital of GMAB is defined as the percentile risk
measure of NV (S,).

P[e ™" (NV, (S,)~ NV, (5,)) > ECps1<1- 4

Here f is the confidence level. Since NV, (S,) is monotonic,® its analytical

economic capital (or equivalent, VaR) can be directly calculated (Fong & Lin, 1999) in
the following way:

Var[ f(S)]= f (Var[S]) if f(S)is monotonic.

Suppose a 99 percent confidence level (notice this is under realistic measure) is
applied, the economic capital under current framework is

ECGMAB = e_r'n(NVn,99% - NVo) = e_r'n[H n,99% — fn,99% - NVo]

-mN

So

e

. (m+r,)N
=e""[ 'Vput(sn,99%:e *7S,r,d,0,N —n)— fn,99% -NV;]

=" MNP(-d,)- e"'”‘mN‘d(N‘”)e(”_d_%)n_z'wmmq)(—d1)

2
—rn (u-d-2-)n-2.335/n —rn
-e ' (S.e : )—e "NV,

3 Monotonicity of function NVn (Sn ) is implied by the negativeness of its 1% derivative with respect to Sn .
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here

(u=d=2)Nn-233cVn-(m+r N +(r—d + )N —n)

d
: ovN-n

d,=d,—ovN-n

NV, =H, - f,

2.1.3 GMAB with Mortality and Lapse

In the last section, mortality and lapse risk were totally ignored. In the real
world, the involvement of mortality and lapse distinguishes GMAB from the normal
financial instruments. Mortality leads the contract maturity time to be stochastic, and
the lapse feature gives the policyholder an opportunity to abandon the contract. (Lapse
happens when policyholders stop paying the management fee and exit their position
with some certain amount of penalty charged.)

Let'¥(t) be the percentage of policyholders that survive and do not lapse before
time t, q(t) and I(S,,t) be the simultaneous mortality and lapse intensities (or

equivalently, hazard rates) respectively. Independence between lapse risk and mortality
risk is also assumed. Under an exponential model, ¥(t) has the following form:

~[s,urawi

Y(t)=e

Standard actuarial practice treats mortality risk as diversifiable or non-systematic,
which means the mortality risk can be eliminated by issuing a large enough number of
equivalent contracts. In this paper we adhere to this assumption. Then the benefits of a
life insurance contract turn to be Z‘P(t)q(t)AtP(t) , where P(t) represents the payoff at

time t.

However, since equity market performance has a huge impact on the
policyholder’s lapse behavior (Shumrak et al. 1999; Milevsky & Salisbury, 2002), lapse
risk is not fully diversifiable and therefore is affected by the underlying equity price,
which is implied in the form of I(S,,t) . Therefore survival probability ¥'(t) depends on

the whole underlying equity price path {S} prior to t.



Some researchers model the lapse behavior as a policyholder’s fully rational
decision, and treat it as an American-typed option. In this paper, we suggest that the
lapse behavior of both VA and EIA policyholders can be rational or irrational just like
other life insurance products and set up the model in a different way.*

We introduce the dynamic lapse multiplier in order to model dynamic lapse. At
any time n, the instantaneous lapse rate can be modeled as

I(S,,t) = f(R,t)-1,

here

The actual lapse rate | is the product of the base lapse rate |, (Normally 2
percent for the GMAB product®) and the dynamic lapse multiplier f(R,t).
f (R,t) depends on the ratio of guaranteed value to market value (GV / MV). The
dynamic lapse multiplier is a non-decreasing function in variable S, which means a

GMAB policyholder is more likely to lapse when the embedded option is more out-of-
the-money (i.e., when the ratio of account value and guarantee is high).

Taking survival probability into account, the risk-neutral price of the embedded
option is

H, = E?{fer(t”)‘f’(ﬂ'Q(t)M (G, —F)"+e " E(N)-(Gy - Fy )ﬂ
B 2.1)

~ ES UN e‘“t‘”)‘l’(t)q(t)(Gt -F) dt+ e "NMP(N)- Gy —Fy )ﬂ
and the PV of the fees

N
f, = ES{Z ‘I’(t)-e‘““”)thAt} ~ ES[ jnN P(t)- e‘““”)Ft,sdt}

t=n

4 This is because life insurance policyholders are neither financial professionals nor institutional investors, and
sometimes lapse does happen for reasons unrelated to the equity performance. Liquidity problems and defaults can
be examples.

5 Base lapse rate can be influenced by macro-economic factors such as the state of the domestic economy, federal
rates, etc.
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Let NV, (S,) be the net value of adding the guarantee to the VA product, which is
NV, (S,)=H,-f,

Taking into account the mortality and lapse risk, economic capital of GMAB is
defined in the same way as previously.

Ple”™ (NV,(S,) = NV,(S,)) 2 ECqyps 1 <1- 8

An analytic form of EC,,,, is difficult to achieve. In this paper, a double-tier

simulation algorithm is implemented to calculate EC,,,; -

In a simpler case, if lapse risks are assumed to be independent from the market
(which means I(t) is not dependent on S, ), a clearer form of the GMAB would be

accessible. Let BSP(n,t) be at any time n, the value of the put option embedded in

GMAB that matures at t, without taking lapse and mortality into account. From the last
section we know

—mt
BSP (1) ="V, (3,6 18,1 dt =)
0
e—mt
=" ""p(—d,)-——S e " d(-d,)
SO
here

J - log(S,/S,) —(M+r)t+(r—d+<)(t-n)
b ovt—n
d,=d,—ovt—-n

Unlike Formula (2.1), ¥ (t) is no longer path-dependent and therefore can be
factored out from the risk-neutral expectation. The embedded put option value in
GMAB can be written as

N-I
t=n

H, =Y ¥(t)-q(t)At-BSP(n,t) + ¥(N)-BSP(n,N)

Q

[ ¥®a®BSP(n.tdt + ¥(N)-BSP(n,N)

n
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The PV of the fees

N - ' u)+q(u)jau
.I:n — Er?[z lP(t) . e—r(t—n) FtEAt] ~ IN e J})“( )+q(u)]d . e_r(t_n)EQ[Ft ]édt
t=n

n

"Mt

_ &5, IN e—j;[l(u>+q(u)1du
SO

n

Proposition 1: In the case where both mortality and lapse risk are independent
from the underlying equity prices, function NV, (S, )is monotonically decreasing.

Proof: See the appendix.

Since NV, (S,) is monotonig, its analytical economic capital (or equivalent, VaR)

can be directly calculated in the same way as in the last section (Fong & Lin, 1999).
ECouvas =€ (NV; 000, =NV;) = e "[H n.99% — fn,99% =NV, ]

here

N
H., 000, = L Y(t)q(t)BSPyg,, (n,t)dt + ¥ (N)BSP,,, (n,N)

s ¢

—d-22yn-2.33 N - [lw+gwldu

fom e SN[ e gt
5 n

e™ -7 n-2.330
BSPQQ%(n’t):S_‘VpUt(S()e(IL ’ Z)n 23 \/ﬁ,e(m+rg)t7780’r’d,o_,t_n)

0

_ ergt—r(t—n)q)(_dz) _e,mte(yfdfizz)nfz,naﬁe,d(t,n)q)(_dl)

(u=d=2)HN-233cVn—(m+r)t+(r—d +2)(t-n)

d,
ovt—n

d,=d,—o+vt-n

NV, =H, — f,
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2.1.4 RAPM of GMAB

Risk-adjusted performance measure (RAPM) is widely used in risk management
work as a measure of returns in line with risks taken. Sitting at time horizon n, let I (n)

be the net income from a GMAB product during time period [0,n] and let EC(n) be the

economic capital that is required to support such a contract. Then the total return of
GMARB, noted by TR(n), has the form of

TR(n) = ﬂ
EC(n)
For a GMAB product that matures at N , the net income I (n) is illustrated in the
following graph.

+ Fee gathered: Fee
NV (0) AN NV (n)
4 N

T ' "

Y
— Option expense: EXp

There are three components that are contained in I (n): fee gathered by insurer
during[0, n], option expense paid by insurer during[0, n] and capital gain, which is the
price difference between NV, (S;) and NV, (S,). Then I(n)has the form as follows.

I(n)=Fee—Exp+NV,(S,)—NV,(S,)
RAPM of product is defined as the annualized return
RAPM = (1+TR(n))" —1
Example 2.1.1. GMAB contract with maturity N = 20, guaranteed interest

rater, =2%, underlying equity drift x4 =12%, volatility o = 0.2 ,dividend yield d = 0%,

risk-free rater = 6%, benefit charge ¢ =1.5%, total fee chargem = 3%, confidence level
99%. Taking into account mortality and lapse risk, the result in Table 2.1.1 is calculated
through simulation.
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TABLE 2.1.1
GMAB Contract: Economic Capital and RAPM

Eco.
Year Cap. I(n) TR(n) RAPM
1 0.13 0.02 0.18 18.4%
2 0.17 0.05 0.30 14.2%
3 0.19 0.08 0.42 12.4%
4 0.21 0.11 0.53 11.2%
5 0.21 0.14 0.66 10.7%

2.2 Economic Capital of PTP
2.2.1 Product Description

Unlike VAs, EIAs are general account assets. EIA contracts vary between
insurance companies, and the simplest EIA product is called point-to-point (PTP). This
provides the beneficiary return on an index, but with a minimal guarantee (which is
call-like) at the contract’s maturity (usually death protection is included).

An example of a PTP contract is as follows: at the initiation, t =0, the
policyholder enters into a contract by paying the insurance company an initial amount
P. The insurance company invests the amount P into the bond market, and there is no
further payment from the policyholder. The insurance company guarantees a fixed rate
of returnr, (with a pre-specified guaranteed proportion) up to the end of the contract

(which can be caused by mortality, maturity or lapse decided by the policyholder),
when the beneficiary will receive the greater of either the return on an index (with a
pre-specified participation rate) or the guaranteed amount. If the policyholder lapses
the EIA contract before maturity, he can get the guaranteed amount back after some
penalty fees charged, but the return on that index is not redeemable.

2.2.2 PTP without Mortality and Lapse

Consider a simple PTP contract with $1 initial account value and maturity time
N (in years) with fixed-interest rate r,and guaranteed proportion 7 (95 percent or 100

percent is common). Also assume the underlying equity index price follows geometric
Brownian motion with constant risk-free rate and volatility. Let

G,=7n-¢", 0<n<N
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be the amount of account value that is guaranteed. Similar to a GMAB contract, G, is
going to be the strike price for its embedded option. Let S, represent the value at n of the

equity index used. Given a participation rate o, the beneficiary of embedded call option
payoff at maturity will be

Hy =(Fy -G,)’ =[(l+a<SS—N—1>)—n'ergN]

0

=5 15 ()}
a

0
N

0

F is the available amount for participation. At any time n<N, the embedded call

value on this contract can be formulated through risk-neutral pricing theory
H,=El[e " ™H,]
Let notationV, (S,, K, r,d,o,t) represent the price of a standard European call,

under B-5-M framework (Black & Scholes, 1973), closed form of the embedded option
value H, can be written as

Hn :i'vcall(snvi(nergN —(l—a)),r,d,O', N _n)
S, a
— e—d(N—n) aS_an)(dl) _ (nergN _ (1 _ a))e—f(N—N)q)(dz)

0

with
_ log(as, /[Sy(me"™" —(1—a)D+(r—d +2)(N —n)
ovN—-n

d,

d,=d,—ovN-n

For the fees charged from PTP contracts at given time horizon, the following
theorem is satisfied.
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Proposition 2: Assume no mortality and lapse risk. For a PTP contract that is
described in the previous section, for any 0<t, <t, <N, letI(t,,t,) represent the fee
gathered during period [t,,t,], compounded to time t,. Then

1(t,,t,) = 7[(e"™ —e"*) —(e" —e"" )]+11—_T77'N(e”2 —e™)

Proof: See the appendix.

Similar to a GMAB contract, the net value of adding the guarantee to the PTP
product at time n, noted by NV, (S,), can be formulated as the difference between two

parts: the first part is the embedded option (guarantee) value, from time n to maturity
N; the second part is the present value of the fee that is going to be charged in the future
(noted as f,) . NV,(S,) has the following form

NV, (S,))=H, - f,

and

f,=e ™I, N)=e" M pe™ —e™")—(e" —e""))+

1_77 (erN _ern)]
e

1_ -rN

The corresponding economic capital of the PTP is defined as the percentile risk
measure of NV (S,).

P[e™""(NV,(S,)~ NV,(S,)) > ECprp] <1~ 3

Here fis the confidence level. Since NV, (S,) is again monotonic,® its analytical
economic capital (or equivalent, VaR) is accessible (Fong & Lin, 1999). Suppose a 99
percent confidence level (notice this is under realistic measure) is applied, the economic
capital under the current framework is

ECyrp =€ ™ (NV, 00, = NVy) =€ "[H, 490, — f, = NV, ]

n

e [e "M g T, ) - (™ — (1-a))e T Vd(d,) - f, — NV, ]

6 Monotonicity of function NV (Sn) is implied by the positiveness of H , ’s 1+t derivative with respect to Sn .
d(NV,(S,))
ds,

Here fn is not a function of Sn and therefore has no contribution to
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with
4 w-d —2)n+2.330/n +log(a /[(7e"" —(1-a))])+(r—d +<)(N —n)

ovN-n

d,=d,—ovN-n
NV, =H,—f,
2.2.3 PTP with Mortality and Lapse

The effect of adding mortality into consideration in a PTP contract is similar to
the GMAB case. By using the same terminology, let '¥(t) be the percentage of

policyholders that survive and do not lapse before t, q(t)and I(S,,t) be the mortality and

lapse intensities (or equivalently, hazard rates) respectively. Independence between lapse
risk and mortality risk is also assumed.

W(t) = efj;u(su WyraIdy

Similar to GMAB, lapse risk is not diversifiable and ‘¥'(t) depends on the whole
underlying equity price path {S,} prior tot. Atany time n, the instantaneous lapse rate

can be modeled as

I(S,,t) = f(R,)-1,
with

G, S rn
R=_"Nn_204.p"
F s’

n n

The actual lapse rate |is the product of the base lapse rate | (normally 1 percent
for the PTP product) and the dynamic lapse multiplier f (R,t). f(R,t)depends on the
ratio of market value to guaranteed value (MV / GV, which is different from the
GMAB). The dynamic lapse multiplier is again a non-decreasing function in variable S, ,

which means a PTP policyholder is more likely to lapse when the embedded option is
more out-of-the-money (i.e., when the ratio of account value and guarantee is high).
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Taking survival probability into account, the risk-neutral price of the embedded
option at time n is

H, = Eﬁ{fer“”)W(t)-q(t)At-(Ft G +e "N TW(N)-(F, -G, >*}

t=n

~ Ef[ [e e nat(F, -G dt+e " VW(N) - (F, -G, )ﬂ

and the PV of the fees

N _
fn — e—I’(N—n)[Er?|: Z\}](t) . eI’(N—I)U[(ert _ el’gt) _ (el’(t—l) _ erg(t—l))]j| + 1 77 (eI’N _ ern )]

—rN
t=n-+1 1-e

~ e—r(N—n)[Er? [n(r _ rg )_LN \P(t)er(Nt)dt:| + II_TTZN(erN _em )]
Let NV, (S,) be the net value of adding the guarantee to the PTP product, which

is
an(sn): Hn - fn

Taking into account the mortality and lapse risk, economic capital of PTP is
defined as the percentile risk measure of NV, (S,).

P[e™""(NV,(S,) ~ NVy(S,)) = ECprp ] <1~ 8

An analytical form of EC,;, is difficult to achieve. In this paper, a double-tier
simulation algorithm is implemented to calculate EC, .

In a simpler case, if lapse risks are assumed to be independent from the market
(which means I(t) is not depend on S ), a clearer form of the PTP would be accessible.

Let BSC(n,t) be at any time n, the value of the call option embedded in PTP that

matures at t, without taking lapse and mortality into account. From the last section we
know

BSC(n,t) zsi-VcaII (Sn,%(nergN —(1-a)),r,d,o,N—n)

0

:e—dw-“’%@(dl)—(new ~(1-a)e " o(d,)

0

18



with
log(aS, /[S,(17e"™" —(1—a)])+(r—d +% )N —n)
o+ N —=n

d =
d,=d,—o+vN-n

W (t)is no longer path-dependent and therefore can be factored out from the risk-
neutral expectation. The embedded call option value in PTP can be written as

MZ

H, =Y P()-q(t)At-BSC(n,t)+¥(N)-BSC(n,N)

ZT
p=]

L Y(t)q(t)BSC(n,t)dt + ¥ (N)-BSC(n,N)
PV of the fees

N
fn=e*““*f”[Z\P(t)-e““*‘w[(e”—efg‘)—(ef“ e e e
—€

t=n+1

~e "N V[n(r-r )I lP(t)e“““)dt+ o (erN —e™)]

Here NV, (S,)is again monotonic through similar steps to those in the proof of

Theorem 1. The economic capital of PTP can be calculated through the same way as in
the last section (Fong & Lin, 1999).

ECorp = e_r'n(NVn,99% -NVy) = e_r'n[Hn,99% — o = NV(]

n

with
H,= InN W(1)q(t)BSC gy, (N,1)dt + ¥ (N) - BSC . (N, N)

)n+2. 33af S

BSC (N, 1) = — S (S,e“ ™ B 20 (neg —(1-a)),r,d,o,N —n)

caII
0

wSo-n O;S” P(d,)- (" ~(1-ape " o(d,)

0

=€
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d - (—d—<Nn+2.330+/n +log(a /7" —(1—a)])+(r—d +<)(N —n)

: ovN-n
d,=d,—o+vN-n
NV, =H,-f,
2.2.4 RAPM of PTP

The definition or RAPM for PTP contract is similar to the previous GMAB
contract and the author here will keep the same methodology.

I(n) = Fee—Exp + NV, (S, )= NV, (S,)

TR(n) = %r(?])

RAPM = (1+TR(n))" —1

Example 2.2.1. PTP contract with maturity N =10, guaranteed interest rate
r, =2%, guaranteed amount 77 =100%, underlying equity index drift # =10%,
volatility o =0.2 ,dividend yieldd = 0%, risk-free rater = 6%, participation ratea =50%,
confidence level 99%. Taking into account mortality and lapse risk, Table 2.2.1 is
calculated through simulation.

TABLE 2.2.1
PTP Contract: Economic Capital and RAPM

Eco.
Years Cap. I(n) TR(n) RAPM
1 0.27 0.01 0.04 4.4%
2 0.45 0.02 0.04 1.9%
3 0.66 0.03 0.04 1.3%
4 0.84 0.02 0.03 0.7%
5 1.03 0.02 0.02 0.3%
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2.3 Economic Capital for VA and EIA Mixture

A natural diversification effect exists for a portfolio that contains both VA (which
is put-like) and EIA (which is call-like) products. Suppose both products share the same
underlying equity process, then such a portfolio can be modeled as a straddle (or
strangle); that is, whenever either product is in-the-money, the other one is likely to be
out-of-the-money. More specifically, when stock price is low and VA is in-the-money,
the option value embedded in EIA drops and draws the portfolio value to remain
regular; when the stock price is high and EIA is in-the-money, not only does the option
value embedded in VA drop, but the policyholder’s account is also charged by the
insurance company with higher management fees. Both lower the total loss of the whole
portfolio. Therefore the risk to the insurer that provides these products is reduced.

2.3.1 Simulation Framework

In this paper a double-tier Monte Carlo simulation framework is used to valuate
both annuities” benefits. The simulation algorithm consists of the following steps:

1. Simulate the equity price process from time 0 to the horizon[0,n]:
{St,)|1=0.L..., K} . This is called the outer simulation path.

2. Based on a given mortality and lapse function, calculate the option
expense and charged fee during this period[0,n] through the above outer

price path {S(t,)|i=0,.,...,K} (both for VA and EIA).

3. Sitting at horizon time t, simulate the equity price process from time n to
maturity[n,N]: {S(t;)|i= K +1,...,K}. This is called the inner simulation
path.

4. Based on a given mortality and lapse function, calculate the option

expense and charged fee during this period[n, N] through the above inner
price path {S(t;)|i= K +1,...,K}. One net value of the guarantee NV, (S,),is
calculated (both for VA and EIA).

5. Redo step 4 enough times and get series {NV, (S,),, NV, (S,),...}, take the
mean as the estimator of NV, (S,) (both for VA and EIA).

6. Return to step 1 and follow the steps enough times and get series of
expenses, fees and net values; record the results to files.
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7. In an Excel sheet, calculate the percentile value (VaR), net income and
RAPM for VA and EIA, run Excel Solver to find the best products
combination that provides the highest RAPM.

In practice, some variance reduction techniques can be used during the
simulation. In the inner loops, the no mortality and lapse case have analytical solutions
both for VA and EIA, thus these can be used as control variate to accelerate the
convergence speed.

Example 2.3.1. Consider GMAB and PTP that share the same underlying equity
process. Retain parameters from the previous examples. Double-tier simulation
framework provides the results as following tables.

Table 2.3.1 provides the economic capital requirements for VA, EIA, 50/50
mixture and the optimal VA/EIA mixture based on different time horizons. Table 2.3.2
provides RAPM for VA, EIA, 50/50 mixture and the optimal mixture as well, and the
last column is the weights of VA in the optimal portfolio. Graphical results are listed at
the end of this section.

TABLE 2.3.1
Economic Capital Requirement for VA, EIA and Mixture

Economic Capital requirement
Years VA EIA  Mix(50/50) Best Mix

1 0.13 0.27 0.06 0.04

2 0.17 0.45 0.12 0.07

3 0.19 0.66 0.20 0.09

1 0.21 0.84 0.27 0.12

5 0.21 1.03 0.36 0.13
TABLE 2.3.2

RAPM for VA, EIA and Mixture

RAPM
Years VA EIA  Mix(50/50) Best Best Wgt of VA
1 184%  4.4% 30.8% 51.6% 0.56
2 142%  1.9% 13.7% 24.9% 0.60
3 124%  1.3% 8.1% 18.3% 0.64
4 11.2% 0.7% 5.6% 14.1% 0.67
5 10.7%  0.3% 4.1% 12.1% 0.70
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In this example, the natural hedging effect is significant. In the first five years, the
optimal mixtures have an average of 52 percent smaller economic capital requirements
than VA, and these are 86 percent smaller compare to EIA.

It is also observed that in Table 2.3.1, the economic capital of EIA goes up
tremendously. This is because for shorting a call, there is no upper bound for the future
loss. While in the mixture portfolio, the loss from EIA is balanced out by the moneyness
of the option embedded in VA and the fees charged from the policyholder’s account, as
shown in the best mixture capital column. In Table 2.3.2, the weights of VA in the
optimal mixture portfolio grow gradually. This is because the capital demand from EIA
increases quickly and thus requires more weight in the VA in order to balance out.

2.4 Conclusion

This paper contributes to the literature in the area of analyzing natural
diversification benefits between VA and EIA products. These benefits result from the
phenomenon that the values of VA and EIA move in opposite directions in response to
a change in the underlying equity value. The author models VA and EIA in the risk-
neutral option pricing framework. Numerical examples show that natural hedging is
teasible and the benefits are significant, which enables the insurance companies’ capital
to be deployed more efficiently.
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Figure 2.3.1
Economic Capital Requirement for VA, EIA and the Best Mixture
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Figure 2.3.2
RAPM for VA, EIA and the Best Mixture
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Appendix

1.1 Notations

)

>

(Q-i

nz

>

R I %3 »oT

Vo (S, Ko, d, 0, t)
F(t)
I1(S,.t)
act)

EC
BSC(n,t)
BSP(n,t)

1(n)

TR(n)

RAPM

» guaranteed level

» guaranteed interest rate

» maturity of product

» account value at time n

» value of embedded option

» underlying equity price at time 0

» management fee of VA charged each year

» benefit charge
» guaranteed amount of EIA

» participation rate

» price of a vanilla European put
» survival probability

» instantaneous lapse rate

» instantaneous mortality rate

» net value of guarantee

» value of benefit charge

» confidence level

» economic capital
» European call price at time n and maturities at t

» European put price at time n and maturities at t
» net income during period [0, n]

» total return

» risk-adjusted performance measure
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1.2 Proof of Proposition 1

Proposition 1: In the case where both mortality and lapse risk are independent
from the underlying equity price, the function NV, (S, )is monotonically decreasing.

Proof:

If both risks are independent from underlying equity priceS,, NV, (S, ) has the

following form
NVn(Sn) = Hn — fn
with
H, :InN\P(t)q(t)BSP(n,t)dt+‘P(N). BSP(n,N)

PV of the fees

¢ &S, J-N e—jou(u)+q(u)]du PR

Now take the 1¢t derivative to both H, and f  with respect to S, .

d(BSP(n D) 44 w(N). d(BSP(n,N)) .

- j ¥ (D)) S

n n

Since

d(BSP(n,1)) _ e

e 1" "p(-d )<0
as. 3 (=d))

We know H is monotonically decreasing. For f_,

e dt >0

df, ¢ ,[N e—j;[l(wq(undu
ds,
Which implies that f, is monotonically increasing, therefore NV, (S,)is

monotonically decreasing.

7 Here the author intentionally skipped rigorous mathematical proof of the interchange of derivative and integral.
Precisely, formula (3.2.1) is valid only when the following technical conditions hold: 1. Both ¥ (t)q(t)BSP (n, 1)

d d(\P(t)Q((;)SBSP(n,t)) are continuous; 2. Both ¥ (1)q(t)BSP(n,t) and d(\P(t)Q(dt)SBSP(n,t)) are

bounded by a L' function. See Cheney (2001) for example.
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1.3 Proof of Proposition 2

Proposition 2: Assume no mortality and lapse risk. For a PTP contract that is
described in the previous section, for any 0<t, <t, <N, letI(t,,t,) represent the fee
gathered during period [t,,t,], compounded to time t,. Then

|(tl,t2) — n[(el’tz _el‘gtz)_(ertl _ergtl )]+11;77(el’t2 _el’tl)
—€e

-rN

Proof:

First consider $1 risk-free money account with guaranteed proportion 100% and
guaranteed interest rater; . Risk-free rate isr . The account growth is shown in the

/‘ $el’N
; $ergN

following figure.

$11M

0 t, t, N
Fully (7 =100% ) guaranteed PTP income

The account value and guaranteed value increases with different rates, and the
difference between them is the income. At any time t, the account value and guaranteed
value will bee" and e respectively. Assuming no mortality and lapse risk, income from
this particular account during period [t,,t,], noted by I,(t,,t,), will be

I,(t,t,) =1,(0,t,) = 1,(0,t,) = (™ —e"*)— (™ —e"")

A PTP contract account can be modeled as two components: the guaranteed
proportionz, and the pure profit proportion1—-7 . The corresponding income from the

guaranteed proportion part, which is earned by holding policyholders’ capital during
period [0, N], can be calculated by the above formula. This part of income can be

affected by policyholders’ behavior (death or lapse). On the other hand, the pure profit
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proportionl—7 is locked in at time 0, and therefore will not be affected by the

policyholders’ behavior. This proportion can be amortized to a continuous cash flow
with a constant payout rate r, through period [0, N] as follows

N
1—77=L e "r.dt

Solve for
_d=mr

r, =
P l_e—I'N

Income from this part can be modeled as

() = 1,(0.6) = 1,(0.8) = [*re™ ds - [ reds = rTP(e”z —e™)
An illustrative figure of the PTP contract account is in the following
 Se™
 $e™

ryN

g $ne’

0 t, t, N
Partly (7 <100% ) guaranteed PTP income

Total income of the PTP contract is the sum of the two parts, which is

I(t,t)=nl,t,t,)+1,(1,t,)

=l —e™) - (" —e" )]+ e ™)

1-e™
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