
ACTUARIAL RESEARCH CLEARING HOUSE 
1 9 9 2  VOL. 1 

DIFFERENTIAL EQUATIOM MODEL 

FOR YIELD CURVES 

By Steve Craighead 
Nationwide Life Insurance Company 

columbus, ohio 

Abstract: This paper examines a differential equation model, 
whose solutions have yield curve shapes. The paper also examines 
the relevance of the model with historical monthly U. S. Treasury 
nominal rates. 

In this paper m will represent the maturity of a yield curve 
and i(m) will denote a yield curve, of interest rates i. 

In the study of yield curve behavior, yield curve models 
should have at least the the following list of properities: 

(i) Short term interest rates should be more volatile than 
long term rates. See [11]. That is, the short term rates 
have little influence on the later maturity yield values. 

(2) Yield curves should converge to finite (and 
reasonable) values at infinity and zero. See [17]. 
Reasonable here will mean interest rates that range from 
0.5% to 30%. 
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(3) Yield curves should be continuous over all positive 
maturities. 

(4) Yield curves should be bounded over all positive 
maturities, and again be reasonable as defined in (2). 

(5) A specific interest rate at a specific maturity should 
be influenced by adjoining rates. This influence increases 
as the maturity m increases. This property is modeled as a 
feedback component. 

(6) A model of yield curves should replicate the model 
yield curves used by Jetton and Pedersen et al. See [8] and 
[121. 

(7) A model of yield curves should correspond with 
historical yield curves. 

(8) A model of yield curves over time should have high 
autocorrelation at lag one between the interest rates at 
infinity (and zero). Otherwise stated, this period's 
interest rate should be closely related to last period's 
rate and to next period's rate. 

(9) Ninety day interest rates should be highly correlated 
with the zero maturity interest rate. 

Properties (2), (3), (4) will be restated as: 

(4') Yield curves should be continuous and bounded over all 
nonnegative maturities (including infinity), and the bound 
should be reasonable. 

Several models of yield curves have been studied. An 
incomplete list of them follows: 

I Polynomial fit of yield curves 

The benefit of this type of model is that you will have a 
model that is reproducing, but it will not have a finite value at 
infinity. See [17]. 

II Sieqel's truncated model of yield curves 

Here the yield curve is approximated by a form b + c/m, 
Where b is the interest rate at infinity and c is a constant. 
See [17]. This model does satisfy property (4') except at zero, 
and it satisfies property (I). This model even replicates the 
yield curves in [8]; however, this model does not replicate the 
special humped yield curve mentioned in Figure 16 of [12]. 

III Power series in (l/m}, and Sieqel general model 

The Siegel general model approximates yield curves by 
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b + c/m + f(m), where f(m) tends to zero faster than 1/m. See 
[17]. It appears that power series in (l/m) form a subset of 
Siegel general model. If f(m) is not continuous or bounded at a 
positive maturity other than infinity, the Siegel general model 
will not satisfy (4'). Also f(m) must be carefully chosen to 
replicate the humped yield curve of [12]. 

IV Rational approximation of yield curves 

Here a yield curve is represented as a quotient of two 
polynomials in m, say P(m)/Q(m). Prior research using an N point 
Pade approximate method called the Thiele Reciprocal Difference 
Method (see [3]) generated a collection of Pade approximates of 
the monthly U.S. Treasury nominal yield curves. These 
approximations were reproducing, however one was not able to 
guarantee that the result was continuous and bounded over the 
nonnegative reals. This was especially a problem on yield curves 
that were almost flat. Possibly there are other algorithms other 
than the Thiele algorithm that will allow control over the 
denominator Q(m). 

Also, the rational approximation converged to a finite value 
at infinity only when P(m) and Q(m) had the same degree. This 
occurs only when there are exactly an even number of known 
points. See [3]. When there are an odd n1~mher of points, one 
can guarantee a finite value at infinity by an introducing an 
additional element obtained by interpolation. 

V Differential Equation model of yield curves 

The remaining part of the paper will examine the family of 
coupled linear differential equations of the following form 

di bm 2 + cm + d 
-- + ~i = ~( ) (O.la) 
du m 2 + fm + g 

dm 

du 
= a + h(in(m + q)) (0.1b) 

where m represents the maturity, i(m) represents a yield 
curve and u is a parameter. This model is not necessarily the 
simplest model, and may very well be a subset of the Siegel 
general form. It is not even reproducing as in the polynomial or 
rational approximation methods, but it does attempt to address 
the yield curve properties (1) through (9). Also note the right 
hand side of (0.1a) can written as 

(m-al)(m-a 2) 

(m-a3)(m-a 4) 

so the six parameters can be reduced to five. However, we will 
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continue to use the six parameter model, because of the 
interpretation of the b coefficent that follows. 

Differential equations (0.1a) and (O.ib) were obtained by 
using various formulas and numerically solving the equations. 
These solutions were then graphed and examined. This approach is 
called geometric modeling. See [2] for further discussion and 
references on geometric modeling. 

One can reduce (O.la) and (O.Ib) to the following form 

di bm2+c~m+d (0.i) 
-- + ~i r(m) = ~( )r(m) 
dm m2+fm+g 

where r(m) = i/(a + h(in(m+q))). 

Since (0.2) is a linear differential equation of the form 

di 
-- + P(m) i = Q(m) (0.2) 
dm 

the general solutions are of the form 

I Q(m) exp(~P(m)dm) dm (0.3) 

i (m) = + C 

exp (fP (m) din) 

See [13]. When attempting to solve (0.1), the integration of the 
numerator in (0.3) is prohibitive. To simplify a Pade [I/I] 
rational approximation to the function r(m) is used. This 
resulted in the approximation r(m) = (jm+k)/(m+p), where j, k, p 
are constants. See [4] for details to make this rational 
approximation. With these restictions and approximations (0.I) 
becomes: 

di (jm+k) bm2+cm+d (jm+k) 
-- + ¢i - - =  c( ) 
dm (m+p) m2+fm+g (m+p) 

( 0 . 4 )  

In Appendix I, an analytic solution of a restriction of 
(0.4) will be derived with the use of (0.3). This derivation 
shows that the b coefficent above in (0.4) corresponds to the 
interest rate at infinity. 
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Now if 
bm2+cm+d 

(0.6) 
m2+fm+g 

is expressed as a power series in (l/m) by an argument similar to 
Appendix I, i(m) will be a power series in (l/m). But by 
expressing the model as a rational expression of two second 
degree polynomials, one can easily control nonsingularity in the 
differential equation. By controlling noningularity one can 
assure the continuity of the solutions over the nonnegative 
reals. This is because if a derivative of a function exists at a 
point the function is continous at that point. However this does 
not allow one to assume that the values are bounded or reasonable 
as stated in property (4) above. 

To control nonsingularity, chose a value p that is positive 
and r(m) will be well defined on all nonnegative m. To assure 
(0.6) will be nonsingular observe the following argument: 

First assume f > 0, and 0 < g < f2/4. 

0 < 4g < f2 

0 < f2 _ 4g < f2 

So 

0 < ~f2 _ 4g < f 

_f + jf2 _ 4g < 0 

_f + jf2 _ 4g 
< 0 

2 
This shows the right most root of m 2 + fm + g is less than zero. 

Next assume that f _< O, and 0 _< f2/4 < g. So 

0 < f2 < 4g 

f2 _ 4g < 0 

jr2 _ 4g is not real. 

This shows that m 2 + fm + g has no real roots. So by placing 
either of these restrictions on f and g, and assuming p is 
strictly positive, we can guarantee nonsingularity in (0.4). 

To guarantee that the solutions to (0.4) are bounded, one 
must use the union of two arguments. By expressing (0.6) as a 
power series in (I/m), one can show that the solution is finite 
and bounded by an identical argument in Appendix I. However, to 
show the solutions are bounded at and near zero will require one 
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to rewrite (0.4) as 

di (jm+k) bm2+cm+d (Jm+k) 
-- = - ~i - - +  ~( ) 

dm (m+p) m2+fm+g (m+p) 

(0.v) 

Note if the choice of p, f, and g have been chosen as above, to 
control nonsingularity, this will guarantee that the partial 
derivative of the right hand side of (0.7) with respect to i is 
continuous in a neighborhood of zero. This allows one to 
conclude by the existence theorem of order one differential 
equations, that the solution is bounded. See [14]. 

Also, one is be able to obtain the humped yield curve, by 
forcing the derivative of i with respect to m to be zero at a 
certain point, possibly allowing one to generate a humped yield 
curve. For instance, if the interest rate at maturity m is a 
local maximum, you can force the value of d to equal 

i(m) (m2+fm+g) - bm 2 - cm (0.8) 

and this will assure i'(m) is zero. 

The concept of feedback is modeled as a system that takes a 
current value of the solution and multiplies it by a constant and 
places that value back into the system. This is usually written 
as a differential equation of the form: 

dy 

dx 
+ cy = f(x,y) 

As one can see (0.4) has this form. So property (5) is 
satisfied. 

If one multiplies (0.4) through by (m + p), the following is 
obtained 

di bm2+cm+d 
(re+p)- + ~i (jm+k) = ~( ) (jm+k) 

dm m2+fm+g 

(0.9) 

Note, that for maturities near -p, t he  effect of t he  derivative 
diminishes, and this allows for a greater volatility of a curve's 
values near that point. So if p is a positive number near zero, 
property (i) is satisfied. 

The coefficent ~, has two major influences on the solutions 
of (0.4}. First, observe what occurs when ~ = 0. This produces 
the simple differential equation 
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di 

dm 
- o (o.lo) 

which has constant solutions i(m) - c. This corresponds to the 
flat yield curve. Secondly, e is used to guarantee that 
solutions of (0.4) are constrained. Here ~ will be used in the 
example that follows to guarantee the reasonableness of the 
solutions. 

The other coefficents c, d, f, and g do not have an 
interpretation, within the model. 

The differential equation method has no means to guarantee 
that property (8) or (9) holds. All that one can hope is that 
these properties will hold after modeling. This will be 
addressed in the historical study in section II. 

The following section will discuss the method of solution 
that is taken to examine the historical yield curves. 

I Boundary Value Problem and Multistage Monte Carlo Algorithm 

Solving for exact solutions to (0.4) is called boundary 
value problems. However boundary value problems for linear 
differential equations, require matching the solution to at most 
two points on the curve. For the historical model one desires an 
exact fit with every point on a given yield curve, i.e. 
reproducing. Since the analytical solution is a complex infinite 
series in (l/m), it is prohibitive to attempt this approach. So, 
the approach was to check for historical validity by minimizing 

m~i I i m - i m I (1.1) 

where the index set I is the set of all known maturities for 
the historical yield curve i m. Here i m would be the 
corresponding values generated by solutions to (0.4). The sum of 
absolute differences, instead of least squares was used, to 
reduce the influence of outliers. See the discussion in [10] 
about this issue. 

The equation (0.4) is arbitarily restricted to the following 
model for the historical study: 

di (2m+2) bm2+cm+d (2m+2) 
-- + ~i - - =  ~( ) 
dm (3m+2) m2+fm+g (~m+2) 

(1.2) 

This assures that (1.2) is nonsingular at zero. This also 
allowed the problem to determine only six coefficents instead of 
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nine. So this assumes that there is an universal r(m) for a 
specific family of yield curves. 

The approach taken to provide coefflcents to (0.4) was to 
use the Multistage Monte Carlo Optimization algorithm (see [6] 
and [7]) to select the coefficents, making sure that the choice 
of f and g controls nonsingularity. Also, when the interest rate 
at one year exceeds the surrounding two rates, the coefficent d 
is constrained by equation (0.8) to model the historical humped 
yield curves. 

Once the coefficents are determined, the four point Runge- 
Kutta algorithm is used to generate the numerical solution to the 
specific differential equation. See [5]. The starting point for 
the numerical solution is at the highest maturity known for the 
historical curve which was 20 ~or the curves from January I, 1970 
to Febuary i, 1977, and 30 for all subsequent curves. The step 
size is set at 0.25, so the solutions pass through the maturities 
of the indexed set I. 

For each yield curve, there is between 15000 to 75000 
random samples taken to generate the optimal solution. 

See the Appendix II for a copy of the Quick Basic program 
that was used for the study. 

II Historical Results 

The historical yield curves are the nominal monthly Treasury 
curves from January 1970 through December 1990. See [18] and 
[19]- There were 252 yield curves modeled. Table 1 indicates 
which rates are available. This table also describes the indexed 
set I. 

Date 90 1 2 3 5 7 i0 20 30 
day yr yr yr yr yr yr yr yr 

i/1/70 - x X NA x x NA x x NA 
211177 

3/1/77 - x x NA x x NA x x x 
3 / 1 / 8 4  

4/1/84 - X X X X X X X X X 

12 / l / 86  

1/1/87 - X X X x x X x NA 
current 

TABLE 1 

X 
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The ez-ror =arm (1.1) for t.~e yield ~arves has a mean of 
0.00211, and a st~lndard deviation of 0.00113. Skewluess is 
0.406, and kurtosis is 2.849. The lowest value for (i.i) ks 
0.0002, and t.he highest is 0.00601. A frequency distribution of 
the error is in Figure 1. Assuming that the error term fits a 
g~-~a distribution, using the mean and variance above one obtains 
an estimate for = and ~. These are 3.441 and 1634.4 
respectively. A g~-~ distibution with these parameter values 
for = and B has 5% of its area above the value of .00425. This 
model has 3.57% above this value. So assu~minq a gs~m~ 
distribution as the hypothesis, the hypothesis is accepted at 5%. 

20 i I i 

,]llilollllnl nl lllbll lllll 
l llllllll lllllllllllllllllli]llllllillnn,i , n,, lllllllllllUl R lll|illl11K I||IY IHIIll111 ~I nrt 

0 0.006 

Figure 1 

Treating ~he sum 

~- ~ - i m C 4 . 1 )  

as another error term, it has mean -0.00016, s~andard deviatiQn 
of 0.00139, skew;less of -0.264 and ktLT~osis of 3.648. The 
minimum value of (4.1) is -0.04727, and the maximum is .003749. 
A frequency distribution of the error is in Figure 2. This error 
term appears to fit a normal distribution with the above sample 
s~atistics. A hYl:Othesis that this error is normal is rejected 
at the 5% level because there are 15 out of 252 terms outside the 
second deviation from the mean. So 6% of ~he sample are 
outliers. Now the hypothesis can be accepted at the 1% level 
because 0.8% of the sample are outliers from t~e third deviation. 

Let z be the interest rate at maturity zero, and q be the 
interest rate at 90 days. The statistics of the coefficents are 
in table 2. 

Note the high autocorT.elation for t21e z. This demonstrates 
proper~,y (8) for the zero maturity. However for t_~e interesU 
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30 

odlllln 
-0. 005 0.004 

mean standard 
deviation 

Figure 2 

skewness kurtosis min I max flag one 
lauto- 
icorrelation 
Icoefficent 

b 0 . 0 9 5 1  0 . 0 2 8 9  1 . 4 6 2  8 . 7 5 3  0 . 0 3 0 1 0 . 2 6 2 1  0 . 3 6 9 2  

c 0 .1203  0 . 4 5 4 0  - 2 . 4 9 5  1 8 . 0 7 1  - 3 . 3 3 1 1 . 3 2 ! 1  0 .1875  

d -0.0236 1.0283 -0.673 8.39 -4.9413.4701-0.0661 

f 2.0060 2.998 0.i08 1.684 -3.51]7.8241 0.5515 

g 2.5250 1.788 0.608 2.366 0.03117.1821 0.3488 

-0.6575 0.8265 -1.231 3.531 -3.2010.184 I 0.0983 

q 0.0758 0.0266 1.105 4.104 0.03210.163[ 0.9658 

z 0.0693 0.0260 1.181 4.694 0.02010.1621 0.8696 

TABLE 2 

rate b at infinity, the autocorrelation coefficent is 
disappointing. This may be due the fact that the approximation 
to r(m) is not optimal. Also, it may be improved by increased 
computer runs to reduce the randomness. This may also be solved 
by modifying the differential equation (0.4) to clamp the values 
at infinity. 

The correlation between q and z above is found to be 0.882. 
So, proper~:y (9) is satisfied. 

The joint distribution of these ooefficents through time 
will he the content of a future paper. 
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III Further Research and Closing Remarks 

As one can see, the use of differential equations can aid 
one in the process of fitting data. Even though the process is 
somewhat prohibitive in the fact that random Monte Carlo 
techniques must be used to solve for various coefficents in the 
differential equation, there is an increased control over the 
process, where one can restrain the solutions to take on behavior 
that best satisfies the data. This paper showed that properties 
(1) through (9) were satisfied with the model (except for 
property (8) at infinity). Hopefully some of the concepts of 
this research may find uses in other topics such as graduation 
and other statistical fitting problems. 

Other topics for future study are as follows: 

(1) Find the optimal choice of the linear rational term 
r(m) = (jmek)/(m+p). Possibly this will clear up the 
disappointing result concerning property (8) at infinity, and 
improve other results. 

(2) Determine the marginal and joint distributions of the 
coefficents b, c, d, f, g, e, and z through time. If this is 
completed, one may be able to use (0.4) in scenario generation as 
in [9]. The use of these distributions, may also lead to luther 
analysis of (0.4) as a random differential equation. There is 
the possibility that this model may have influence on 
multidimensional immunization as referred in [15] and [16]. 

(3) Improve the historical accuracy of this model, by 
examining the behavior of daily yield information. 

(4) Determine a method to test for a coefficent's relevance 
in a differential equation by some statistical measure. 

(5) Examine the model (0.4) for bifurcation as in [2] and 
for chaotic behavior. The author is especially interested in 
chaotic behavior of (0.4) possibly being exhibited historically 
in the early 1980's. This study may result in chaotic indicators 
to help prepare the industry for extreme swings in the value of 
short term rates. 
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APPENDIX I 

Following is the proof that the differential equation 

di + ~i(jm+k) - ~(b) (jm+k) 

dm m+p m+p 

has a solution of the form b + O(I/m). 

The proof of (A.I) will allow us to demonstrate, that as m 
approaches infinity, the solutions will approach a constant 
function, as referred to in [17]. 

Proof. Now using equation (0.3), 

(jm+k) 
P(m)= 

m+p 

and 

exp( ,[P(m)dm ) 
(k-jp) ~ 

= exp (j ~m) (re+p) 

(A.I) 

(A.2) 

(A.3) 

Now Q(~) 

So 

corresponds to 

~b (jm+k) 

m+p 
(A.4) 
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I Q(m) exp(IP(m)dm) dm 

= I be (jm+k) exp (j ~m) 

m+p 

(k-jp)c 
(m+p) dm 

(A.5) 

= jb~ I (m+k)exp(j~m)_ (re+p) (k-jp)~-i dm (A.6) 

J 

= jb~ I (m)exp(j~m) (m+P) (k-jp)~-ldm 

(A.7) 

+ kb~ I exp(jcm) (m+p) (k-jp) e-I dm 

Discard the second term, because it wil~ have lesser degree than 
the first term. Now expand (m+p) ((k-3p)~-l) by the binomial 
expansion theorem one obtains the following formula 

I 
[ (k-jp) ~-2 

jb~ m exp(jEm) (m) (k-jp)~-l+((k-jp)~-l)p(m) (A.8) 

+...] dm 

Discarding the ((k-jp)~-2)th and higher terms of m, we obtain 

jbE I m exp(j~m) [(m) (k-jp) c-1 ] dm 

I (k-jp) 
jbE m exp (j Em) dm 

(A.9) 

Using integration by parts, (A.9) reduces to 
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(k-jp) • 
m 

(j') 

+ 

exp (j Era) 

(k-jp)¢-i 
((k-jp)~) m exp(j~m) 

(j~)2 

°] 
(A.10) 

I (k-jp) 
= jbEexp (j ~m) -- m 

j, 
(A. II) 

(k-jp) 
(jE) 2 

(k-jp) ~-i 
m 

+ oo° ] 

Expanding (A.3) by the binomial theorem we obtain 

exp(jcm) [ m (k-jp)~ + ((k-jp)~)pm (k-jp)~-I 

+ ((k-jp)~) ((k-jp)~-l)p2m (k-jp) E-2 

+ "'" 1 
Dividing (A.3b) into (A. II) we obtain 

(A.3b) 
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jbe [ ] --+ o(i/m) = b 
j, 

Since in each yield curve ~ is fixed. 
dominates when m approaches infinity. 
if Q(m) was replaced by 

(b+c/m) (jm+k) 

m+p 

the solution would be of the form 

+ o(11m) (A.12) 

The linear term above 
By a similar argument 

(A.4b) 

C I 

b + - + o ( 1 / m  2) ( A . 1 2 b )  
m 

In fact, if a power series of (l/m) is used one will obtain a 
power series of (I/m) with the leading constant term the same. 
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APPENDIX II 

DECLARE SUB RK& ( M ! ( ) ,  HI .  HI,  Xlo A I ,  B ! ,  CI ,  Ol ,  F! ,  GI, E l ,  QI, HI.  St,  L I E ) )  

DECLARE FUNCTION ~EF2!  (Xlo Yl ,  A ! ,  I I ,  CI ,  D!,  F! ,  GI, E l )  

DECLARE FUNCTION X%)EFI! ( X I )  

DIN W(2) 

SCREEN 2 

' THE VARIABLE XX IS THE TREAS.DAT FOR A SPECIFIC YIELO CURVE 

DIN XX(9, 2) 

' THE VARIABLE TABLE GIVES THE FIELDS THAT PARSE AS ]M THE TREAS.DAT 

DIN TABLE(9, 2) 

TABLE(l, I )  = 7:TABLE(1 

TABLE(2, 1) • 13:TABLE(2 

TABLE{3. 1) = 19:TABLE(3 

TABLE(&, 1) = 25:TABLE(4 

TABLE{3, 1) = 31:TABLE(3 

TABLE(6, 1) = 37 :TABLE(6  

TARLE(7, 1 ) = 43 :TABLE(7  

TABLE(8, I }  = &9:TABLE(8 

TABLE(9, I )  = $$: TABLE(9 

2) • 12 

2 )  = 18 

2 )  = 24 

Z) : 30 

Z) = 3 6  

2 )  = 42 
Z ) = k ~  

Z) = 5 ~  

Z ) - 6 0  

'VANIBLES O,R.S ARE USED TO PROPERLY PLOT ON THE SCREEN A SOLUTION OF DE 

O = 20 

R = 10D 

S = 10D 

OPEN COMMANDS FOR INPUT AS #1 

TOP: 

IGET A YIELD CURVE 

CO'SUB TREAS 

DOS = LEFTS(AS, 6) 

'SET UP SIEVE FOR RUHG~ I(~JTTA BASED ON WHETHER 30 YEAR OR 20 YEAR IS THE 

'LAST ~'IEL0 CURVE VALUE. THE SIEVE HUST BE DES]GNE~ SO TO PASS THROUGH 

'I(KO~ rlELD CURVE f4L4DURIT|ES, TO TEST THE" FiT OF THE SOLIXTIOkl TO THE 

'ACTUAL YIELD CURVE. 

tF XX(9, 2) = D THEN 
i¢ = 2 0 t 4  

INTERVAL = 20 

ELSE 

N = 3 0 o 4  

INTERVAL • 30 

END IF 

'RUNGE KUTTA SOLUTION [S PLACED INTO THE VARIABLE L 

DIN L(N, 2) 

DIR PLEH, 2) ,  QX(3) 

OIM A ( 7 ) ,  N(7), X(T]f BE7) 
gIN LL (7 ) ,  AU(7) 

NOR = INSTR(COMMAMD$," " )  

IF KOR = D THEN R ¢ m = L E H ( ~ $ )  

XR$S:LEFTS(Ci0N4ANOS,KQR) 
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SCR]TS:LTRIM$(RIGHTS(C(~lq/UIO$.LEN(IDOIOIAMDS)-KQR)) 

OPEN "R" * XRBS FOR AJ~I~EMD AS ir~ 

PRINT #2, *'NEWTEST6 m ÷ XRH 

CLOSE i 2  

XXXRRB: 

NOLO : .19 

CEILING = Z5 

X(1)=O 

IF QX{2) = 0 THEN ~%LING = 10 

IF QX(1) = 0 THEN C:EILiNG m 5 

FOR K8 : I TO CEILING 

CLS 

RANOONIZE TINER 

IF $CRIT$="" THEN PRIMT AS; "NE~/TEST6 " + XRB$ 

H : . 1 9  

HERR = 0 

IF XX(9, 2 )  = 0 THEN 

8(1)  = 0 * QXCZ) 

A{1)  • 0 

N(1) = 0 t QX(2) 

8(2)  : .015 

A(2)  = XX(8,Z)  

N(2) : .40 

B(3) = -8 * OH(3) 

A(3) = 0 

N(3) = 8 " QX(3) 

B(4) = "8 * QX{4) 

A(4) = 0 

g(4) = 8 * QX(4) 

B(5) = -8 ° QX(4) 

A(5)  = 0 * QX(4) 

~(S) = ~ *  QX(6) 

B(6) = 0 * OH(5) 

A(6)  = 4 * OX(5) 

N(6) = 8 * QX(5) 

8(7)  = -4 

A(7) = 0 

N(7) = 4 

Ek~ IF 

IF XX(8, Z) = 0 THEN 

8 [ 1 )  = 0 * OX(2) 

A(1) = 0 

HI1) z 0 * QX(2) 

B ( 2 )  = .015 

A(E) = XX(9 ,2 )  

N(2) - .40 

8(3)  = -8 * OX(3) 

A(3)  = 0 

N(3) : 8 * ~X(3)  

8{4) : -8 * OH(4) 
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A ( 4 )  - 0 

M(4)  = 8 * OX(4)  

B ( $ )  • - 8 "  OX(4)  

A(S)  : 0 * OX(4)  

X(S)  = 8 * OX(4)  

B (6 }  z 0 = OXC5) 

A ( 6 )  = ¢ * QX(S) 

M(6)  = 8 * OXtS) 

S ( 7 )  = -8 

A ( 7 )  - 0 

M(7)  = 

EMD tF 

IF XX(B, 2)  <> 0 AND ] 0 ( ( 9 ,  2 )  <> 0 THEM 

B ( 1 )  = 0 " QX(2) 

A ( 1 ]  = 0 

N ( 1 )  = 0 * 0X(Z )  

B ( 2 )  = .015 

A (Z )  = X X ( 9 , 2 )  

H ( 2 )  • .40 

8 ( 3 )  = -8  * OX(3)  

A ( 3 )  • O 

M(3) " 8 * ~IX(3) 

S (4 )  : -8 * QX(4)  

A ( 4 )  - 0 

N (4 )  s 8 * OX(4) 

B(S)  = - 8 "  OX(~) 

A ( 5 )  : O " OX(4)  

N ( $ )  * B * QX(6) 

R(6 )  = 0 * OX($)  

A ( 6 )  : 6 * OX(S) 

M(6)  - B * QX(5) 

M(7)  = -~ 

A (7 )  • 0 

H (7 )  = 6 

END [F 

HTR$: 

FOR J = 7 TO 15 

2 • LO 

IF M • .003 THEN Z s 100 

]F  M • . 01  AND J • 13 THEM Z : 10 

FOR [ = 1 TO Z 

TRIES : 0 

RETRY: 

TmlES = TR[ES*I 

FOR [ z 2 TO 7 

IF (ACK) - M ( [ )  / ( 2 )  J • B ( K ) )  THEN 

L L ( [ )  I B ( [ )  

ELSE 

L L ~ )  = A(K)  - N ( [ )  / 2 J 

END ZF 

IF (A (K)  ÷ N(K)  / 2 J • N (K ) )  THEN 

A U ( [ )  • H(K)  - L L ( K )  

ELSE 
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AU(K) • A(K) ÷ HIK) / 2 J " LL(K) 

END IF 

X(g) = LL(K) ÷ U * AU(K) 

NEXT K 

IF TRIES • 150 THEN GOTO RGLrrE 

IF X(SI ~ 0 N(D XC6)'csX($) 2 /4  THEN GOTO it[TRY 

IF X(S] ) "  0 and XC6)>z X(S) 2/4 THEN GDTO RETRY 

|F XX(302) .o, 0 THEN 

IF XXC2,2) > XX(1 ,2)  Ale) XX(2,2)  > )(X(3,2) THEN 

X ( ; )  = XXC2,Z)* (1+X(S)÷X(6) )  - X(2)  - XCI) 

END IF 

ELSE 

IF XXCZ,Z) • X~(1,2)  AM) XX(2,2)  • )0 ( (4 ,2)  THEN 

X(4)  = X X ( Z , Z ) * ( I ÷ X ( 5 ) ÷ X ( 6 ) )  " X(2) " X(3)  

ENO IF 

END IF 

'START 

'H DETERMINES THE STEP SIZE OF THE RK ALGORITHM 

H = -INTERVAL / N 

'LET THE STARTING VALUE FOR THE RR ALGORITHM TO NE THE YIELD CURVE 

• VALUE FOR THE 1 YEAR MATURITY. 

IF XX(9,2)=O THEN 

XXX = 20 

~(2)  = xxcN, 2) 

ELSE 

XXX = 30 

~(2 ]  = XX(9, 2) 

END IF 

L(O, 1) = XXH: L(O, 2) = w(2)  

iF SCRET$ ==~ THEM 

LOCATE 2, 5 

PRINT USING " / ~ l / . i ~ F ' ;  X (1 ) ;  X ( 2 ) ;  X (3 ) ;  X (4 ) ;  X (5 ) ;  X(6) ;  X(7)  

END IF 

CALL RK4(W(), N, H, XXX, K (1 ) ,  X ( 2 ) ,  X ( ) ) ,  X(&) ,  X (5 ) ,  X(6) ,  X (7 ) ,  Q, R, S, L ( ) )  

'ACCUI4ULATE THE VARIABLE SSUM TO TEST TO SEE HOW FAR THE ACTUAL 

'YIELD CURVE IS AWAy FROM THE DE SOLUTION. 

'NOTE: USED ABS INSTEAD OF LEAST SQUARE. 

$SUN = 0 

C.£RR = 0 

IF SCRITS="" THEN 

LOCATE 5, 1 

PRINT USING " ~ ~ ~ t . / N N ~  #.J~U/ # . ~ : : ;  K8; J; I; N; MOLD; HERR 

END ! F 

FOR IX = 0 TO N 

'THIS SELECT CASE IS SET UP TO PROPERLY OBTAIN THE SSUH VARIABLE 

SELECT CA.fE L I IX ,  1) 

CASE .Z5 

I f  ~'XC1, Z) .o. O THEN 

S~14 = SSUH ÷ ABS(L( |X ,  2) " ]0((1, 2 ) )  

CERR = CERR * (L(%X, 2) - )O((1, Z) )  

END ] F 

CASE 1 
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IF XX(2, 2)  <> 0 THEN 

SSL~ • SSUN + A S S ( L ( I X ,  2)  - )0((2. 2 ) )  

(:ERR = ~RR * L ( I X ,  Z) - XX(Z, 2) 

END IF 

CASE 2 

ZF XX(3 ,  2 )  o 0 THEM 

SSUN = SSLII4 * ARSCL(IX, 2)  - XX(3, 2 ) )  

CERR ~ ~ERR * {LCZX. 2 )  - J(X(3, 2 ) )  

END IF 

CASE 3 

IF XX(4, 2}  <> 0 THEN 

SSUM • $SUM * ABS(L ( rX ,  2}  X)((~0 2 ) )  

CERR • (~RR * ( L ( I X ,  2 )  - XX(&, 2 ) )  

END iF 

CASE 5 

%F XX(5o 2) (> 0 THEN 

SSUN - $SZ.~ * A B S ( L ( I X ,  2 )  XX(S, 2 ) )  

~ERR • LEER + ( L ( [ X ,  2 )  " XX(5,  2 ) )  

END IF 

CASE 7 

IF XX(6, 23 <> 0 THEN 

$SLIM : SSt,JH * A B S ( L ( I X ,  2)  )0((6, 2 ) )  

CERR : CERR • (LCEX, 2)  - )0((6, Z) )  

END ZF 
CASE 10 

|F XX(7, 2) <> 0 THEN 

$SUM : SSUM * A I IS (L ( IX ,  2)  XX(7, 2 ) )  

CERR = CERR ÷ ( L ( I X ,  2) " XX(7, Z) )  

ENO IF 

CASE 20 

iF XX(8,  2)  o 0 THEN 

$SUM • $$UM + A B S ( L ( I X ,  2)  XX(8+ 2 ) )  

CERR : C~RR ÷ ( L ( I X ,  2 )  " X X ( 8 ,  2 ) )  

ENO %F 

USE 30 

IF XX(9, Z) o 0 THEN 

$~lM = SSUM ÷ ABS(L(ZX E) XX(9, 2 ) )  

CERR : I~'ERR + (L (XX,  23 " ]0((9,  2 ) )  

END IF 

CASE ELSE 

END SELECT 

NEXT IX 

PF = $SUN 

IF PF )'s H THEN C, OTO LOC3 

N s PF 

HERR = C'ERR 

FOR N1 : I TO 7 

A(NI )  = X(N1) 

NEXT H1 

ZED : L (H ,2 )  

]F MOLD > M THEN MOLD = N 
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LOC3; NEXT ] 

NEXT 

OPEN "H" ÷ XlU~ F ne kePEIIO AS 

f l S = " \  \ # . ~  #.8~Ur610 ~ l , . m m u u ~  N . ~  ~ . ~ w 6 1 ~ l f  N . JWM~MI  m.IMM~Mr~lZ IMI .ml lmM'  ~._-_-_-_~_~_~_- I . , ; . ; , ~ ;  = 

PlittiIT #2, USZNG f l S ;  DOS; 14; )~LE; ~01( I ,2) ;  A ( 2 ) ;  A(3) ;  k ( ; , ) ;  k ( 5 ) ;  A ( 6 ) ;  k (7~ ;  

CLOSE 112 

IF ~ • .00(~ TNEN GOTO ~TOFHF.I~ 

HOUTE : M£'XT E8 

]F  MOLD • .002 THEN 

IF ¢ZX(1) • Q TNI~  

• X(1)  - 1 

GOT0 XX)0tU 

F.NO IF  

iF CiX(2)  • 0 THEN 

Oxc2) • 1 

GO10 X~tRRI 

EkD IF  

IF ~ v ( 3 )  • 0 THEN 

QX~3) = 1 

GOTO ~ R D  

END I F  

IF QX(4) • 0 THEM 

~ ( 4 )  • 1 

GOTO XXXRRI 

EIRI IF 

E),'O IF 

CUTOFHEHE: GOSU8 TEEAS 

DON • LEFTS(AS, 6) 

GOTO XXXRRE 

THEAS: 

QX(1) • 1 

QX(2) • 1 

QXt3) • ". 

QN(43 • I 

OXCS) - 1 

iF EOF(1) "tWiN GOTO 

LITHE iNPUT #1, AS 

FOR i = I TO 9 

T$ • LTRII6(mTHINS(MIDSCA$, TABLE(I, 1) ,  TAJLE(|,  2 ) ) ) )  

IF YS - "k~"  TICEN )C(CI, 2) - 0 ~ XX(Io Z) • VAL(YI~) 

SELECT CA~ 1 

CASE 1 

XX(I ,  1) • .25 

HX(I ,  1) - 1 

CAS~ ] 
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) IX( l ,  1) • Z 

CASE 6 

XX( I ,  1)  = 3 

CASE 5 

XX(1, I )  : 5 

CASE 6 

XX(X. 1) • T 

CASE 7" 

XX ( | ,  I )  - 10 

CASE 8 

XX( l ,  I )  : ZO 

CASE 9 

X X ( I ,  1) • 30 

EMD SELECT 

~EXT I 

RETURN 

ENOUP: CLOSE #1 

£HO 

RKL. ( u ( ) ,  M, N, [ ,  A, !1, C, D, F, G, E, O, I1o S, L ( ) )  

011'I K(4,  2) 

START : X 

FOR ~ ~ 1 TO N 

[ ( 1 ,  2) : H • XDEF2(X, V(2 ) ,  A, 8,  C, D, F, G, E) 

K(2,  2) - H * XDEF2(X ÷ 1 / 2 * H, W(2) + 1 / 2 * K(1,  2 ) ,  A, E, C, O, F, G, E) 

[ ( 3 ,  2) - H * ~EF2 (X  ÷ I / 2 * H, W(2) ~' 1 / 2 * [ ( 2 ,  2 ) ,  A, E, ¢. D, F, G. E) 

[ ( & ,  2) m H * XDEF2(X + H, ~(2) ÷ [ ( 3 ,  2 ) ,  A, io  C. D, F, G, E) 

W(2) : W(2) + ( [ ( 1 ,  2)  " 2 * [ ( 2 ,  Z) ~" 2 " [ ( 3 .  Z) ÷ [ ( & .  2 ) )  / 6 
X = START * I * N 

L(Z, I )  = X: LCZ. 2)  = ~ (2 )  

TEXT I 

EIIO gJB 

FUNCTION XDEF1 (X) 

XOEF1 : .0001 ÷ LOG(X) 

EkO FUNCT |Oil 

FUNCIKOM ~DEF2 (X, Y. A, B, C, D. F, G, E) 

Q Q S m X * X + F * X 4 .  G 

IF ORS = 0 THEM QIIS ~ .0001 

XOEF2 - -E ° (X - ( B 'X"X ÷ C ° X + O) / ORS) * (2"X÷2)  / (3 * X÷2) 

ENO FUNCTION 
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