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Summary 

The Choleski factor matrix has been well known for many years; it 
is a triangular matrix that satisfies the condition that the 
factor matrix multiplied by its transpose is equal to a symmetric 
matrix. The concept has been used since the early 1980's to 
generate asset returns with specified means and covariances. 
This paper develops some new uses of the factor matrix, including 
modeling serial correlation, adding asset classes with contingent 
returns, adjusting preliminary results to final targets and 
adjusting large, "unfactorable" matrices. Two appendices 
illustrate a numerical example and include listings of APL2/PC 
functions that implement the methodology. 

I. INTRODUCTION 

Given a symmetric, positive definite matrix, M, it is possible to 
determine an upper triangular factor matrix, F, such that 

M-F~F (I) 

where the multiplication is the matrix inner product and F ~ is 
the transpose of F. This mathematical definition plays a 
valuable role in the generation of data with specified 
covariances, an integral part of many simulation models. 

Given an N row x M colunun ~trix, D, containing N observations of 
M variables; if the mean of each colu~u% is zero, then the 
covariance matrix for D is defined by 

COV(D)=DT×D (2) 

Equations (i) and (2) lead to the following well known 
methodology of generating random data that satisfies specified 
mean and covariance requirements: 

Given C, a specified covariance matrix for M variables 
F, the Choleski factor matrix of C 
R, an N x M matrix of random data, where each column 

follows a normal distribution with mean zero and 
the covariance matrix of R is the identity matrix 
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Then, let 

R/=R×F (3) 

and it can be easily shown by matrix algebra that the covariance 
matrix of R' is C. By adding columnar means to R', R' will be a 
data matrix with specified means and covariances. 

In summary, the Choleski factor matrix can generate a data matrix 
with specified means and covariancee, as long as 

1. a normal random matrix, R, with a covariance matrix 
equal to the identity matrix can be supplied. This is 
generally done with a random number generator. A later 
section of this paper will show how to force the 
initial random numbers to exactly satisfy this 
requirement. 

2. The specified covariance matrix is factorable. In 
simple terms, this means that the specified covariances 
and underlying correlations must be internally 
consistent. For example, if variable A is highly 
positively correlated to variables B and C, then 
variables B and C would be expected to also have a 
strong positive correlation. A specified covariance 
matrix with a strong negative correlation between 
variables B and C would not he factorable. For 
example, consider variables A, B and C, each with mean 
zero and unit standard deviation. If the specified 
correlation matrix for ABC is as follows= 

A B C 

A 1.0 .9 .9 

B .9 1.0 -.9 

C .9 -.9 1.0 

Then the oovarianca matrix would be identical to the correlation 
matrix and it is not factorable with the Choleski methodology. 
In order for the matrix to factor, the correlation between B and 
C must be about positive .65 or higher. 

II. A SIMPLE ASSET SIMULATION MODEL 

Some early asset simulation models that were popular in the early 
1980's were based on specifying means and covariances for each 
asset class. As long as the specified covariances were 
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factorable, i.e., economically/statistically feasible, then the 
model could be developed in the following process: 

Given M asset classes, 
N simulations (scenarios) of each class in each year, 
Y years for the simulation time horizon, 
R~...~ N x M matrices of normally distributed 

random variables with mean zero and 
covariance matrix - I, 

C a specified covariance matrix (M x M), 
Then let F - the factor matrix of C 
and D,- R, x F, for i - I...Y 

Each D i will satisfy the criteria for specified covariances; by 
adding the expected returns of each asset class to the 
appropriate columns, D L will also have the specified mean returns 
for each asset class. By using simple variations of this 
methodology, both normal and lognormal distributions can be 
generated. 

Chart One shows a visual example of the matrix calculation, where 
returns for three asset classes are generated. 

CREATE RETURN MATRIX WITH SPECIFIED COVARIANCE8 

Z 

MATRIX D 

! 1 
1 

MATRIX R 

FACTOR MATRIX 
F 

z X = 

I 

M M 

M 

CHART ONE 

The reader will note that although the simulated asset returns 
will exactly satisfy the criteria for means and covariances, each 
year of the simulation is independently determined and there is 
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no linkage between years. In recent years, developing economic 
theory has lead to a strong indications of linkages of asset 

i 
returns between years. More complex models are needed to 
develop linkage (i.e., serial correlation) between years; these 
will be explored in a later section of this paper. 

III. ADJUSTING SIMULATED RESULTS TO TARGETS 

In order to introduce linkages of asset returns across years, my 
firm has developed a sophisticated economic simulation model that 
first simulates yields and inflation and secondarily simulates 
asset returns based on the pattern of simulated yield and 
inflation. Since the asset class returns have a complex 
relationship with yields, inflation and other asset class 
returns, there is only indirect control over the simulated means 
and covariances of the asset class returns. 

Where it is important to adjust the asset returns to meet 
specified targets, there are two possible solutionsz 

The first approach is to "tweak" model parameters in an 
attempt to meet the targets. Even with expert 
knowledge of the model, this can be a difficult and 
time consu~ning process. 

The second, and more elegant, approach is to apply a 
matrix "filter" to force the simulated results to hit 
the specified targets for means and covariances. 

As a simple one dimensional example, if V, a vector of length N, 
holds randomly simulated data with mean m and standard deviation 
s and if the target mean is M and the target standard deviation 
is ~, then the following equation adjusts V to hit the targets: 

~= (v-m) x~÷M (4) 
s 

The adjustment for an N x M data matrix ks analogous to the one 
dimensional example, but uses matrix calculations to control the 
covariances. Fortunately, the magical factor matrix can do the 
job. 

I For example, see Poterba, James M. and Summers, Lawrence H., 
1988, "Mean Reversion in Stock Prices -- Evidence and 
Implications, "Journal of Financial Economics 22, 27-59. 
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Let 

Then, 

D = an N x M matrix of simulated data 
M~ an N x M matrix, where each column contains the mean of 

the equivalent column of D 
M' D an N x M matrix of the target means for each variable 
C covariance matrix of D, 

C = (D-Mo) ~ (D-MD) (5) 

C' target covariance matrix 
F Choleski factor matrix of C 
F' Choleski factor matrix of C' 

DI=MIo ÷ (D-MD) × ( F'xF -I) (6) 

V' will have the specified means and covariences and will tend to 
preserve the initial data patterns for small differences between 
C and C'. 

One caveat is that the matrix filter works best for small changes 
in C. In the case where the targets are greatly different from 
the simulated ¢ovariances, there is first a question as to 
whether C' will be factorable. If C' is factorable, the 
means/covariances will be as desired, but other characteristics 
of the data could be distorted. When using this very powerful 
approach, the results should be carefully inspected to see if 
there are any undesirable side effects. 

An interesting property of the matrix filter is that it can be 
set up so that the original pattern of returns for some asset 
classes can be preserved while the remaining classes are 
adjusted. This is accomplished by simply reordering the data 
matrix so that the asset class returns to be preserved are in the 
leftmost columns and the changeable classes are in the rightmost 
columns. This amazing property will be used in the next 
sections. 

IV. CONTINGENT RETURNS 

There are a number of situations where we want to add an 
additional asset class to a previously generated simulation. All 
the original data is to be preserved exactly as is end the 
additional asset class is to have a specified mean and standard 
deviation and specified correlations to the preexisting asset 
returns. These are called "contingent returns", since the return 
patterns of the new asset class depend on the existing classes. 

For this case, we can use a variation of the matrix filter, using 
the previously mentioned technique to preserve the patterns of 
the original data and only adjust the added asset class. More 
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specifically, this technique is defined as follows: 

Let D O - N x M matrix of simulated data with existing classes 
M~ N x M matrix of means of D O 
C O covariance matrix for D O 
R random vector with mean 0 and standard deviation I 
D~ D O with R added as a rightmost column 
M~ M 0 with a column of zeroes added as a rightmost column 

covariance matrix for D z 
target covariance matrix, equal to Co, with new 
covariances appended in last row and column 
matrix of target means, equal to M0, with mean of added 
asset class in last column 
factor matrix for C~ 
factor matrix for C ° 

CI,,~ 
C '  

M '  

F 
F' 

Then, 

DI=,~'+ (DI-M1) x (FIxF "z) 

Chart Two shows an example of adding contingent returns for an 
asset class to the returns for three pre-existing asset classes. 

ADDING A S S E T  CLASS WITH C O N T I N G E N T  RETURNS 

MATRIX D' MATRIX D1 FACTOR MATRIX F' 
DO 

7 =i 
i 

I 
z I 

l I 
z 

M4.1 M 4.1 

X M+I 

,l,e 
4. 

M~I 
CHART TWO 

One or more new asset classes can be added to the existing 
classes, as long as the covariances of the new classes to all 
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existing classes and to each new class can be specified. 
Appendix I shows a detailed numerical example of adding a new 
asset class to three pre-existing classes. 

v. CONTROLLING SERIAL CORRELATION 

The methodology for controlling serial correlation, the linkage 
between years, is very similar to the approach for creating 
contingent returns. There are two possible variations of this 
method - creating contingent returns with serial correlation and 
adjusting existing return patterns to specified serial 
correlations. 

As mentioned in Section I, early economic simulation models 
assumed that return8 were independent from year to year. More 
recent models assume that there is some negative serial 
correlation of returns between years. Serial correlation allows 
the modeler to directly control the shape of compound returns. 
Chart Three-A shows the 
results of a simulation of 
asset class returns with a 
mean of 13% and a standard 
deviation of 16%; the graph 
shows the distribution of 
compound returns of the 
"unlinked" yearly returns. By 
the tenth year, the standard 
deviation of the annualized 
compound return is 4.5%. 

Chart Three-B shows the 
results of a simulation with 
negative serial correlation; 
although the mean and standard 
deviation of all the asset 
returns is identical to the 
first simulation, the standard 
deviation of compound returns 
in the tenth year has dropped 
to 3.0%. Since the compound 
return patterns are relevant 
for forecasts with long time 
horizons, the ability to 
control the distribution of 
compound returns is critical 
to a successful simulation 
model. 

To add contingent returns with 
specified serial correlation 
to the prior year's return for 
the new asset class, generate 

COMPOUND SIMULATED RETURNS 
WITHOUT SERIAL CORRELATION 

¶ t s 4 $ | • | o q 

Yf.AR 

CHART THREE-A 

COMPOUND SIMULATED llETUllN5 
WITH SEll IAL CORllELAT ION 

:1 ......... t'! 
4 | S • • | ~ • • 

Y I r ~  

CHART THREE-B 
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the first year results by using the process explained in section 
IV. 

For the 

Let D o 
R o 

D, 
M, 
C, 
R 
D~ 
M= 

M r 

F 
F" 

second and later years, use the following methodology: 

- N x M matrix of simulated data with existing classes 
vector of simulated returns for new asset class in 
prior year 
D o with R 0 added as leftmost column 
N x M matrix of means of D~ 
covariance matrix for D, 
random vector with mean 0 and standard deviation 1 
D I with R added as a rightmost column 
M, with a column of zeroes added as a rightmost column 
covariance matrix for D= 
target covariance matrix, equal to C,, with new 
covariances appended in last row and column; the first 
row of the rightmost column has the covariance of the 
new asset class between years 
matrix of target means, equal to M,, with the mean of 
added asset class in last column 
factor matrix for 
factor matrix for _ 

DI=M/+ (D=-M=) x (F/xF "z) (8) 

Since C and C' only differ in the last column, all the other 
columns of rlturns will be preserved untouched. The last column 
of D' is the simulated returns for the new asset class, which 
will have the specified covariance, including the specified 
serial correlation to the prior year returns. 
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Chart FOUR gives a visual example of this process. For the 
example of three pre-existing classes, the prior year's data for 
the new class is added as the leftmost column and a random vector 
is added as the rightmost vector. After the matrix calculation, 
the rightmoet column of the matrix product contains the returns 
for the new asset class in the current year. These returns are 
then used to generate the next year's returns. 

Z 

ADDING ASSET CLASS WITH SERIAL CORRELATION 

FACTOR MATRIX F' 

MATRIX D' MATRIX D2 
DO 

M'~2 "1 M "1 

04 
i 

X 

FACTOR MATRIX F 

N 

i 

CHART FOUR 

The process for adjusting existing results for serial correlation 
is similar. We want to preserve a11 existing means and 
covariances and only change the serial covariance, which is in 
the upper right and lower left cells of the augmented covariance 
matrix. 

VI. "PURIFYING" RANDOM DATA 

It's very easy to generate random data and force the means to 
zero and the standard deviations to unity; however, those changes 
do not necessarily remove the correlations from the data. 
Fortunately, the magical Choleski factor matrix can be used to 
remove all correlations. Simply generate a matrix of random data 
and use the matrix "filter" to force the covariance matrix to be 
equal to the Identity Matrix. 
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VII. FACTORING "UNFACTORABLE" MATRICES 

As discussed above, some specified covariance matrices may not be 
factorable by the Choleski methodology. This may occur for two 
possible reasons. First, the specified correlations may not be 
economically or statistically sensible. (Note that a covariance 
matrix calculated from actual data will always be factorable, 
since the pattern of correlations of actual data is, by 
definition, sensible.) Second, the factor methodology may run 
into computational problems with large matrices, due to rounding 
error. Practitioners generally find that, as the number of asset 
classes increases, it becomes more difficult to factor the 
specified covariance matrix. 

A possible solution to this problem is a special process to apply 
the matrix filter to data matrices with large numbers of 
variables. This process chooses random subsets of the variables 
and attempts to adjust each subset to the specified covariances 
for that subset. The next iteration chooses a different random 
subset from all the variables (including the results of all prior 
adjustments) and adjusts that subset to its specified 
covariances. If the specified covariances are sensible, this 
process will converge fairly quickly to the desired results. 

VIII. CONCLUSION 

The factor matrix approach has been used in economic models since 
the early 1980'8. This paper presented some new uses of the 
factor matrix for simulating more complex asset models, 
controlling compound returns with specified serial correlations 
and for adjusting previously simulated results to meet specified 
means and covariance8. 
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APPENDIX I 
Numerical Example 

This appendix gives a numerical example of the calculations to 
add an asset class with contingent returns to three pre-existing 
asset classes. For this simplified example, we will use 25 
observations of each variable. 

The methodology follows the process described in Section IV of 
the paper. For purposes of presentation, the data has been 
truncated to six decimals, or less. The actual calculations in 
APL2/PC use up to 12 digits of accuracy. Since a high degree of 
accuracy is needed to factor the covariance matrices, it is 
recommended that extended precision calculations be used. 
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The pre-existing data is as follows: 

I Observation CLASS 1 CLASS 2 

8 

9 

10 

0.0896 

0.0656 

0.0544 

0.0622 

I CLASS 3 

96 0.3824 0.2076 
[ i 

, 0.2281 ! 0.1181 

-0.0875 0.0605 

0.0395 

0.0803 

0.0188 

0.0464 

0.0550 

0.0679 

11 0 . 1 0 0 9  
|1 

12 0 . 0 5 5 1  

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Mean 

0.0780 

0.0471 

0.0743 

0.1041 

0.0712 

0.~219 

0.0585 

0.0418 

0.0959 

0.0673 

0 . 0 5 6 0  

Std Dev 2 

0 . 1 0 7 6  

0.1925 

0 .0174  

-0.0538 

0.1715 

-0.1516 

-0.2269 

0.0300 

-0.0614 

0.0159 

0.2245 

0.0135 

-0.0344 

0.3598 

0 . 1 1 0 8  

0 . 0 9 6 8  

0 . 0 4 6 3  

0.4474 

0.0027 

-0.0296 

0.0862 

0.1189 

0.0883 

0.0314 

0.1202 

-0.0082 

-0.0085 

0.0443 

0.0954 

-0.0281 

0.1059 

0.0869 

0.0222 

0.2150 

0.0423 

0.0750 

0.0900 

0.1702 

-0.0449 

0.0235 

0 . 0 4 9 9  

0.0534 

.0622 

.0213 

0.2466 

-0.1291 

.0768 

.1677 

0 . 1 7 6 6  

0.0140 

.0761 

.0683 

2 The standard deviation used here ig the population standard 
deviation rather than the sample standard deviation (i.e., 
division by N rather than N-l}. The population standard 
deviation is equal to the square rQot of the diagonals of the 
covariance matrix. 
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The correlation matrix for the data is the following: 

CLASS 1 I CLASS 2 [ CLASS 3 

CLASS 1 1.000 

CLASS 2 .171 1.000 

CLASS 3 .094 .840 1.000 

Consistent with the standard deviations and correlations is the 
following covariance matrixz 

CLASS 1 CLASS 2 CLASS 3 

CLASS 1 .000455 

CLASS 2 .000613 .028108 

CLASS 3 .000137 .009619 .004664 
I 

For the purposes of this example, we wlll add a fourth asset 
class, with the following characteristics: 

Mean .13 
Std Dev. .16 
Correlations to Classes 1-3: 0, .2, .1 

Based on these characteristics, in combination with the 
characteristics of the pre-existing classes, the target 
covariance matrix is the same as before, but with a row and 
column added. The reader can easily verify that the target 
covariance matrix is the followingz 

CLASS 1 

CLASS 2 

CLASS 3 

CLASS 4 

CLASS I 

.000455 

.000613 

.000137 

.000000 

CLASS 2 

. 0 2 8 1 0 8  

.009619 

.005365 

CLASS 3 

.004664 

.001093 

CLASS 4 

.025600 
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We will now append a column of 25 random numbers selected from a 
lognormal distribution with a mean and standard deviation of 
unity. The actual mean and standard deviation of the random 
sample will vary with sample error. The following table displays 
the numbers which were used for this example: 

Random Numbers 

F " 
I 

I-5 , .488023 I 1.881652 , .282318 , .636009 li 2.307044 

6-10 .812981 J .239862 .399288 . 582225  I .127279 

ii-15 .322396 i .536108 1.145508 .883130 I 1.047454 

16-20 1 .420966 I .443956 ! 1 .270796 3 . 0 9 7 2 2 4  t .751726 

.360330 21-25 .956060 .691400 1,622174 .188410 

The Choleski factor matrix of the augmented data matrix in our 
example is shown in the following table: 

CLASS 3 CLASS 1 

.021331 

CLASS 2 

.028737 CLASS 1 .006406 

CLASS 2 0 .165174 .057123 .167693 

.036872 

CLASS 4 

- . 0 7 0 5 2 1  

-.137580 

.664432 

CLASS 3 

CLASS 4 

The Choleski factor matrix of the target covariance matrix is 
identical for the first three columns, corresponding to the pre- 
existing data, which is to be preserved. The target factor 
matrix is shown in the following table: 

CLASS I 

CLASS 2 

CLASS 3 

CLASS 1 

.021331 

CLASS 2 

.028737 

CLASS 3 

.006406 

CLASS 4 

.000000 

0 I .165174 .057123 .032481 

0 / 0 .036872 - . 0 2 0 6 8 6  

0 .155297 CLASS 4 
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Then, if we multiply the target factor matrix by the inverse of 
the existing factor matrix, we get the following matrix: 

Jl CLASS I 
I I I I  

CLASS 2 CLASS 3 

0 

CLASS 4 

CLASS I I 0 .878989 
ii m l u 

CLASS 2 0 1 0 -.148231 
im m u 

CLASS 3 0 0 1 I .311081 

CLASS 4 0 .233729 

Note that the first three columns and rows of this matrix form 
the Identity Matrix; this is the mechanism that preserves the 
original data. 
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After multiplying the augmented data matrix by the last matrix, 
we obtain the new data matrix, as shown in the following table: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

MEAN 

STD DEV 

CLASS 1 

0.0896 

CLASS 2 

0.3824 

CLASS 3 

0.2076 

CLASS 4 

0.0534 

i 0.0656 , 0.2281 , 0.1181 I 0.3531 

0.0544 -0.0875 0.0605 I -0.0017 

0.0622 0.1076 0.0862 i 0.0669 

0 .0395  0 .1925 0 .1189  0 . 4 3 5 1  

0.0883 1 0.1382 

0.0314 -0.0569 

0.1202 -0.0012 
i 

-0.0082 0.0571 

-0.0085 -0.0269 
i 

0.0443 0.0261 

0.0803 0.0174 
i 

0.0188 -0.0538 

0.0464 0.1715 
| 

0 .0550  - 0 . 1 5 1 6  

0 .0679  - 0 . 2 2 6 9  
i 

0 .1009  0 .0300 

0.0551 -0.0614 0.0954 0.0652 

0.0780 0.0159 -0.0281 0.1779 

0.0471 0.2245 0.1059 0.1002 

0.0743 0.0135 0.0869 0.1879 

0.1041 -0.0344 0.0222 0.2884 

0.0712 0.3598 0.2150 0.0326 

0.0219 0.1108 0.0423 0.1657 

0 .0585  0 .0968 0 .0750  0 . 6 3 7 0  

0 .0418  0 ,0463 0 .0900  0 . 0 8 6 3  

0 .1702  0 . 0 0 7 9  

- 0 . 0 4 4 9  0 . 1 2 1 0  

0 .0235  0 . 0 7 5 2  
i 

0 ,1766  0 . 2 9 4 1  
i 

0 .0140  - 0 . 0 3 2 8  
I 

• 0761 . 1 3 0 0  

.0683 . 1600  

0 . 0 9 5 9  0.4474 

0 .0673  0 .0027 

0 .0560  - 0 . 0 2 9 6  
i 

0 , 0 4 9 9  0,2466 

0 .0534 - 0 , 1 2 9 1  
! 

.0622 .0768 
i 

.0213 i .1677 
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Note that the first three columns are identical to the starting 
data; the covariance matrix of the generated data is exactly 
equal to the target covariance matrix. Therefore, the generated 
asset class satisfies the requirements for mean, standard 
deviation and correlations. 
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APPENDIX II 

This appendix contains source listings for several APL2/PC 
programs that facilitate the processes described in this paper. 
These functions are: 

FACTOR 

CHANGE 

CHANGEX 

Calculate Choleski factor matrix for 
a ~iven data matrix 

Filter a given data matrix to meet 
specified covariances 

Filter a given data matrix with a 
large number of variables to meet 
specified covariances 
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[ o~ 
[ 1] 
[ z]  
[ 3]  
-[ 4] 
[ 5] 
[ 5] 
[ 7] 
[ S] 
[ 9] 
[1o] 
[iI] 
[12] 
[13] 
[14] 
[15] 
[Is] 

B~FACTOR A;I;J;X 
A FUNCTION TO CREATE CHOLESKI FACTOR MATRIX 
A A IS SQUAP~E INPUT MATRIX 
n B IS OUTPUT FACTOR MATRIX 
B~(~A)p0 
B[I;]~A[;I]+A[1;I]*0.5 
I~J~2 
START:4(J=I)/DIAG 
B[J;I]~(A[I;J]-(B[xI-I;I]+.xB[~I-I;J]))+B[J;J] 
~END . "  

DIAG:~(0>X~A[I;J]-+/B[xI-I;I]*2)/ERROR 
B[J;I]~X*0.5 
END:~(I~J~J+I)/START 
J~2 
~((It~A)~I+I+I)/START 
40 
ERROR:B~I;I AERROR; RETURN ROW NUMBER OF ERROR 

[ 0] B ~WANT CHANGE A;M 
[ i] n FUNCTION TO CHANGE COVARIANCES OF A TO SPECIFIED COVARIANCES 
[ 2] A A IS INPUT DATA MATRIX 
[ 3] n WANT IS SPECIFIED COVARIANCE MATRIX 
[ 4] n B IS OUTPUT DATA MATRIX 
[ 5] A B WILL HAVE SPECIFIED COVARIANCE AND COLUMNAR MEANS OF A 
[ 6] B~FACTOR WANT 
[ 7] ~(I:;,B)/NO A TEST FOR FACTORABLE B MATRIX 
[ 8] M ~(;A)~(+~A)÷It~A 
[ 9] B~M+(A-M)+.xBDFACTOR COVM A 
[10] NO:~0 AIF ERROR, RETURN ROW WITH ERROR 
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.[ o] 
[ I] 
[ 2.] 
[ 3] 
• [ 4] 
[ 5] 
[ 6] 
[ 7] 
[ 8] 
[ 9] 
[io] 
[zz] 
[12] 
[13] 
[14] 
[15] 
[16] 
[17] 
[18] 
[ is]  
[20] 
[21] 
[22] 
[23] 
[24] 
[25] 
[26] 
[27] 
[28] 
[29] 
[30] 
[31] 
[32] 
[33] 

B~WANT CHANGEX A;AA;BBB;COLS;EPS;LOW;MASK;MAXLOOP;NCOLS;NLOOP;R;T;W 
R FUNCTION TO CHANGE LARGE DATA MATRICES TO 
R SPECIFIED COVARIANCES 
R A IS INPUT DATA MATRIX 
R WANT IS SPECIFIED COVARIANCE MATRIX 
A B IS OUTPUT DATA MATRIX 
R B WILL HAVE SPECIFIED COVARIANCES AND COLUMNAR MEANS OF A 
R THIS FUNCTION MAY WORK WHEN WANT WILL NOT FACTOR DUE TO ITS SIZE 
R CHANGEX CALLS CHANGE ON SUBSETS OF THE DATA UNTIL CONVERGENCE 
MAXLOOP~50 
EPS~ IE- 6 
LOW+ lO00OO0 

MASK~ (~R)o . ~ R  
MASK~ MASK+ +/, MASK 
NLOOP~0 
LOOP:NLOOP~NLOOP+I 
~(NLOOP>MAXLOOP)/END 
NCOLS~I+?-2+R ~ GET RANDOM NUMBER OF COLUMNS 
COLS~(xR)[NCOLS?R] ~ GET UNIQUE SAMPLE OF COLUMNS 
COLS~COLS[4COLS] R SORT INTO ORIGINAL ORDER 
W*WANT[COLS;COLS] 
BBB~W CHANGE A[;COLS] ~ ITERATE THROUGH CHANGE 
~(I=~,BBB)/LOOP ~DIDN'T FACTOR, TRY AGAIN 
A[;COLS]~BBB 
~(LOW~T~(+/,(M~SK~WANT-COVM A)*2)*0.5)/NEXT RRMSE ERROR 
AA~A ASAVE LOWEST RESULT 
AALTHOUGH ALGORITHM LETS ERROR GET HIGHER 
RCONVERGENCE IS ACTUALLY BETTER 
LOW~T 
NEXT:~(EPS~'T)/OUT BSTOP IF ERROR ~ EPS 
~LOOP 
END:D~'DOES NOT CONVERGE' AMAX LOOPS 
OUT:B+AA ~GET BEST RESULT 
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