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ABSTRACT 

This article investigates the properties of the Gompertz distribution function. 

Explicit formulas for continuous life insurances and annuities are given in terms of the 

left-truncated gamma function. Moreover, approximations for the mean, variance, 

skewness and kurtosis of the Gompertz distribution are also given. Finally, the article 

shows that using a Gompertz assumption at fractional ages produces better a 

approximation than the usual UDD assumption. 
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1. INTRODUCTION 

Consider the law of human mortali ty described by Gompertz (1825) where the force 

of mortali ty has the form /% -- B c = wi th  z > 0, B > 0, c > 1. It is well known that this 

model is an excellent description of the pattern of mortality at the adult ages. 

Nevertheless, actuaries rarely use it to calculate the value of annuities and insurances, as 

evidenced by the textbooks written by Jordan (!967), Wolff (1970) and Bowers, et al 

(1986). The probable reason for this is the intractability of the mathematical expectations 

that  emerge from the analysis. 

The purpose of this article is to elevate the Gompertz law and compile a set of facts 

that  are accessible to the practicing actuary. We fred that many of the actuarial functions 

can be expressed in terms of the left-truncated gamma function, as Mereu (1962) 

demonstrates. We hope that future actuaries will adopt the model for calculating the net 

single premiums of life insurances and annuities. 

First, the paper gives a few definitions and background facts about the Gompertz 

law. We present a parametrization of the law that is statistically informative. Next, we 

show that this law readily explains the pattern of mortality for a valuation mortality 

table and we estimate the Gompertz parameters with the valuation mortality rates. Next, 

explicit expressions are derived for continuous life insurances, annuities, net level 

premiums and reserves by using the left-truncated gamma function which can easily be 

approximated. Using the properties of the Gumbel distribution, we also present 

approximations for the mean, variance, skewness and kurtosis of the Gompertz 

distribution. Finally, the article recommends the Gompertz law over the classical 

assumptions of UDD and Balducci for calculating probabilities at fractional ages. 

2. DEFINITIONS AND BASIC RESULTS 

In this section, we present some notation and basic results. We start  by giving an 

informative representation of the Gompertz law. Carriere (1992) expresses the force as 

~x = ~exp  { ( z -  , . ) / a } ,  a > 0, m • ~ .  (2.1) 

Note that c - -  e 1/a and B = a -  l e - r n / a .  This representation is informative because m is 
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approximately equal to the mean and cr is proportional to the standard deviation, as we 

show later. In human populations we usually find that m > # > 0. For example, for the 

United States (US) population, Carriere (1992) found that these parameters were 

m = 82.3 and ~r = 11.4. In section 3, we find that using valuation mortality rates yields 

estimates of m and er that are very similar to the US population. 

Using the relation s (z )=  e x p { -  5/~t dr}, we find that the survival function for the 
0 

Gompertz law is equal to 

s(z) = exp{ e -m/° '  - e(~'- m)/°'}. (2.2) 

The new parameter cr can be interpreted as a dispersion parameter because if m > O, then 

lira {s(m-e)- ~(m+e)} = 1, Ve > 0. (2.3) 

This limit suggests that all the mass concentrates about m when cr is small and so m can 

also be interpreted as a location parameter when m > O. Using the relation /(z)--- 

-d_ds(z) = pxs(z) we find that the density is equal to 
dz 

.,'t ~) =exp . [  e -  " / "  - e~" - m l / .  + ( ~ _  , . ) / 4 ,  • >__ O. (2.4) 
k . ]  

It is easy to verify that the mode of the density is equal to 0 when m _~ 0 and that the 

mode is m when m > 0. 

Pollard and Valkovics (1993) defined a Gompertz law for all z E R and found explicit 

formulas for the moments. Using our notation, they analysed the distribution function 

o ( , ) - , -  (2.s) 

Pollard and Valkovics fall to mention that this extended Gompertz distribution is simply 

the Gumbel distribution for minima, an extreme-value distribution. For an extensive 

discussion about extreme-value distributions, consult Johnson and Kotz (1970). For a 

specific discumion about the Gumbel distribution, see Kotz and Johnson (1983). 

Appendix A summarizes certain facts about the standardized (m = 0, cr = 1) Gurnbel 

distribution for minima. Appendix B presents the Invers~Gompertz distribution and the 

corresponding Gumbei distribution for maxima. 
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3. ESTIMATION OF THE GOMPERTZ PARAMETERS 

In this section, we estimate the parameters of the Gompertz law using the male and 

female ultimate mortality rates from the 1975-80 Basic Tables of the Society of 

Actuaries. These crude rates were prepared by the Committee on Ordinary Insurance and 

Annuities (1982). The Gompertz law is only applicable at the older ages and so we focus 

our analysis on the rates ~=, for the ages z = 40 ..... 100. 

A. Estimation using the crude rotes. 

Using the relation q= = 1 

identity 

~=+I) 
s(z) ' we find that the Gompertz law yields the 

q,,(m,,) - i (I - :/')). (3.1) 

Let D= denote the total amount of death claims associated with the crude rate ~=. 

Carriers (1994) suggests that a good way of estimating m and a is to minimize the robust 

loss function 

to0 

The function L(m,~) was minimized using the NONLIN module of the statistical 

computer software SYSTAT. We found that the NONLIN simplex or polytope algorithm 

was very successful at minimizing the non-differentiable loss function L(m,o'). Using the 

male data we found that the parameters r~ = 82.153 and ~ = 10.304 minimized (3.2). 

The female data yielded the parameter estimates r~ = 87.281 and ~ = 10.478. Figure 1 

shows that the Gompertz model fit the data well. This graph and the others in the paper 

were produced with the computer package GAUSS. 

B. Estimation using the gn.ttmU~ mt¢~ 

Using the relation t I q0 = s ( z ) -  s (z+ 1), we find that the Gompertz law yields the 

identity 

, i qo(m. , ) -  } -  + , } }  
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FIGURE 1 

A Comparison of the Best-Fitting Gompertz Model with the Crude Ultimate Rates 

This is a plot of ]Oge{~s} and |Oge{qx(~,c~)} versus the age z. 
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Let t [q0 denote a graduated probability from the Basic Tables. Another way of 

estimating m and ~ is to minimize the function 

99 2 

L(m,~) = = o 

Using the male data we found that the parameters & - 81.022 and ~ = 10.379 minimized 

(3.4). The female data yielded the parameter estimates ~ = 86.235 and F = 9.593. ]Mote 

that these parameter estimates are similar to the ones given in section A. Figure 2 is a 

plot of t I q0 and the best-fitting Gompertz model, t I qo( r~, F)). The male model fit the 

da ta  better than the female mode] but the male rates were based on ten times the 

experience. In any case, the Gompertz model fit the data well. 

4. CONTINUOUS INSURANCES AND ANNUITIES 

In this section, we give explicit expressions for continuous life insurances, 

annuities, net level premiums and reserves by using the left-truncated gamma function. 

Some of these expressions may be found in Mereu (1962). Let T(z) ~ 0 denote the time- 

at-death of a life aged z > 0 and let tPx ~- s(z + t)/s(x) denote the probability of surviving 

to time t >_ 0. For the Gompertz law, we can write 

(4.1) 

Let Ms(u  ) _ E(exp ~u T(z)}) denote the moment generating function of T(z). Remember 

that  the density of T(z) is tP~Pz + t and so M s ( u  ) is equal to 

Ms(u  ) = . t  = e " t ~ p  ~#=(1 - c t/~') iJ=et/~dt. {4.2) 

Applying the transformation z = ~pze t/~ yields 

M~(u) = exp { ~  - u ( z -  m)) ~ oo z"" e -  ~ dz. (4.3) 
d ~Px 

It is fairly easy to show that Ms(u ) < ~ for all u G ~. Let us denote the integral in (4.3) 

as F(~pz , 1 + u ¢ )  and formally introduce the left-truncated gamma function. This is 

defined as: 
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FIGURE 2 

A Comparison of the Gompertz Model with the Graduated Prol~bilitie~ 

This is a plot of t I q0 aad t I q0(m,8)} venus the time t. 
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Note that r(f,a) < oo. 

defined as 

oo 

r ( t , e ) _  = za-le-Zdz, t >O ,  crEW. (4.4) 
" t  

Next, the cumulant generating function, denoted as q~=(u), is 

• =(u) =-- loge{Mx(u)} = u m - u = + "Uz + log,{r(,#=, 1 + t~)}. (4.5) 

We use (4.5) in section 6 to derive an expression for the complete expectation of life. Let 

6 _~ 0 be the forte of interest and let A= denote the net single premium for a continuous 

whole-life insurance. If we let u = - 6 in (4.3), then we get 

A= -- exP {'t~= + 6(= - m)} x r(o-p=, I - 6,). ( 4 . 6 )  

Consider the continuous life annuity, expressed as a Stieltjes integral, 

~= -- - = e-6ttPxdt. (4.7) 
0 o 

Consulting Appendix C, we find that the last identity for ~= is true regardless of any 

continuity assumptions on tP=. Calculating further, we find that 

~. =, x exp {,,, + 6(,- m)} x r(,,.. - 6,). ( 4 . 8 )  

Once again, we get an expression that is based on the left-truncated gamma function. 

Next, consider the net level premium P= = A=/~=.  Using (4.8) and (4.6) we find that 

r(~=, 1 - 6~) 
P= --- ~ x r(#/JZ, - -  &r) " ( 4 . 9 )  

Also, consider the net level premium reserve , i T (Az )=  ] - ~=+*- . Using (4.8) we find a= 
that 

r(~#= + t, - 6¢) 
,v(~=)= 1 - ~ { . ( ~ . + , - ~ = ) + 6 t }  r(,~..-6,) (4.10) 

Let us prove that  A = - - I  as z---~o. This will imply that P--i--*0 and tV(A=)--~I as z - , co .  
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It is sufficient to prove that 5=--*0 as z - - -~  because A= = 1 -6~= .  Note that 

oo foo 
0 <_ "~= = f e -  6ttp=~ dt < tP= dr, 

o o 

and that  @=expde(Z_m)/ , ( l_et /#)~_~Or~ as z--oo fo r  a l l  t > O .  There fo re ,  by the 
L $ 

Monotone Convergence Theorem (Royden, 1968), as ~ o o  and the result 

follows. 

5. APPROXIMATING THE LEFT-TRUNCATED GAMMA FUNCTION 

Actuaries are usually interested in calculating ~ z  or ax" The key to calculating 

these net single premiums is finding a good approximation to the left.truncated gamma 

function. This is easily done by using a composite numerical integration formula because 

we can write 

f 
, ~ {  - t) 

r ( t , o  0 = I logey l ° -Xdy ,  (5.1) 
~0 

where I l°geY I o -  1 is a continuous function that is analytic, bounded, and monotone on 

the interval (0 ,exp{- t} ) .  Using a composite Simpson's rule (Burden and Faires, 1993), 

we find that  we can approximate F(t,~),  t > O, ~ < 1, with the quadrature formula 

fN= e - ] + 2  ~ Ilog~lk/N}-~ 4 ~ Ilog,{(~-.s)/~}-tl °-~ (s.2) 
k = l  k = l  

where N = 1,2 . . . .  I t  can be shown that FN-~F as N--~co. If ~ > 1 then we can apply the 

recmsive formula 

r ( t , . )  = t ° -  x e -  t + ( o  - 1 ) r ( t , .  - 1) .  (5.3) 

until the parameter a is less than 1 and then use (5.2). Using FN with N = 509 in 

conjunction with (4.6), we plotted Az for z = 40,..., 100 ~suming that m = 87.281 and 

~r = 10.478. These parameter values are the estimates based on the female da ta  from the 

Basic Tables. Figure 3 shows the plot of A~, assuming a force of interest of 6 = .02, .04, 

.06, .08 and .10. 
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FIGURE 3 

The Net Single Premium for a Continuous Whole-Life Insurance under Gompertz's Law 

This is a plot of A= versus the age x under various v.~umptions for i~. 
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6. T H E  COMPLETE EXPECTATION OF LIFE 

Let us derive an expression for the complete expectation of life e z °  - E { T ( z ) }  = 
o ~  

0~tPx dL. Appendix C shows that this identity is true, regardless of the continuity of  tP=" 

Using the cumulant generating function shown in (4.5), we find that 

~r(#~=,=)l  ~ = 1 
~ = ~ ¢ J O l - = o  = m - x + ~ x ° a  r(.#=,l) 

I" = r n - z + c r e ¢ " =  loge ( z ) e -~dz .  
~1.1 Z 

(6.1) 

As a special case, let us investigate go- Typical values for m and c are 87.3 and 

10.5, respectively. This means that ~P0 = e - ,n/~ ~. 0 and e ~ °  ~ 1 because ~ is usually 
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small relative to m. A bit of analysis shows that 1 > e x p { e  -m/¢')  > l + e x p  y ~ - - ~  

when m > 0 because e -m/=' < m/~. This means that exp{e - m / C }  = I + O(e-m/¢). 
The function e -  ,n#, converges to 0 very quickly because ~ - P e -  m/~--~O as cr--,O for all 

p > O; in other words e -  "/~' = 0 ( #  p ) Vp > O. Consulting the appendix, we find that 

oo i o l O g  e I cuologe(z) e - 2 d z  ~ ( z )  e - z d z  = - 7 

where 7 = .577... is Euler's constant. Therefore~ the mean of the Gompertz survival 

function given in (2.2) is 

O 
/ 

FIGURE 4 

A Comparison of the Actual Complete Expectation to its Approximation 

This is a plot of ~ x and  ~'= versus the age z, assuming a Gompertz law. 
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Let us give another expression for (6.1). Using integration by pa r t s ,  we find that 

= = ¢ e " " ~  r ( 0 . #  r o).  (6 .3 )  

Again, we have an expression based on the left-truncated gamma function that can emily 

be approximated to any level of accuracy. 

Let us compare (6.3) with an approximation formula developed by Pollard (1980) 

that is based on the Euler-Maclanrin expansion found in Kellison (1976). Let 

U x _= exp( -0.p=}, then Pollard recommends the following approximation: 

~=- = ~ {u=  log:(U=) - 12 log,( l  - u=)  - 7 u= ) .  
= - v  z 

(6.4) 

Figure 4 is a plot of ~= and ~=, assuming that m = 87.281 and o" = 10.478. These 

parameter values are the estimates based on the female data from the Basic Tables. 

Consulting Figure 4, we find that if z < m then (6.4) provides a good approximation of 

(6.3) but  if z > m then Pollard's approximation can be very poor. 

7. VARIANCE, SKEWNESS AND KURTOSIS 

Consider the random variables T(0) and #Z + m ~ G( .  ). The distribution of T(0) 

is simply the conditional distribution of ¢rZ + m given that Z > - r n / 0 . .  We know that 

Pr  (Z > - m /# )  ~, 1 and so the distribution of T(0) is approximately equal to that of 

0.Z + m. Therefore E{T(0) - E[T(0)]} k ~ 0.kE{Z - EtZ]} k. Using the central moments of 

Z, as shown in Appendix A, we fred that 

V a r / = n c e { T ( 0 ) }  ~ 0 .2 lr 2 , (7 .1 )  
6 

Ske=n~s{T(O)} ~ - 1.1395 . . . .  (7.~) 

Kurtosis{T(O)} ~ 2.4. (7.3) 

Finally, let us derive an expre=ion for the variance Vat  {T(z)}. No simple expression 

exists for the skewness and kurtosis of T(z) .  Using the cumulant generating function 
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shown in (4.5), we fred that 

If" If" 1'} V a t  {T(a:)} = a 2 x e ¢'u= [loge(Z)] 2 e -  z dz  - e ~ 'u ' z  loge(z ) e - "dz . 

( """~ t ~,' .z  
(7.4) 

8. THE GOMPERTZ LAW AS A FRACTIONAL AGE ASSUMPTION 

Usually, actuaries will use the probabilities qx from a valuation table for pricing 

insurances and annuities. In this case, z is an integer and so if the actuary requires the 

mortality rate tq~ or the force of mortali ty P z + t  at the fractional period t E [0,1) then 

an assumption like uni form distribution o f  deaths (UDD) is used for interpolation. We 

show that  using a Gompertz assumption at  the fractional ages is much more accurate 

than the UDD assumption, especially at  the adult ages. Assume that qx is known, then a 

Gompertz assumption at the fractional ages would yield the relations 

,q~ = 1 - ( 1  _ q . ) , - e ~ { l l . }  (8.1) 

exp(t/~,} - exp(z/¢} 
, _ ,q=+,  = 1 - ( 1 -  q=) a - e~p( l / . )  (8.~) 

et/°" i°ge(1 - qz) 
Pz+ t ----" e ( l _  e l /¢)  

(8.3) 

In comparison, the UDD assumption yields t q = -  t x q~, the Balducci assumption yields 

1 - tqz + ~ -- (1 - t) x q=, and the constant force assumption yields Px + t = - l°ge(1 - q=)" 

These classical assumptions yield very simple formulas but they do not model reality very 

well. Let us compare the force of mortali ty calculated with (8.3) to that calculated with 

q~ (UDD) where qar is a graduated rate from the female Basic Tables. l~=+t---- 1 - t x q =  

Figure ,5 is a plot of /~z+v 0 _< t < 1, x -- 60,. . ., 69 using UDD and the Gompertz 

assumption at the fractional ages. Using UDD yields a step function which does not 

interpolate well The same type of pattern would be exhibited by a Balducci or constant 
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FIGURE 5 

A Comparison of the Gompertz and UDD Assumptions for Fractional Ages 

This is a plot of Px+t, 0 < 1 < 1, z = 60 . . . . .  69. 
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force assumption. On the other hand, the Oompertz a~umption gives a good 

approximation at  the fractional ages. 

APPENDIX A 

PROPERTIES OF THE GUMBEL 

In this appendix, we give some well-known properties of the standard Gumbel 

distribution for minima, whose random variable is denoted as Z. Specifically, we give 

expressions for the moment and cumulant generating functions along with the moments 

and cumulants of Z. These facts may be found in Kotz and Johnson (1983). 
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i) The moment generating function: 

o o  o o  

MZ(t ) --- E{e tz}  = ~ etZexp { z -  e z} dz = S yt e - y dy - r (1  + t), t > - 1. Calculating the 
- - o o  0 

dk ~ moments  we find tha t  E(Z k) -" di--~-r(1% t)It = 0 = ~o {l°ge(y)}k e -  v dy, k = O, 1, 2 . . . .  
oo  

As a special case we find that E(Z) = - 7 where 7 m .5772157... - ] loge(y -I) e- ~dy = 
0 

1 
- ~ Iog~ I l o~ (y )  I d~ is Euler's constant.  

0 

ii) The cumulant generating function: 

@Z (f) --- l°gelMz(t)} = Iogelr(1 q" ~)} = E "itl where ~I --" E(Z) = -7, ~ -- Vat(Z) 
i=I i! 

-- ~r2/6, #'3 -- E { Z -  E(Z)} 3 -- - 2.40411 .... "4 " E { Z -  E ( ~ }  4 -  3 / Vat(Z)} 2 = r4 /15 .  

This means that  the codt~cient of skewness is ~3/(~2) 3/2 = - 1.1395... and the coefficient 

of kurtosis is ~4/(~2) 2 = 1215. 

APPENDIX B 

THE INVERSE-GOMPERTZ DISTRIBUTION 

Pollard and Valkovics (1993) also present the Oumbel  distribution for max ima ,  

1 - G ( - z ) ,  which is a mirror-image of the distr ibution in (2.5). The Gomper tz  

distr ibution is a truncated Gumbe] distribution for minima.  Similarly, we can define an 

Inverse-Oompertz distribution as a truncated Gumbe] distr ibution for maxima.  This  

definition yields the survival function 

1 - e x p { -  e - (z -  ml)l~} 

Note that  m I is the mode of the Inverse-Gompertz density when m I > 0 and the l imit  in 

(2.3) holds for the density of sl(z ). The Inver~-Gomper tz  survival function was first  

defined by Carriere (1992). 
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APPENDIX C 

A MATHEMATICAL EXPECTATION RESULT 

This appendix presents a generalization of Theorem 3.1 in Bowers, e~ al (1986). 

Consider the distribution function, tg~, t > 0, that corresponds to the random veziable 

T(z). In this discussion, we make no specific assumptions about tq= and so it can be 

discontinuous. Consider the expectation E{g(T(x))} = ~ g(t)d(tq= ) < co, expressed as a 
0 

Stieltjes integral. Now, suppose that g(. ) admits the representation 

f 
t 

9(~) = 9(o) + ~'(~) ds, 
o 

so that g(. ) is absolutely continuous. Using Fubini's Theorem (Royden, 1968), we find 

that we can write 

o 

Unlike the result in Actuarial Mathematics (1986), this expression for the mathematical 

expectation does not require g(. ) to be a non-negative, monotonic and differentiable 

function. In the case of a continuous annuity, we find that g(t)  = (1 - e -  6t)/6. Therefore 

{ 6 T(=)} ? e-,t,,= d~. the net single premium for this annuity is - E 6 - 1 E  l - - e -  = 
az 0 

o o  

Letting 6 = O, we get ~ z = f¢iv= dr, regardless of any continuity assumptions about tP=" 
0 
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