ACTUARIAL RESEARCH CLEARING HOUSE
1994 VOL. 2

AN INVESTIGATION OF THE GOMPERTZ LAW OF MORTALITY

Jacques F. Carriere
Warren Centre for Actuarial Studies & Research
The University of Manitoba, Winnipeg, Canada

ABSTRACT

This article investigates the properties of the Gompertz distribution function.
Explicit formulas for continuous life insurances and annuities are given in terms of the
left-truncated gamma function. Moreover, approximations for the mean, variance,
skewness and kurtosis of the Gompertz distribution are also given. Finally, the article
shows that using a Gompertz assumption at fractional ages produces better a

approximation than the usual UDD assumption.
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1. INTRODUCTION

Consider the law of human mortality described by Gompertz (1825) where the force
of mortality bas the form p_ = Bc® with 2> 0, B> 0, ¢> 1. It is well known that this
model is an excellent description of the pattern of mortality at the adult ages.
Nevertheless, actuaries rarely use it to calculate the value of annuities and insurances, as
evidenced by the textbooks written by Jordan (1967), Wolff (1970) and Bowers, ¢t a!
(1986). The probable reason for this is the intractability of the mathematical expectations
that emerge from the apalysis.

The purpose of this article is to elevate the Gompertz law and compile a set of facts
that are accessible to the practicing actuary. We find that many of the actuarial functions
can be expressed in terms of the left-truncated gamma function, as Mereu (1962)
demonstrates. We hope that future actuaries will adopt the model for calculating the net
single premiums of life insurances and annuities.

First, the paper gives a few definitions and background facts about the Gompertz
law. We present a parametrization of the law that is statistically informative. Next, we
show that this law readily explains the pattern of mortality for a valuation mortality
table and we estimate the Gompertz parameters with the valuation mortality rates. Next,
explicit expressions are derived for continuous life insurances, annuities, net level
premiums and reserves by using the left-truncated gamma function which can easily be
approximated. Using the properties of the Gumbel distribution, we also present
approximations for the mean, variance, skewness and kurtosis of the Gompertz
distribution. Finally, the article recommends the Gompertz law over the classical

assumptions of UDD and Balducci for calculating probabilities at fractional ages.

2. DEFINITIONS AND BASIC RESULTS

In this section, we present some notation and basic results. We start by giving an

informative representation of the Gompertz law. Carriere (1992) expresses the force as
k. =Fexp{(z-m)/c}, 0 >0, meR. (2.1)

Note that c = ¢!/ and B=o~le~ ™/ This representation is informative because m is
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approximately equal to the mean and ¢ is proportional to the standard deviation, as we
show later. In human populations we usually find that m > ¢ > 0. For example, for the
United States (US) population, Carriere (1992) found that these parameters were
m=82.3 and ¢ = 11.4. In section 3, we find that using valuation mortality rates yields
estimates of m and o that are very similar to the US population.

Using the relation s(z) = exp{ - E By dt}, we find that the survival function for the

Gompertz law is equal to
s(z) = exp{e""'/” - c(z-"')/’}. (2.2)
The new parameter ¢ can be interpreted as a dispersion parameter because if m > 0, then
elrlino {s(m—e)=s(m+e)} =1, Ve>0. (2.3)

This limit suggests that all the mass concentrates about m when ¢ is small and so m can
also be interpreted as a location parameter whenr m > 0. Using the relation f(z)=

—d 5(z) = p, 5(z) we find that the density is equal to
dz
f(z)=exp{e'm/"—e(:'m)/°+(z-m)/a’}. z>0. (2.4)

It is easy to verify that the mode of the density is equal to 0 when m < 0 and that the
mode is m when m > 0.
Pollard and Valkovics (1993) defined a Gompertz law for all z € R and found explicit

formulas for the moments. Using our notation, they analysed the distribution function
Glz)=1~ exp{—- == m)/"}, zeR. (2.5)

Pollard and Valkovics fail to mention that this extended Gompertz distribution is simply
the Gumbel distribution for minima, an extreme-value distribution. For an extensive
discussion about extreme-value distributions, consult Johnson and Kotz (1970). For a
specific discussion about the Gumbel distribution, see Kotz and Johnson (1983).
Appendix A summarizes certain facts about the standardized (m =0, o =1) Gumbel
distribution for minima. Appendix B presents the Inverse-Gompertz distribution and the

corresponding Gumbel distribution for maxima.
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3. ESTIMATION OF THE GOMPERTZ PARAMETERS

In this section, we estimate the parameters of the Gompertz law using the male and
female ultimate mortality rates from the 1975-80 Basic Tables of the Society of
Actuaries. These crude rates were prepared by the Committee on Ordinary Insurance and
Annnities (1982). The Gompertz law is only applicable at the older ages and so we focus

our analysis on the rates g, for the ages z = 40, ..., 100.

A. Estimation using the crude rates.

Using the relation q==1~s(z(:)1), we find that the Gompertz law yields the

identity
g (mya)=1 -exp{e(’ -mfe— cl/”)}. (3.1)

Let D, denote the total amount of death claims associated with the crude rate g,.
Carriere {1994) suggests that a good way of estimating m and ¢ is to minimize the robust
loss function

L(m,o) = qz(m 9) .

(3.2)

z =40

The function L(m,r) was minimized using the NONLIN module of the statistical
computer software SYSTAT. We found that the NONLIN simplez or polytope algorithm
was very successful at minimizing the non-differentiable loss function L(m,c). Using the
male data we found that the parameters /% = 82.153 and & = 10.304 minimized (3.2).
The female data yielded the parameter estimates rii = §7.281 and & = 10.478. Figure 1
shows that the Gompertz model fit the data well. This graph and the others in the paper
were produced with the computer package GAUSS.

B. Estimation using the graduated rates.
Using the relation ,| gy = s(z)~ s(z + 1), we find that the Gompertz law yields the

identity

tlgolm, o) = CXP{C-M/U}X[”‘P{ —op }—exp{—op, 1}]' (3.3)
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FIGURE 1
A Comparison of the Best-Fitting Gompertz Model with the Crude Ultimate Rates
This is & plot of log, {3} and log,{g, (17, &)} versus the age z.
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Let ,|g, denote a graduated probability from the Basic Tables. Another way of

estimating m and ¢ is to minimize the function

& 2
Limo)= 3 (i1aolmo) = 13) - (3.4)

t=40

Using the male data we found that the parameters /i = 81.022 and & = 10.379 minimized
(3.4). The female data yielded the parameter estimates /2 = 86.235 and & = 9.593. Note
that these parameter estimates are similar to the ones given in section A. Figure 2 is a
plot of ,| g, and the best-fitting Gompertz model, ;| ¢4(%,7)}. The male model fit the
data better than the female model but the male rates were based on ten times the

experience. In any case, the Gompertz model fit the data well.
4. CONTINUOUS INSURANCES AND ANNUITIES

In this section, we give explicit expressions for continuous life insurances,
annuities, net level premiums and reserves by using the left-truncated gamma function.
Some of these expressions may be found in Mereu (1962). Let T{z) > 0 denote the time-
at-death of a life aged z > 0 and let ,p, = s(z+ #)/s(z) denote the probability of surviving

to time ¢ > 0. For the Gompertz law, we can write
P = exp{ eF=mlle e”")}: exp{apz(l - e‘/")}. (4.1)

Let M _(u) = E(exp{u T(z}}) denote the moment generating function of 7{z). Remember
that the density of 1\z) is ,p, i, ., , 80d 50 M (u) is equal to
oo [
M (u) = J e epr bz 4y dl= J et exp{apr(l - c"’)}p: et dt, (4.2)
0 o
Applying the transformation z = zryzet/" yields
[ <]
M_(u) = exp{ap.z-u(z—m)}f %% ¢ *d2. (4.3)

OBy

It is fairly easy to show that M (u) < oo for all u € ®. Let us denote the integral in (4.3)
as T(op,,1+uo) and formally introduce the left-truncated gamma function. This is

defined as:
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A Comparison of the Gompertz Model with the Graduated Probabilities
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- -]
r(t,a)zj 2 1e=%ds 150, a€R. (4.4)
t

Note that I'(t,&) < 0co. Next, the cumulant generating function, denoted as W_(u), is
defined as

Y _(u) = log {M (v)} =um—uz +op_+log {T(ou,,1+ usj}. (4.5)

We use (4.5) in section 6 to derive an expression for the complete expectation of life. Let
6> 0 be the force of interest and let A, denote the net single premium for a continuous

whole-life insurance. If we let u= — & in (4.3), then we get
A, = exp{op, +8(z - m)} xD(op,, 1 - b0). (4.6)
Consider the continuous life annuity, expressed as a Stieltjes integral,

00t oo
'&:.-'-:J J c—é’dzd(tqz)=J e'“tpzdt. 4.7)
00 0

Consulting Appendix C, we find tbat the last identity for G, is true regardless of any

continuity assumptions on ,p,. Calculating further, we find that
G, = o xexp{op, + 6z —m)} xT(ou,, —éo). (4.8)

Once again, we get an expression that is based on the left-truncated gamma function.

Next, consider the net level premium P, =4, /§,. Using (4.8) and (4.6) we find that

y I I(op,,1-b0)

* 7 oxl(oyu, —é0) (4.9)

Also, consider the net level premium reserve V(4. )=1 -?—f&-"'—f . Using (4.8) we find
z
that
—— T(op, ., —60)
J(A)=1 -exp{v(px+t—y,)+6t}—lﬁf—:m- . (4.10)

Let us prove that 4,—1 as z—o0. This will imply that P,—~0 and ,V(A_)—1 as z—oco.
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It is sufficient to prove that @,—0 as z—oo because A, = 1 — §4,. Note that

(-] o0

e~ ¥ p dt < J WP dt,

05'&2=J
(4]

0
and that ,p, =exp{e(’"m)/’(l-e'/”)}—*0 as 200 for all t> 0. Therefore, by the
Monotone Convergence Theorem (Royden, 1968), P, dt—0 as r—oo and the result
0
follows. »

5. APPROXIMATING THE LEFT-TRUNCATED GAMMA FUNCTION

Actuaries are usually interested in calculating Xz or G;. The key to calculating
these net single premiums is finding a good approximation to the left-truncated gamma
function. This is easily done by using a composite numerical integration formula because
we can write

exp{ -t}
I'(t,a) = J.

|log y]*~dy, (5.1)
where {log.y %~ ! is a continuous function that is analytic, bounded, and monotone on
the interval (0,exp{-t}). Using a composite Simpson’s rule (Burden and Faires, 1993),

we find that we can approximate I'(¢,a), t > 0, ¢ < 1, with the quadrature formula

— -t N=1 N
Iv=%y t°'1+2k;l|loge{k/N}-—t|°"1+4k;1|loge{(k—.5)/N}—t|°"1], (5.2)

where N = 1,2,... It can be shown that fN—»I‘ as N—oo. f « > 1 then we can apply the

recursive formula
I‘(t,a):t°'1e"+(a-1)1"(t,a—1). ] (5.3)

until the parameter o« is less than 1 and then use (5.2). Using fN with N =500 in
conjunction with (4.6), we plotted I, for = = 40,..,,100 assuming that m = §7.281 and
o = 10.478. These parameter values are the estimates based on the female data from the
Basic Tables. Figure 3 shows the plot of 71_,, assuming a force of interest of § = .02, .04,
.06, .08 and .10.
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FIGURE 3

The Net Single Premium for a Continuous Whole-Life Insurance under Gompertz's Law

This is a plot of A_ versus the age  under various assumptions for &.
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6. THE COMPLETE EXPECTATION OF LIFE
- Let us derive an expression for the complete expectation of life ¢, = E{T(z)} =
jtpz di. Appendix C shows that this identity is true, regardless of the continuity of ,p,.
0
Using the cumulant generating function shown in (4.5), we find that

Lron,,)l

I __a_ —_ a=1
€z _8u‘1"(u”u=o“m 40X o)
- ou, [* -2
=m-z+0e % log (z)e™ *dz. (6.1)

opg

As a special case, let us investigate 30. Typical values for m and ¢ are 87.3 and

10.5, respectively. This means that oxy = e~ ™7 20 and ¢”"0 = | because o is usually
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small relative to m. A bit of analysis shows that l>exp{e""/’] > 1+exp{%—7,"—'
when m >0 because e~ ™% < m/s. This means that exp{e™ ™"} = 14 O(e~ ™).

~-mfo

The function ¢~ ™/ converges to 0 very quickly because o~ Pe —0 as g—0 for all

> 0; in other words ¢~ ™/? = O(o®) Vp > 0. Consulting the appendix, we find that
o 0
I log (z) e *dz I log,(z2)e~*dz= ~¥
ﬂ'“o )

where v = .577... is Euler’s constant. Therefore, the mean of the Gompertz survival

function given in (2.2) is

3Ozm-a7. (6.2)

FIGURE 4
A Comparison of the Actual Complete Expectation to its Approximation

This is 2 plot of ¢ _ and &_ versus the age z, assuming a Gompertz law.
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Let us give another expression for (6.1). Using integration by parts, we find that
¢, =ae "sT(op,,0). (6.3)

Again, we have an expression based on the left-truncated gamma function that can easily
be approximated to any level of accuracy.

Let us compare (6.3) with an approximation formula developed by Pollard (1980)
that is based on the Euler-Maclaurin expansion found in Kellison (1976). Let

U, =exp{ -op,}, then Pollard recommends the following approximation:

= Ty"U:{UI log(U,) - 12log,(1-U,)~7U,). (6.4)

Figure 4 is a plot of 3: and €,, assuming that m = 87.281 and ¢ = 10.478. These
parameter values are the estimates based on the female data from the Basic Tables.
Consulting Figure 4, we find that if £ < m then (6.4) provides a good approximation of
(6.3) but if z > m then Pollard’s approximation can be very poor.

7. VARIANCE, SKEWNESS AND KURTOSIS

Consider the random variables T'(0) and ¢Z 4+ m ~ G(-). The distribution of T(0)
is simply the conditional distribution of ¢Z 4+ m given that Z > —m/o. We know that
Pr(Z > —m/jo)~1 and so the distribution of T(0) is approximately equal to that of
0Z + m. Therefore E{T(0) - E[T(0)]}* ~ o*E{Z — F1Z]}*. Using the central moments of
Z, as shown in Appendix A, we find that

Variance{T(0)} ~ gzﬁlz , (7.1)
Skewness{T(0)} ~ - 1.1395... (7.2)
Kurtosis{T(0)} ~ 2.4 . (7.3)

Finally, let us derive an expression for the variance Var {T(z)}. No simple expression

exists for the skewness and kurtosis of T(z). Using the cumulant generating function
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shown in (4.5), we find that

x

-] o0 2
Var{T(z)} = 0% x {e’"‘ I [log,(z)P e~ *dz —[c”’j log,(z)e™ ‘dz] } (7.4)
ou, ou

8. THE GOMPERTZ LAW AS A FRACTIONAL AGE ASSUMPTION

Usually, actuaries will use the probabilities ¢, from a valuation table for pricing
insurances and annuities. In this case, z is an integer and so if the actuary requires the
mortality rate ,q, or the force of mortality u, ., at the fractional period ¢ €[0,1) then
an assumption like uniform distribution of deaths (UDD) is used for interpolation. We
show that using a Gompertz assumption at the fractional ages is much more accurate
than the UDD assumption, especially at the adult ages. Assume that g_ is known, then a

Gompertz assumption at the fractional ages would yield the relations

1 ~exp{t/o}

9z = 1 —(1 —Q;)l —exp{l/o} 1 (8.1)

exp{tfe} —exp{t/o}

1-tlzp=1={1—¢, 1-ewpil/o} ’ (8.2)

o1 0,) (8.3)

Pzge= 0(1—61/’)

In comparison, the UDD assumption yields ,q, = txgq,, the Balducci assumption yields
1 -tz 4¢= (1—1) xg_, and the constant force assumption yields p_ , , = —log (1 —gq_)-
These classical assumptions yield very simple formulas but they do not model reality very
well. Let us compare the force of mortality calculated with (8.3) to that calculated with
p,+,=t_—%‘x—qz (UDD) where ¢, is a graduated rate from the female Basic Tables.
Figure 5 is a plot of u, ., 0<t <1, z=60,...,60 using UDD and the Gompertz
assumption at the fractional ages. Using UDD yields a step function which does not

interpolate well. The same type of pattern would be exhibited by a Balducci or constant
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force assumption. On the other hand, the Gompertz assumption gives a good

approximation at the fractional ages.

FIGURE §
A Comparison of the Gompertz and UDD Assumptions for Fractional Ages
Thisisaplotof s, . ,, 0 <t <1, z=60,...,68.
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APPENDIX A
PROPERTIES OF THE GUMBEL

In this appendix, we give some well-known properties of the standard Gumbel
distribution for minima, whose random variable is denoted as Z. Specifically, we give
expressions for the moment and cumulant generating functions along with the moments
and cumulants of Z. These facts may be found in Kotz and Johnson (1983).
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) The moment generating function:
[~ ] oo
Myt)= E{e?} = [ e%exp{z—e*}dz= [y'e"Vdy=T(1+1), > - 1. Calculating the
) o
K _ d¥ Fad k-
moments we find that E(Z )=I&-F(l+t)|t=o = j'o {log.(¥)} cw"dy, k=0,1,2, ...
As a special case we find that B(Z) = — where v =.5772157...= [log (¥~ 1)e~¥Ydy =
0
1
— Jlog, |log (y)| dy is Euler’s constant.
0

1) The cumulant generating function:

=-<] .
Uz(t) = log {Mz(1)} =log AT(1+0)} =) ;' where x; = E(Z)= — 7, x, = Var(2)
izl gl
=126, Ky = B{Z- K(2)}® = —2.4041L..., k, = E{Z- E(2)}* - 3{Ver(2)}* = =*/15.
This means that the coefficient of skewness is x5/ (nz)s’ 2 = —1.1395... and the coefficient

of kurtosis is x,/(x,;)? = 12/5.

APPENDIX B
THE INVERSE-GOMPERTZ DISTRIBUTION

Pollard and Valkovics (1993) also present the Gumbel distribution for maxima,
1~ G(-1z), which is a mirror-image of the distribution in (2.5). The Gompertsz
distribution is a truncated Gumbel distribution for minima. Similarly, we can define an
Inverse-Gompertz distribution as a truncated Gumbel distribution for maxima. This

definition yields the survival function

si(z) =

Note that m; is the mode of the Inverse-Gompertz density when m; > 0 and the limit in
(2.3) holds for the density of s;(z). The Inverse-Gompertz survival function was first

defined by Carriere (1992).
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APPENDIX C

A MATHEMATICAL EXPECTATION RESULT

This appendix presents a generalization of Theorem 3.1 in Bowers, et al (1986).
Consider the distribution function, ,g,, ¢ 2 0, that corresponds to the random variable
T(z). In this discussion, we make no specific assumptions about ,g. and so it can be

oo
discontinuous. Consider the expectation E{g( Nz))} = [ ¢(t)d(,q,) < oo, expressed as a
0
Stieltjes integral. Now, suppose that g( - ) admits the representation
t
o) = o0)+ | g')ds,
0
so that g( -) is absolutely continuous. Using Fubini’s Theorem (Royden, 1968), we find

that we can write
oo

B(s(T@)} = 0+ | o'p, .
0
Unlike the result in Actuaria! Mathematics (1986), this expression for the mathematical
expectation does not require g(-) to be a non-negative, monotonic and differentiable
function. In the case of a continuous annuity, we find that g(2)=(1-¢~ 5‘)/6. Therefore
the net single premium for this annuity is 4, =61 E{l - JT(‘)} = ? e~ 9t ¢Pz dl.
0

(-4
Letting § = 0, we get €, = ] ¢p d1, regardless of any continuity assumptions about ,p,.
0
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