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1. Introduction

The Whittaker method of graduation has been known and used for a long time and has
remained popular due to its possession of a number of ideal properties. They include being non-
parametric and having an easy to understand foundation. The latter means that it makes sense and
thus the user of the method has a good idea of what it can and cannot do. As well. there is a
statistical derivation available that uses Bayesian notions. A problem with the derivation is that it is
more intuitive than precise and as such does not provide a useful frame of reference for the graduator.
Regardless of the point of view, the graduation cannot be compieted until the smoothing parameter is

selected and this has always relied on the judgement of the analyst.

In this paper, two tasks will be undertaken. The first is to replace the ad-hoc Bayesian
derivation of the method with a formal Bayesian specification. The second is to show that with this
specification it is possible to complete the graduation without making an arbitrary selection of the

smoothing parameter. The ideas will be iliustrated with an example.

2. The Formal Bayesian Derivation

The model to be used here is a special case of the hierarchical normal linear model introduced
by Lindley and Smith (1972). An excellent analysis of this model can be found in Berger (1985). This
model is also described in great detail in Kiugman (1991) which also contains the numerical algorithms
used in this paper. A specific application to Whittaker graduation (though it is applied to a
completely different problem in that paper) appears in Gersh and Kitigawa (1988).

The model begins with a description of the observed values. Let them be the nx 1 vector z
which in most mortality studies contains the crude mortality rates at successive ages. As in the
Bayesian graduation method proposed by Kimeldorf and Jones (1967) we assume that z has a
multivariate normal distribution:

z~ N(8. 0%1)

where 8 is a vector that contains the true values and o2V’ is the covariance matrix that represents the
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sampling variation in the observed values. In most applications V' is a diagonal matrix. We assume
that it is known and given the binomial nature of the observations. a reasonable value for the ith
diagonal element is x (1~ z,)/¢; where ¢, is a measure of the exposure associated with z,. It is possible
that the relationship between exposure and sample size is known and therefore the value of ¢ is also
known. This will be known as Case 1 and withont loss of generality. o2 will be taken to be 1 in this
case. Ht is common in actuarial studies to base exposure on something other than lives (for example.
amounts) and in those cases the variance may be at best proportional to 1" and the constant may not
be available from the data. (A discussion of these issues can be found in Klugman {1981).) Case 2 will

2

be used to identify the situation where ¢° is unknown.

Our prior knowledge about 8 is also expressed as a multivariate normal distribution:

8~ Nip Q)

where g is a prior best guess as to the mortality rates (likely to be a previous study of a similar

2 will be unknown

population) and @ is a known covariance matrix. Here it is almost certain that r
{although. if known. the model becornes that used by Kimeldorf and Jones). To correspond to
Whittaker graduation. the matrix Q must have a particular form. Begin by considering an arbitrary

matrix A with n columns. We have

K6~ N(hp. T°KQK).

It may be the case that while we have difficulty expressing a prior opinion about 8. we are able to
express one about K@. Suppose K is the matrix that computes zth differences. Our prior opinion may
be that the population under study has the same third differences as our reference population but with
a modest amount of fluctuation. Also, we may believe that these fluctuations are independent and

have a common variance. so that KQA' should be the identity matrix.

For example, if z = 1. our prior opinion is that (locally) @ is equal to g plus a constant. This
allows for a change in level. while retaining the inherent smoothness from g With z = 2 the same
interpretation would hold except that differences in the two vectors could now be a linear function of
age. We will see that the more traditional form of the Whittaker formula obtains when u = 0. Here

the interpretation is that @ itself should (locally) be a z - 1 degree polynomial.

In order to continue, we wmust verify that Q can be obtained. For Whitiaker graduation R has

n -z rows and rank n—:. For the normal distribution to apply, @ must be positive definite and must

162



be factorable as LL’ with L being lower triangular with positive diagonal elements. Our task reduces
to finding L such that (KL}(KL) = I. Regardless of the values of n and z there will be at least one

solution for Q. For the time being it is not necessary to specify a particular solution.

To implement the analysis there are three key distributions. The first is identical to the one

obtained from the Kimeldorf-Jones model:

0|z 0% rP~ N(O". V)

2 2 . 2
0" = (W +%R)"(Wz +%Rm and V" ='W +%R)7

where W=V"! and R=Q L

With o2 and 72 known, & is the posterior mean and is thus the Bayes estimate. If we set R= KR"
and u = 0. 8" becomes the standard Whittaker solution. However, R as defined here is singlular and so
cannot be the inverse of Q. So. strictly speaking. the standard Whittaker solution is not a special case
of the model being used here. In the next section we wiil see how close we can come to obtaining the

standard solution.

2

If either o or % are unknown, we need two more distributions. Removing the dependence on

8 produces:
z]o? i~ N(p, o 4 12Q).
This leads to the posterior distribution:

flo? ) x l oV + erf"lnczp[-(z - (0 + Q) Yz — /2 f (0% Y

is the prior distribution on the parameters o2 and r%. This distribution must be

where f(o2.r%)
subjectively supplied by the analyst. Guidelines will be given in a later section. Should o? be known,
it would pot be included in the prior distribution and its known value would be substituted in the

above density.

The posterior distribution of # and its moments must then be obtained by integration:

f8lz) = [ [ f(8]z, 0% 11 f(o% 72| z)dodr?
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E@, |z)= [ [8;f(e?. 2| 2)dodr?
Viar(8,1z) = E[Var(8, | z. ol 4 Var|E(8,| z. ol 4}

=ff !'I',f(z72. i zidoldr? + f [ (O f(or 2| midoldr ~ [E(8, | )%
These integrals must be done by numerical means.

3. Practical considerations

To proceed we need a prior distribution. A general form that provides some computational

efficiency is the inverse gamma distribution. That is:

flod %) x (”2)"’("'/’z(.—z]‘q,-'/fz'

The computational efficiency comes when the following change of variable is made. Let a = o and

A=o?/r% At this point the two cases must be separated. The priors become:

F1(A) x A9 ZemA

fala. A) x o~ P9t ya-2,~(r+ed)a
The required integrals for the two cases are

B T Eg|V + Q/AT Perp(—(z — w)'(V +Q/3) ™ (2 ~ /20772~ *2d)
% [ [Tl al +aQ/a[ 2
xerpl—(z— @) (aV + aQ/N)"Hz - g)j2a=P-9H a2~ Ir+ed 2y gy
= [E ISy + Q2
xerpl~a Nz — @' (V + Q/N) "z — p)/2+r+sA}a PTIT/23+E+1 5024, g3

x gV + QAN (2 — ) (V 2 QA Nz — /2 + 7 4 sA]TPTIT/2HE42 gy

The value of & is either 0 or 1. the value 1 being used when the integrand is V¥ or for obtaining the

posterior mean of a.
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In order to complete the calculations it is necessary that the integrals exist. This will always
be the case when r > 0 and 5 > 0. However, if s = 0 then ¢ < | — k is required for the kth moment of A
to exist and if r = 0 then p < | for the moments to exist. The case with r = 5 = 0 is the most useful as
this provides an improper prior. While there has been a great deal of discussion concerning the
appropriate way to specify an improper prior for it to reflect prior ignorance. there has been little
agreement. For variances. the values p = ¢ = | have been recommended, but these will not produce
legitimate posterior densities. For the example. with case 2. 1 have selected p =0 and ¢ = —2. These
are the largest integer values that will produce a postetior variance for A. Also, the marginal prior
densities for both a and A are constant, which is not an unreasonable choice. With the parameters set

this way, the case 2 integral becomes:

TV + QA Yz - W'V + Q0 Mz - /A2,

The calculations in the examples were done using adaptive Gaussian integration as discussed in
Klugman (1991). Because the integrals all run from zero to infinity, the integration was done over

successive finite segments until the contribution of the most recent segment was negligible.

The remaining practical matter is to specify the matrix Q. As indicated in the previous
section. there is more than one version which will satisfy the requirement concerning the taking of
differences. For this paper the matrix L is obtained as follows:

1. In column 1 place the constants 1. |, ....

2. In column 2 place the linear sequence 0. 1.2, ... n— L.

3. In column 3 place the quadratic sequence 0, 0, 1. 3. 6, ... (n—1){n—2)/2

4. Continue until = columns have been so placed. The general approach is to begin column j

with j — 1 zeros and then a 1. The rest of the column is filled out so that jth differences are 0.

3. For columns r + 1 through n, repeat the previous column but shift the entries down one

Tow,

The following example illustrates the relevant matrices for n = 6 and z = 2. The standard K

matrix for Whittaker graduation is

1 -2 1 0 0 0

0 H -2 1 0 0
A =

0 0 ] -2 1 0

0 (] 0 1 -2 1
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and the L matrix as described above is

1 0 0 0 0 0
1 t 0 0 0 0
! 2 1 0 0 4
L_
1 3 2 1 ] 0
1 4 3 2 1 0
1 5 4 3 2 1
- .|
Then
i 1 1 1 H i 1 1
1 2 3 4 5 [ !
, 1 3 6 9 12 45
Q=1LL= .
i 4 9 15 21 27
1 3 1221 31 41 ‘
1 6 15 27 41 56 J
And r il
3 -3 1 0 0 0
-3 6 -4 1 (i 1}
. 1 -4 6 -4 1 0
R=Q ' =

-4 5 -2

D = o
[—
—

In the orginal form of Whittaker graduation. the matrix R is found as A”A. The matrix shown above
differs only slightly in the first two rows. Gersh and Kitigawa (1988) provide another solution for the

matrix @ which differs only slightly from the one presented here,

4. An Example

In order to verify that the computations involved are feasible. a large example was selected.
The data are from the 1975-80 Basic Tables (Society of Actuaries. 1985}, | have selected the male
ultimate values for graduation. Deaths and exposures (in dollars) were available for ages 15 through
100. The table was graduated by the Whittaker method with A = |8 and W as the identity matrix

and smoothness based on second differences. Because the values at ages 83-100 were deemed
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Tabie |
Graduation of the 1975-80 Basic Male Ultimate Table
Age Crude \ Basic Bayes Age Crude A Basic Bayes

15 0.5 11,1358 0.78 0.32 58 9.66 1.0452 9.74 9.68
16 0.98 1.5771 0.94 0.59 59 10.36 1.1843 10.75 10.65
17 1.31 1.8994 1.09 0.89 60 11.72  1.4275 11.89 11.83
18 1.09 1.4704 1.22 1.13 61 13.31 1.6871 13.16 13.19
19 1.v0 2.1556 1.31 1.29 62 14.93 2.0083 14.54 14.65
20 1.18 1.3942 1.37 1.33 63 16.21 2.3249 16.02 16.16
21 1.26  1.2993 1.40 1.39 64 17.82 2.7656 17.62 17.768
22 1.65 1.6663 1.41 1.42 65 19.23 3.4928 19.38 19.49
23 1.32  1.3487 1.40 1.41 66 21.41 4.2860 21.32 21.41
24 1.34 1.3963 1.38 1.38 67 23.51 ©5.1109 23.49 23.56
25 1.42 1.4910 1.34 1.34 68 26.19 6.0792 25.92 25.96
26 1.44 1.5292 1.29 1.27 69 28.09 7.00i4 28.66 28.63
27 0.98 1.0237 1.24 1.19 70 31.51 8.4798 31.77 31.64
28 1,12 1.1196 1.20 1.16 71 36.19 10.508 35.26 34.97
29 1.27  1.1760 1.17 1.17 72 38.05 12.120 39.15 38.63
30 1.27 0.9725 1.14 1.15 73 41.66 14.562 43.51 42.67
31 1.04 0.6963 1.12 1.10 74 45.13 17.334 48.32 47.15
32 1.08 0.6030 1.11 1.08 75 49.87 21.492 53.50 52.05
33 1.07 0.4654 1.12 1.08 76 76.90 52.039 58.76 57.32
34 1.09 0.3850 1.14 1.13 77 60.06 33.205 63.63 62.85
35 1.22 0.3547 1.17 1.21 78 65.84 41.585 68.62 68.73
36 1.34 0.3381 1.22 1.27 79 72.14 51.989 74.07 75.00
37 1.26 0.2889 1.28 1.30 8 77.44 62.853 80.16 81.67
38 1.35 0.2784 1.36 1.35 81 89.10 82.216 86.94 88.71
39 1.42 0.2669 1.45 1.44 82 99.09 105.75 94.34 96.09
40 1.60 0.2728 1.56 1.57 83 100.41 128.46 102.38 103.73
41 1.72  0.2693 1.70 1.7l 84 I1t.14 171.96 111.38 111.61
42 1.84 0.2730 1.87 1.85 85 115.27 226.89 121.52 119.67
43 2.02 0.2876 2.07 2.04 86 135.31 326.09 132.98 127.85
44 2.30 0.3141 2.31 2.29 87 145.23 445.96 145.59 136.10
45 2.59 0.34035 2.58 2.56 B8 157.93 625.72 159.30 144.35
46 2.80 0.3498 2.89 2.88 89 166.47 854.42 174.06 152.57
47 3.33 0.3933 3.24 3.26 90 193.18 1245.4 189.73 160.72
43 3.63 (.4065 3.61 3.65 91 196.02 1769.8 205.75 168.77
49 4.13 0.4418 4.02 4.06 92 211.32 2618.4 221.75 176.72
30 4.37 0.4519 4.45 4.46 93 220.65 3648.8 236.82 184.56
51 3.00 0.5018 4.92 4.94 94 239.24 5558.0 249.48 192.29
52 3.42 0.5357 5.44 5.44 95 300.13 9633.7 257.33 199.93
53 5.91 0.5826 6.00 6.0l 96 337.22 24935 257.44 207.48
54 6.90 0.6782 6.61 6.66 97 205.80 35660 249.21 214.98
35 7.13 0.7035 7.28 7.30 98 313.63 88534 236.50 222.42
26 8.02 0.8062 8.01 8.03 99 69.12 39278 220.76 229.85
57 9.06 0.9469 8.83 .83 100 256.25 329585 207.72 237.28

The crude, basic. and Bayes rates have been multiplied by 1000. The entries in the V column are
proportional to the variances.
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insufficiently smooth. they were empirically adjusted 10 force second differences 1o be constant. The

data. along with the original {prior to the adjustment) and the Bayesian graduation appear in Table 1.

Also included are the diagonal elements of V. These were obtained as indicated earlier but to
simplify the presentation as well as make the matrix calculations stay within reason. they were
multiplied by 830.076.080.000 to make the averagé of their reciprocals equal to 1. ‘This also puts them

on the same scale as used in the official graduation.

The first step was do to four integrals in order to obtain some posterior momeunts. Using
g(A) =1 and & = 0 provides the proportionality constant needed to produce a density. It turned out to
be 2.4083(10)'33. Keeping & = 0 and using g{A) = X and then g()) = X produces the numerators for
the first two moments of A. Dividing by the proportionality constant produced a posterior mean of
2.1872 and second moment of 5.5294 for a posterior standard deviation of .8634. The final integral
used ¢ =1 and g(A) = 1. Dividing the result by the proportionality constant produced the posterior
mean of a. 0.0000137347.

If doing &6 integrals simultaneously is a problem, the Bayvesian solution could be approximated
by using the traditional Whittaker formula with A = 2,1872. To get the posterior mean. the function
g{A) now must produce the 86 element vector of graduated values. This was done to produce the

values in Table }.
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