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1. lntroduction 

The Whit taker  method of graduation has been known and used for a long t ime and has 

remained popular due to its possession of a number  of ideal properties. They include being non- 

parametric and having an easy to understand foundation. The latter means that  it makes sense and 

thus the user of the method has a good idea of what  it can and cannot do. As well. there is a 

statist ical  derivation available that  uses Bayesian notions. A problem with the derivation is that it is 

more intuitive than precise and as such does not provide a useful frame of reference for the graduator.  

Regardless of the point of view, the graduation cannot  be completed until the smoothing parameter  is 

selected and this has always relied on the judgement  of the analyst .  

In this paper, two tasks will be undertaken. The first is to replace the ad-hoc Bayesian 

derivation of the method with a formal Bayesian specification. The second is to show tha t  with this 

specification it is possible to comptete the graduat ion without making an arbitrary selection of the 

smoothing parameter. The ideas will be illustrated with an example. 

2. 'The Formal Bayesian Derivation 

The model to be used here is a special ease of the hierarchical normal linear model introdueect 

by Lindley and Smith (1972). An excellent analysis of this model can be found in Berger (1985). This  

model is also described in great detail  in Klugman (1991) which also contains the numerical algori thms 

used in this paper. A specific application to Whi t t ake r  graduation (though it is applied to a 

completel)  different problem in that paper) appears in Gersh and Kitigawa (1988). 

The model begins with a description of the observed values. Let them be the n x 1 vector z 

which in most morta l i ty  studies contains the crude morta l i ty  rates at succc~,is'e ages. As in the 

Bayesian graduation method proposed by Kimeldorf and Jones {1967) we assume that  a: has a 

mult ivariate  normal distribution: 

z ~ N(#, ~2V) 

where 0 is a vector that  contains the true values and 0"2V is the covariance matrix that  represents the 
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sampling variation in the observed values. In most applications V is a diagonal matr ix .  We assume 

that it is known and given the binomial nature  of the observations, a reasonable va lue  for the ith 

diagonal element is zi(1 - z , ) / e  i where e, is a measure of the exposure associated with z,. It is possible 

that the relationship between exposure and sample size is known and therefore the value of cr 2 is also 

known. This will be known as Case I and witho. t  loss of generality. ~2 will be taken to be I in this 

case. It is common in actuarial studies to base exposure on something other than lives (for example. 

amounts) and in those cases the variance may be at best proportional to i and the constant may not 

be available from the data. (A discussion of these issues can be found in K#ugman (1981).) Case ~ wil) 

be used to identi~" the situation where ~ is unknown. 

Our prior knowledge about 0 is also expressed as a mul tba r i a t e  normal distribution: 

0 ~ , v ( ~  r2Q) 

where # is a prior best guess a.s to the mortali ty rates (likely to be a previous s tudy of a similar 

population) and Q is a known eovariance matrix. Here it is almost certain that r 2 will be unknown 

(although. if known, the model becomes that used by Kimeldorf and Jones). To correspond to 

Whittaker graduation,  the matrix Q must have a particular form. Begin by considering an arhitrar~ 

matrix K with n columns. We have 

/~0 ~ 3"(/x/~. r2KQ/~").  

II may be the case that while we ha~e difficult) expr~.sing a prior opinion about 0. we are able to 

express one about  K0. Suppose K is the matrix that  computes zth differences. Our prior opinion may 

be that the population under study has the same third differences as our reference population buw with 

a modest amount  of fluctuation. Also~ we may believe that  these fluctuations are independent and 

have a common variance, so that  KQ/~" should be the identity matrix. 

For example,  if z -- 1. our prior opinion is that  (locally) 0 is equal to /J plus a constant. This 

allows for a change in level, while retaining the inherent smoothness from ~. With z ~- 2 the same 

interpretation would hold except that  differences in the two vectors could now be a linear function of 

age. Vfe will see tha t  the more traditional form of the Whit taker  formula obtains when ju = 0. Here 

the interpretation is that  0 itself should/locally) be a z - I degree polynornial. 

In order to continue, we must verify that Q can be obtained. For ~,~,hittaker graduation K has 

n - -" rows and rank n - z. For the normal distribution to apply', Q must be positive definite and must  
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be factorable as L£ '  with L being lower t r iangular  with posit ive diagonal  elements. Our  task reduces 

to f inding L such tha t  (KI . ) (K£) '  = I. Regardless of the values of  n and  z there will be at least one 

solution for Q. For the t ime being it is not necessary to specify a par t icular  solution. 

To implement the analysis there are three key dis t r ibut ions.  The first is identical to the one 

obta ined  from the Kimeldorf-Jones model: 

01~. ~2 r2~,V(O-, V') 

0 " = ( W +  R ) - I ( B ' ~ + 7 ~ R ~ )  and l " ' = e e ( W + ~ R ~  - i t 2  , 

where W = I  ' - I  and  R = Q - I .  

Wi th  ~r 2 and r 2 known, r is the posterior  mean and is thus the  Bayes es t imate .  If we set R = K K '  

and  p = 0. 0" becomes the s t andard  Whi t t ake r  solution. However. R as defined here is singlular and  so 

cannot  be the inverse of Q. So. s t r ic t ly  speaking, the s t andard  Whi t t ake r  solution is not a special case 

of  the model being used here. In the next section we will see how close we can come to ob ta in ing  the  

s t anda rd  solution. 

If either ~2 or r ~ are unknown,  we need two more d is t r ibut ions .  Removing the dependence on  

8 produces: 

z I ¢r2. r~ ~ ?¢(~ "2V + r2Q) • 

"Ihis leads to the posterior dis t r ibut ion:  

where f(cr2,r 2) is the prior d is t r ibut ion on the parameters  ~r 2 a n d  r 2. This  distr ibution mus t  be 

subjectively supplied by the analys t .  Guidelines will be given in a later  section. Should ~r 2 be known,  

it would not be included in the prior  dis tr ibut ion and  its known value would be subst i tuted in the 

above  density.  

The posterior distribution of  0 a n d  its moments  must  then be obta ined by integration: 

f(Ol z) = f f f(O I z, ~2k r2)f(o 2, r 21 =) a~dT2 
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Uar(O, 1 " !  = E[l,'ar(O, i =. # 2  ~.2]] + i..arlE(O ' I =. °'2. T2)} 

: f f (.~.f(e.'2. 1.2 {=}dcr2dr.2 _¢. f jr (#;.}2f¢c,2 ' 7.2 I s:l dff2dT"2 - {E(~, J zJl 2. 

These integrals  must  be done by numerica l  means,  

3. Prac t ica l  considerations 

To proceed we need a pr ior  d is t r ibut ion.  A general form tha t  provides some computa t ional  

efficiency is the inverse g a m m a  dis t r ibut ion .  "l-hat is: 

f(~. ~.2) :~ {~2)-p,-,l~Z(~2)-q -~l, 2. 

The compu ta t i ona l  efficiency comes w'hen the following change of var iable  is made.  Let ~ --- ~ and 

A ~ a2 /7  "2. At: this point the two cases mus t  be separated.  The priors become: 

f1( k) rx kq-2~ -'x 

f2(,q. )~) "x o-P-q+l .~q-2e-(r+sk)/° .  

The required integrals  for the two cases are 

L: .f ~g (k ) l  ~ ' +  Q / k  I -~/2"~P{- (  " - p ) ' ( t "  + O . l ~ ) - q = -  ~' l l2]~q-2e-*~dk 

~.: f ~  f ~ n * g ( X ) l , t ' +  (,q/X1-1/2 

x e r p [ - ( z  - #)'(:~!: + o tQ/k ) - l ( z  - ,tt)/2]o - P - q + t  kq-2¢-(r+*X)/'~dadk 

-- ./'~;J'~gCx)J r + O/xr ~/2 

× exp{-c~-l[(z -/J)'(V + Q/k)-l(z -/J)/2 + r + sA] [o:P-q-"/z+6+].~q-~dod.~ 

J'~ x)l ~' + Q/~ V-~/~-~{( = - ~,)'(r ~- o/~l-q, - #)/2 +, + sx]-~-~-n/~+~+~,~x 

The value of b is either O or 1. the value 1 being used when the in tegrand is I,'~, or for obta ining the 

pos ter ior  mean of o. 
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In order to complete the ca lcula t ions  it is necessary tha t  the integrals  exist. This will a lways  

be the case when r > 0 a n d  s > 0 .  However,  if s = 0  then q <  l - k i s  required for the kth moment  of A 

t o  exist and  i f  r - - - 0  then p <  1 for the  moments  to exist. The case with r = s = 0 i s  the most useful as 

this provides an improper prior. While  there has been a great  deal of discussion concerning the 

app rop r i a t e  way to specify an imprope r  prior for it to reflect prior ignorance,  there has been little 

agreement .  For variances, the values  p = q = I have been recommended,  bu t  these ~iil  not produce 

leg i t imate  posterior densities. For  the  example,  with case 2. 1 have selected p : 0 and q = - 2 .  These 

are the largest integer va[ues th* t  will produce a posterior variance for A. Also, the marginal  pr ior  

densit ies for both a and A are cons t an t ,  which is not an unreasonable choice. With  the parameters  set 

this way,  the case 2 integral becomes: 

.[ ~gt~)l v + q l~  I -~ /z~-4[{z  - ~,)'(v + q l x ) - t I z -  #)/2]-"/z+6+ %~. 

The calculations in the examples  were done using adapt ive  Gauss[an integrat ion as discussed in 

K l u g m a n  (1991). Because the in tegra ls  all run from zero to infinity, the integrat ion was done over 

successive finite segments until the cont r ibu t ion  of the most recent segment was negligible. 

'Fhe remaining practical m a t t e r  is to specif) the matr ix  Q. As indicated in the previous 

section, there is more than one version which will satisfy the requirement concerning the taking of 

differences. For this paper the m a t r i x  L is obta ined as follows: 

1. in column I place the c o n s t a n t s  1. 1 . . . . .  

2. In column 2 place the l inear  sequence 0. L 3 . . . . .  n - [. 

3. In column 3 place the q u a d r a t i c  sequence O, O, 1. 3 . 6  . . . . .  ( n -  l){n - 2) /2.  

4. Continue until : co lumns have been so placed. The general approach  is to begin column j 

with 3 - 1 zeros and then a 1. The  rest of the column is filled out  so t ha t  j t h  differences are 0. 

5, For columns = + I t h rough  n, repeal, the previous column but  shift the entries down one 

r o w ,  

[he  following example i l lustrates  the relevant matrices for n = 6 and  z : 2. ' [he  s t andard  K 

mat r ix  for Whi t taker  graduat ion is 

h =  

1 - 2  1 0 0 0 

0 l - 2  1 0 O 

0 0 l - 2  l 0 

0 0 0 1 - 2  1 
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and the L ma t r ix  as described above is 

/~ = 

Then 

O = t L ' -  

And 

0 0 0 0 0 

I 0 0 0 0 

2 1 0 0 0 

3 2 1 0 0 

4 3 2 1 0 

5 4 3 ? I 

1 1 1 1 1 1 

1 2 3 4 5 fi 

1 3 6 9 12 15 

I 4 9 I5 _21 '2_7 

1 5 12 21 31 41 

1 6 15 27 41 56 

3 - 3  [ 0 0 0 

- 3  6 4 1 0 0 

1 - 4  6 - 4  i 0 

0 1 - 4  6 - 4  1 

0 0 1 - 4  5 - 2  

0 0 0 1 - 2  1 

In the orginal  form of Whi t taker  g radua t ion ,  the mat r ix  R is found as K'K. The mat r ix  shown above 

differs only slightly" in the first two rows. Gersh  and Kit igawa (19;~8) provide ano the r  solution for the 

matr ix  Q which differs only slightly from the  one presented here. 

4. An Example  

In order  to verify that  the c o m p u t a t i o n s  involved are feasible, a large example  was selected. 

The d a t a  are from the 1975-~0 Basic l ' ah l e s  (Society of Actuaries. 1985). I have selected the male 

ul t imate values for graduat ion .  Deaths a n d  exposures (in dollars) were avai lable  for ages 15 through 

100. The table was graduated  by the W h i t t a k e r  method with A = 18 and  I~- as the identitx matr ix  

and smoothness  based on second differences. Because the values at  ages 85-100 were deemed 
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Age Crude V 

15 0 .51  1 ,1358  
16 0 .98  1.5771 
17 1.31 1 .8994 
18 1.09 1 .4704  
19 1.70 2 . 1 5 5 6  
20 1.18 1 .3942  
21 1.26 1 .2993 
22 1.65 1 .6663  
23 1.32 1 .3487 
24 1.34 1 ,3963  
25 1.42 1 ,4910  
26 1.44 1 .5292  
27 0 . 9 8  1 .0237 
28 1 .12  1 .1196  
29 1.27 1 .1760  
30 1.27 0 . 9 7 2 5  
31 1.04 0 . 6 9 6 3  
32 1.08 0 . 6 0 3 0  
33 1.07 0 . 4 6 5 4  
34 1.09 0 . 3 8 5 0  
35 1 .22  0 . 3 5 4 7  
36 1.34 0 .3381  
37 1.26 0 . 2 8 8 9  
38 1.35 0 . 2 7 8 4  
39 1.42 0 . 2 6 6 9  
40 1 .60  0 . 2 7 2 8  
41 1.72 0 . 2 6 9 3  
42 1.84 0 . 2 7 3 0  
43 2 . 0 2  0 , 2 8 7 6  
44 2 .30  0 .3141  
45 2 . 5 9  0 . 3 4 0 5  
46 2 . 8 0  0 . 3 4 9 8  
47 3 . 3 3  0 . 3 9 3 3  
48 3 . 6 3  0 . 4 0 6 5  
49 4 .13  0 . 4 4 1 8  
50 4 .37  0 . 4 5 1 9  
51 5 . 0 0  0 . 5 0 1 8  
52 5 .42  0 . 5 3 5 7  
53 5.91 0 . 5 8 2 6  
54 6 . 9 0  0 . 6 7 8 2  
55 7 .13  0 . 7 0 3 5  
56 8 .02  0 . 8 0 6 2  
57 9 . 0 6  0 . 9 4 6 9  

Table 1 

Graduation of the 1975-80 Basic Male Ultimate Table 

B a s i c  Bayes 

0 . 7 8  0 . 3 2  
0 . 9 4  0 . 5 9  
1 .09  0 . 8 9  
1 .22  1 .13  
1.31 1.29 
1.37 1 .35  
1 .40  1 .39  
1.41 1 .42  
1 .40  1.41 
1 .38  1 .38  
1 .34  1.34 
1 .29  1 .27  
1.24 1.19 
1 .20  1 .16  
1 17 1.17 
1 14 I .  15  
1 12  ! .  i 0  
i I I  1 .08  
1 12 1 .08  
I 14 1 .13  
1.17 1.21 
1.22 1.27 
1 .28  1 .30  
1 .36  1 .35  
1 .45  1 .44  
1.56 1.57 
1 .70  1.71 
1.87 1 .85  
2 . 0 7  2 . 0 4  
2.31 2 . 2 9  
2 . 5 8  2 . 5 6  
2 . 8 9  2 . 8 8  
3 . 2 4  3 . 2 6  
3 .61  3 . 6 5  
4 . 0 2  4 . 0 6  
4 . 4 5  4 . 4 6  
4 . 9 2  4 . 9 4  
5 . 4 4  5 . 4 4  
6 . 0 0  6 .01  
6 .61  6 . 6 6  
7 . 2 8  7.3O 
8.01 8 . 0 3  
8 . 8 3  8 . 8 3  

The crude, basic, and Bayes rates 
proportional to the variances. 

have been 

Age Crude ~: B a s i c  Bayes  

58 9 . 6 6  1 .0452  9 . 7 4  9 . 6 8  
59 10 .36  1 .1843  10.75 1 0 . 6 5  
60 11 .72  1 .4275  11.89 1 1 . 8 3  
61 13.31 1.6871 13.16 1 3 . 1 9  
62 14 .93  2 .0083  14.54 1 4 . 6 5  
63 16.21 2 .3249  16.02 1 6 . 1 6  
64 17 .92  2 . 7 6 5 6  17.62 1 7 . 7 6  
65 19 .23  3 .4928  19.38 1 9 . 4 9  
66 21 .41  4 .2860  21 .32  2 1 . 4 1  
67 2 3 . 5 1  5 .1109  2 3 . 4 9  2 3 . 5 6  
68 2 6 . 1 9  6 . 0 7 9 2  25 .92  2 5 . 9 6  
69 2 8 . 0 9  7 .0014 28 .66  2 8 . 6 3  
70 3 1 . 5 1  8 .4798  31 .77  3 1 . 6 4  
71 3 6 . 1 9  10 .508 35 .26  3 4 . 9 7  
72 3 8 . 0 5  12 .120 39 .15  3 8 . 6 3  
73 4 1 . 6 6  14.562 43.51 4 2 . 6 7  
74 4 5 . 1 3  17.334 48 .32  4 7 . 1 5  
75 4 9 . 8 7  21 .492  5 3 . 5 0  5 2 . 0 5  
76 7 6 . 9 0  5 2 . 0 3 9  5 8 . 7 6  5 7 . 3 2  
77 6 0 . 0 6  3 3 . 2 0 5  63 .63  6 2 . 8 5  
78 6 5 . 8 4  4 1 . 5 8 5  68 .62  6 8 . 7 3  
79 7 2 . 1 4  5 1 . 9 8 9  74 .07  7 5 . 0 0  
80 7 7 . 4 4  62 .853  80 .16  8 1 . 6 7  
81 8 9 . 1 0  8 2 . 2 1 6  86 .94  8 8 . 7 1  
82 9 9 . 0 9  105 .75  94 .34  9 6 . 0 9  
83 100.41 128 .46  102.38 1 0 3 . 7 3  
84 111 .14  171.96  111.38 111 .61  
85 115 .27  226 .89  121.52 1 1 9 . 6 7  
86 135.31 3 2 6 . 0 9  132.98 1 2 7 . 8 5  
87 145 .23  4 4 5 . 9 6  145.59 1 3 6 . 1 0  
88 157 .93  625 .72  159.30 1 4 4 . 3 5  
89 166 .47  8 5 4 . 4 2  174.06 1 5 2 . 5 7  
90 193 .18  1245.4  189.73 1 6 0 . 7 2  
91 196 .02  1769.8  205 .75  1 6 8 . 7 7  
92 2 1 1 . 3 2  2618 .4  221 .75  1 7 6 . 7 2  
93 2 2 0 . 6 5  3 6 4 8 . 8  236 .82  1 8 4 . 5 6  
94 2 3 9 . 2 4  5 5 5 8 . 0  249 .48  1 9 2 . 2 9  
95 3 0 0 . 1 3  9633 .7  257 .33  1 9 9 . 9 3  
96 3 3 7 . 2 2  24935 257 .44  2 0 7 . 4 8  
97 2 0 5 . 8 0  35660 249.21 2 1 4 . 9 8  
98 3 1 3 . 6 3  88534 236 .50  2 2 2 . 4 2  
99 6 9 . 1 2  39278 220 .76  2 2 9 . 8 5  
100 2 5 6 . 2 5  329585 207 .72  2 3 7 . 2 8  

multiplied by 1000. The entries in the V column are 
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insufficiently smooth,  they were empirically adjus ted to  force second differences to be cons tan t .  The 

da ta .  along with the original (prior to the adjus tment}  and  the Bayesian graduat ion appear  in Tab le  1. 

Also included are the diagonal  elements of V. These were obtained as indicated earlier but  to 

simplify the presentat ion as well a.s make the m a t r i x  calculat ions s tay within reason, they were 

multiplied by 830,076,080,000 to make the average of their  reciproeats equal to 1. ' l h i s  also puts  them 

on the same scale as used in the official graduat ion.  

The first step was do to four integrals in order  to ob ta in  some posterior moments .  Using 

9(h) = 1 and b = 0 provides the propor t ional i ty  cons tan t  needed to produce a density. It tu rned  out  to 

be 2.4083(10) t33. Keeping ,~ = 0 and using g(A) = A and  then g(A) = )~2 produces the numera to r s  for 

the first two moments  of A. Dividing by the p ropor t iona l i ty  constant  produced a posterior mean  of 

2.18]'2 and second moment  of 5.5294 for a posterior s t a n d a r d  deviat ion of .8634. rhe  final integral  

used ~ : l and 9(A) = 1. Dividing the result by the propor t iona l i ty  constant produced the posterior 

mean of o, 0.0000137347. 

If doing g6 integrals s imultaneously is a problem,  the Bayesian solution could be a p p r o x i m a t e d  

by using the t radi t ional  Whi t t ake r  formula  with A = 2.1872. To get the posterior mean,  the funct ion 

9{A) now must  produce the 86 element vector of g r a d u a t e d  values. This was done to produce  the 

values in ] a b l e  1. 
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