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A b s t r a c t  

The Bivariate Numerical Generalized Convolution (Binugeco) Algorithm, 
presented in the Appendix of the ARCH (1993.1) paper "Six Bridges To 
@'s", can be applied to find the probability @(u;n) of ruin by n claims 
for any Sparre-Andersen Process. We introduce a conjecture as to a 
method for estimating how much has to be added to @(u;n) to obtain ~(u). 
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S e c t i o n  1.  I n t r o d u c t i o n  

This paper grew out of the work done in Bailey (1993b). That paper 

described six "bridges" to the probabilities of ruin where the process 

is Sparre-Andersen (see Thorin and Wikstad (1973). Although some 

unlvariate numerical convolutions were required for each of the 

bridges, three of the bridges involved Monte Carlo, two used further 

univariate convolutions and one used bivariate numerical generalized 

convolutions. 

That paper indicated that some of the bridges might not be practical if 

the premium loadin E were very small or if the distributions were 

sufficiently pathological. In such cases the inutility of the bridges 

would become evident early in the calculations and other methods would 

have to be applied. The Committee on Papers suggested that, if any of 

the bridges were to be considered practical, it would have to be 

efficient enough to handle a Sparre-Andersen process which did not 

involve just a simple exponential distribution of waiting times between 

claims. 

Part I of the current paper shows how Convolution Bridge #1 from Bailey 

(1993b) can be used to estimate for any Sparre-Andersen process the 

probability of ruin by a finite number of claims. Knowing the 

particular distribution of waiting times between claims and the 

particular distribution of size of individual claims, Part II of the 

current paper conjectures on how we might estimate the amount to add to 
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@(u;n) to obtain @(u}, where @(u:n) is the probability of ruin by the 

th 
n claim, and @(u) is the probability of ultimate ruin given an 

initial surplus of u. A numerical example from Thorln and Wikstad 

(1973) is presented in Part Ill, along with some contrasts with methods 

of some other authors. 
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Part I. Probability Of Ruin By A Finite Number Of Claims 

S e c t i o n  2 .  Some D e f i n i t i o n s  

This paper focuses on the Sparre-Andersen process; that is, the model 

in which the waiting times WI,W 2 .... are independent and identically 

distributed as W, the size of claims XI,X 2 .... are independent and 

identically distributed as X, and XI,X 2 ..... WI,W 2 .... are mutually 

independent. 

Let c be the constant rate (per unit of time) at which premiums are 

received. Let W be the waiting time until claim number I; and, let 
1 

W (J=2,3 .... )be the waiting time between claim number j-1 and claim 
J 

number j .  Let X (k=l,2 .... ) be the size of claim number k. Let V 
k i 

be the amount in the fund just after claim number i, having started 

with an initial surplus of u. Then 

| t 

Vt = u + c. [Wj - ~X .k 

J=l k=l 

We are concerned with the event that ruin occurs; 

for some i=1,2 ..... 

that is, that V < 0 
i 

It is well known that a compound Polsson process involves an 

exponential dlstribution of waiting times. We will be requiring that 
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the waiting times between claims be independent and identically 

distributed, but not ' necessarily exponentially. 

We are requiring that E[X] be nonnegative, but X need not take on only 

nonnegative values, 

L e t  t h e  m a x i m a l  a ~ r e ~ a t e  l o s s  r andom  v a r i a b l e  L be d e f i n e d  a s  
N 

L~ = m a × ( O , - V , - V  2 . . . . .  -V~) .  

Given an initial surplus of u let @(u;n) be the probability of ruin by 

the n th claim, and let ~(u) be the probability of ultimate ruin. 

Part I describes an almost exact method for determining ~(u;n), using 

one algorithm (see the Appendix of Bailey (1993a)) for performing 

univariate numerical generalized convolutions and another algorithm 

(see Appendix $3 of Bailey (1993b)) for performing bivariate numerical 

generalized convolutions (binugecos). 

Section 3 .  The Initial Discretization Procedure 

In practice the distribution fw of U and the distribution fx of X would 

likely be obtained from empirical distributions implied by samples 

taken from relevant data for waiting time between claims and size of 
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individual claim, respectively. 

If fW and fX are to be continuous distributions, then each of these two 

distributions would be discretized. Although this initial 

dlscretization can be accomplished usin E discretization techniques such 

as those described by Dufresne and Gerber (1989) or PanJer (1986) , I 

have found the followin E approach works very well. These other 

discretization methods are vital to the calculation of @{u) in their 

respective papers; but they do not offer any advantage here, because 

of the way @(u) will be determined. 

We consider fX' although the procedure would be analogous for fW" 

Partition the x-axis into n intervals [hl,hi+ l ] (i=0,I,2 ..... n} where 

h 0 and hn are chosen so that (where F X is the cumulative distribution 

function), 

Fx(h o} is < c 

and 

Fx(h ") is > i - e, 

where n is chosen to be a large positive inteEer , say I0 s, and c is 

chosen to be a small positive real number, say 10 "12 . Often, the 

intervals are chosen to be of equal length , but Io~ intervals are often 

useful; that is, where the h i s are defined by 

185 



log to(h  t) = lOglo(ho) + i" 
lOgto(h ) - logto(h  O) 

i=0 ,1 ,2  . . . .  ,n). 

Sometimes, square-root intervals are useful; 

are defined by 

that is, where the h's 
| 

£:  £ .  F-o Fo) (i=1,2 . . . . .  n) 

Log intervals tend to produce finer results for smaller values of the 

random variables, whereas square-root intervals tend to produce finer 

results for larger values of the random variables. 

The preliminary discretized form would be 

fx = [ 

h 
i 

x.f x (x)dx 

hi- 1 
h 

i 

fx (x)dx 

hi- I 

h 
! 

f fx (×)dx ]I=1,2 ..... n 

hi- 1 

which is then convoluted with the degenerate distribution 
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fo=[0,1} 

to generate the distribution fx+o = fx • fo' The symbol • between two 

distributions is being used to indicate the convolution (for sums) of 

the two distributions. The purpose of convoluting with [0,I] is 

twofold; namely, (I) to be able to represent the distribution in a 

number of lines which is small enough to permit further convolutions 

bein E performed in a reasonable time, and (2) to retain accurately the 

first three moments of the distribution. 

The probabilities in fw+o and fX+O are then normalized to sum to unity. 

Since the real objective of this paper is to handle the type of 

situation described in the first paragraph of this Section, we will not 

be concerned with any error introduced by this normalization. 

S e c t i o n  4 .  G e n e r a t i n g  The D i s t r i b u t i o n  fH 

Let fH = f(I+~).W-X = f(l+~)-W+O " f-x+o where ~ is the premium 

loading, the distributions f(l+O).W+O and f-x+o are discretized as 

d e s c r i b e d  i n  S e c t i o n  3, and  t h e  symbol * b e t w e e n  two d i s t r i b u t i o n s  

indicates the distribution generated by convoluting the two 

d i s t r i b u t i o n s .  

The indicated convolution is, once again, performed by the univariate 
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numerical convolution algorithm described in the Appendix of Bailey 

(1993a) or in Appendix #2 of Bailey (1993b). The parameters for that 

convolution can be chosen to be the same nax, type of mesh intervals 

and c as was used in the convolution in Section 3. Although use of 

io E intervals or square-root intervals (see Section 3) would at first 

glance appear unusable here because H = (I+O).W-X takes on negative (as 

well as nozlngegative) values, the convolution is performed in two 

pieces, namely, two partial, distributions are generated: f:H for H < 

+ 
0 and fH for H >= O, determining square-root intervals for each 

separately. The term partial distribution is being used to remind us 

that the sum of the probabilities in the distribution is far less than 

unity. 

S e c t i o n  5. G e n e r a t i n g  the  Distributions fVn,L n 

Then V = H and L = max(O,-H). The distribution of V is the 
1 1 i 

concatenation of the p a r t i a l  d i s t r i b u t i o n  f :H fo r  H<O and the  p a r t i a l  

÷ 
d i s t r i b u t i o n  fH f o r  H>=O, each  of  t he  p a r t i a l  d i s t r i b u t i o n s  h a v i n g  been 

g e n e r a t e d  by the  method d e s c r i b e d  in  S e c t i o n  4. 

For n=1 we have (VI,L I) = (H,max(O,-H)), so the bivariate distribution 

of (V I,L I) can be obtained by simple transforming the univariate 
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distribution of H into the distribution of 

(H, max(O,-H)). 

For n>l, the bivariate distribution of (V ,L ) could be obtained 

recurslvely by performing bivariate numerical generalized convolutions 

of the bivariate distribution of (Vn_1, Ln_ I ) and the univariate 

distribution of H, using the formulas V = V + H and 
n n-I 

L = max(-(Vn_1+H), Ln_ I ). 

However, this procedure may not be practical if n is large. 

adopt the following alternative procedure. 

So, we 

For n = 2 m with m any positive integer, the bivariate distribution of 

(Vn,L . )  can  be  o b t a i n e d  by r e c u r s i v e l y  p e r f o r m i n g  b i v a r i a t e  n u m e r i c a l  

g e n e r a l i z e d  convolutions of the bivariate distribution of (Vn/2,Ln/2) 

and the bivariate distribution of (Vn/2,Ln/2), using the formulas 

+ V and L max( ~ ~ ~ Vn = Vn/2 n/2 n = -(Vn/2-Ln/2) , Ln/2 ) where (Vn/2,Ln/2) 

and (Vn/2,Ln/2) are independent and identically distributed. The 

formula for L follows from the fact that the maximal aggregate loss 
n 

th 
just after the n claim is the larger of (a) the maximal aggregate 

loss L during the period of the first n/2 claims and the negative of 
n/2 

(b) the fund Vn/2 Just after the first n/2 claims, decreased by the 

maximal a g g r e g a t e  l o s s  L d u r i n g  t h e  p e r i o d  of  the  n e x t  rv'2 c l a i m s .  n/2 
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The i n d i c a t e d  b i v a r l a t e  n u m e r i c a l  g e n e r a l i z e d  c o n v o l u t i o n s  ( r e f e r r e d  t o  

h e r e a f t e r  a s  b i n u K e c o s )  c a n  be  p e r f o r m e d  by t h e  a l g o r i t h m  d e s c r i b e d  i n  

A p p e n d i x  #3 o f  B a i l e y  ( 1 9 9 3 b ) .  

Section 6. Application of the Bivariate Numerical Generalized 

C o n v o l u t i o n  (Binugeco) Algorithm 

F o r  t h e  b i n u g e c o s  i n d i c a t e d  i n  S e c t i o n  5, u s e  o f  l o g  o r  s q u a r e - r o o t  

i n t e r v a l s  i n  t h e  y - d i r e c t i o n  c a u s e s  no s p e c i a l  p r o b l e m s  b e c a u s e  L i s  
n 

never less than zero. (Zero is treated as a special degenerate mesh 

interval.) However, use of log or square-root intervals in the x- 

direction causes the same type of problem which was addressed in 

Section 4, because V takes on negative (as well as positive) values. 
n 

Recalling the formulas from Section 5 

V = V  +~ 
n n12 n / 2  

and 

L n = max(-(Vn/2-hn/2) , Ln/2 ) 
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we performed each binugeco in six pieces, namely, we generated the six 

partial distributions: 

f ( 1 )  - - 
-V n,L n = f_Vn/2 ,Ln/2 * f_Vn/2 ,Ln/2 

where V < O, V < 0 and V < O; 
n n/2 n/2 

f ( 2 )  - * 
_Vn,L n = f_Vn/2 ,Ln/a " fgn/2 ,Ln/2 

where V < O, V < 0 and V > O; 
n n/2 n/2 

f-v(an) ,La = fVn/2' Ln/2 " f -Vn/2 '  Ln/2 

where V < O, V >= 0 and V < O; 
n n/2 n/2 

f(4) - + 
Vn'Ln = f -vn/2 'Ln/2  * fVn/2' Ln/2 

where V >= O, V < 0 and V >= O; 
n n / 2  ru ' 2  

f { 5 )  + - 

V n , L n  ffi fVn/2,Ln/2 • f_Vn/2,Ln/2 

where  V >= O, V >= 0 and V < O; 
n n/2 n/2 

f(6) + + 
Vn'Ln = fVn/2 'Ln /2  • fC]n/2'Ln/2 

where V >= O, V >= 0 and V >= O; 
n n/2 n Y 2  

determinin E suare-root intervals for each partial distribution 

separately. The superscripts in ()'s on f here are simply to identify 
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the distributions in the following merges: 

f(z~ and f~2; and f(3) _Vn,Ln _Vn,Ln _Vn,Ln are  concatenated or merged together  to 

form 

f_Vn,Ln where V n < O; 

f(4) and f~S:L and f(6} Vn'Ln n n Vn,L n are concatenated or merged together to form 

f~n,L n where Vn >= O. 

The "merging" of the bivariate distributions can be done using the mesh 

rectangles described in Section 6 and in Appendix #3 of Bailey (1993b). 

This saves some computer time when we proceed to perform the next 

binugecos. 
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Part  I f .  A Con jec ture  As To A Method For DetermininE The P r o b a b l l i t y  

of Ultimate Ruin 

S e c t i o n  7. O b t a i n i n g  ~(u) 

The Steps in this Section relate to the following two inequalities. 

These inequalities are presented prematurely as an aid to understanding 

why we perform the Steps described later in this Section. 
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~(u) 

<= 1 - Pr{  L(~ °) <= u} + a 
2 0 

Period: 

1st  n claims 

+ ( Pr{ L(~ °) <= u} - a ° ) 
2 

- ( C O )  
• ( I - P r {  L(~ I) <= l ~ } + A i 

2 2 
) 2nd n claims 

+ ( Pr{ L(~ °) <= u} - a ° ) 
2 

( E  1 ) - ( C O )  
• ( PF( L ~ <= I ~ } - A ) 

2 2 1 

( 1 Pr( 2' <= i(cI,  • - ~ } , a  

2 2 2 
) 3rd n claims 

4- . . . 

<= Pr{ L(~ °) > u } + /~ 
2 0 

+ Pr{ L(~ 1) > i (c°) }+a 
2 2 I 

^ (El) 
+ Pr( L(~ 2) > I ~ } + A 

2 2 2 

÷ .., 

Breaking this latter series into two series we have: 

(Se r i e s  #I): 

Pr{ L(~ °) > u } 
2 

2 2 
i=1 

194 



and 

(Series #2): 

Ao i 

i=I 

For Series #1 we look at the first 13 terms being summed and make a 

minimal assumption for the sum of the terms beyond that. See Section 

8 below for numerical results. 

For Series #2 there can be no more than (nax.nay) lines in one 

distribution (actually, (nax+l).(nay+l) because 0 is handled as a 

degenerate interval for each of the two univariate variables}. One 

blnugeco could result in discarding no more than ((nax+l}.(nay+l)) 2 

probability products, each probability product not greater than c . 
! 

The number of convolutions being performed in one sequence of blnugecos 

is 6.n; 6 is the number of partial binugecos being performed for each 

of the desired blnugecos. Thus we have a usable upper bound for 

Series #2; namely, 

oo oo 

<= 6'n.((nax+l)'(nay+l)) 2" ~c Al i 
i=1 I=1 
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O0 

2 where c I will, because of the way the c i s will b e  defined a t  the 

I=I 

beginning of Step 7.3, be found to be small enough for the purposes of 

establishing an upper bound to ~(u). 

The &m's, although they will be well-defined In the following Steps, 

may not be easy to compute in the absence of special software to handle 

arbitrary precision arlthmetlc. Fortunately, we wlll not have to 

calculate them. 

Step 7 . 1  Determining 

Let nax=32 and nay=32, say. 

positive real number Which 

Choose c =10 -299 (or the smallest 
-1 

your computer will handle without 

underflowing), and perform the sequence of blnugecos indicated in 

~ ( C l  I ) 
Sections 5 and 6 for n=2,22,23, .... For each value of n, let v n 

2 
(c_ l ] 

be the smallest probable value of V2n in the marginal distribution 

(c_ I ) ^(c_ I) (c_ I ) 
f v and let I n be the largest probable value of Lln in 

2n 2 

( c_  1 ) 
marginal distribution fL Let n be the smallest value of n for 

2 
^ ( c _  1) ^ ( c _  t ) 

which v is greater than i ; n is determined as the binugecos n n 
2 2 

( c .  1 ) (c_  1 } 
are performed and the minimum and maximum values of Vln and L n2 ' 

( c _  1 ) 
respectively, in fv ,L are observed. These marginal distributions 

n n 
2 2 

( c -  1 ) 
are taken from the bivariate distribution fv n,L n Note that, 

2 2 
^ (C_ 1 ) 

although the probable values v n can be positive or negative, the 
2 
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n e g a t i v e  v a l u e s  w i l l  d i s a p p e a r  a s  n becomes  l a r g e r ;  and ,  i n  f a c t ,  t h e  

^(E_ 1 ) 
probable values of v2n w i l l  be greater  than the probable values of 

^ (~_I) 
12. for sufficiently large values of n. See Appendix #I - 

Assert ions in Bailey (1993b) for proof. The superscripts in 

parentheses are simply to indicate which e was used in doing the 

sequence of binugecos, Thus, from this Step we have determined n. 

(E m } 
I f  we continued to generate fV n, L , for  n = n+1, n+2 . . . . .  we would 

2 2 
(c m) 

soon f i n d  that  the marginal d i s t r i b u t i o n  fL  n becomes inva r ian t .  

2 

And, i t  would be tempting to slmply use that i n v a r i a n t  d i s t r i b u t i o n  to 

c a l c u l a t e  ~(u) = I - Pr ( l<u) .  However, we must consider the t o t a l  of 

the p r o b a b i l l t y  products which we would be d iscard ing .  So, we proceed 

to Steps 7.2 and 7,3. 

(c o) 
S ~ e p  7 . 2  G e n e r a t i n R  f v  ~,L ~ 

2 2 

L e t  n a x = 6 4  and  nay=64 ,  s a y ,  t o  p r o d u c e  f i n e r  d i s t r i b u t i o n s  d u r i n g  t h e  

p e r i o d  o f  f i r s t  2 & c l a i m s ,  w h e r e  ~ was d e t e r m i n e d  i n  S t e p  7 . 1 .  We a r e  

u s i n g  l a r g e r  v a l u e s  o f  nax  and  nay  ( t h a n  i n  t h e  p r e v i o u s  S t e p ) ,  i n  

o r d e r  t o  i n c r e a s e  t h e  a c c u r a c y  o f  t h e  r e s u l t s .  C h o o s e  c =10 -20 and  
o 

p e r f o r m  t h e  s e q u e n c e  o f  b i n u g e c o s  i n d i c a t e d  i n  S e c t i o n s  5 and  6 f o r  

^ (Co) 
n = 2 , 2 2 , 2 3  . . . . .  2 n. L e t  ~(~0) be  t h e  s m a l l e s t  p r o b a b l e  v a l u e  o f  V ~ i n  

2 2 
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(~0) 
the marginal distribution fv ^ associated with the distribution 

n 
2 

(Co) Let i (c°) (eel 
fv2~,L2n" 2~ be the largest probable value of L2 ~ i n  the 

(Col (e o ) 
marginal distribution fL ~ associated with the distribution fv ~,L &" 

2 2 2 

(C o ) 
Let 4 ° = I - _ ~ fL ~ (I). 

probable I'$ 2 

is the sum of the probability products discarded in the 6.n 
0 

binugecos performed in this Step. 

{g m) 
Step 7.3 GeneratinN fv ~,L ~ 

2 2 

Our plan is to use ¢ = I0 -2°'m during the m th period of 2 ~ claims, 
m 

where m=1,2 ..... The sequence {cm } is designed so that [ Cm will be 

m=l 

small. 

Second Period of 2 ~ Claims: 

Let nax=3Z and nay=32. Choose c =10 -40 and perform the sequence of 
1 

binugecos indicated in Sections 5 and 6 for n=2,22,23 .... 2n. At this 

( E  1 ) 
point we will have generated the distribution fv ~,L ~' and we now 

2 2 
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describe how this distribution will be used. 

Assume t h a t  t h e  c l a i m  number 2 ~ has  J u s t  o c c u r r e d .  F o c u s  on t h e  

p e r i o d  o f  t h e  n e x t  2 ~ c l a i m s .  L e t  v(~ 1) be  t h e  s m a l l e s t  p r o b a b l e  
2 

(E 1 ) (C 1 ) 
value of V2 ~ in the marginal distribution fV ~ associated with the 

2 

(c I ) 
distribution f v  ~,L ^; and, l e t  1 (C1) ~ be t h e  l a r g e s t  p r o b a b l e  v a l u e  o f  

n 2 
2 2 

Ll~Z ) el)^ in the marginal distribution fL associated with the 
2 n 

2 
( e  1 ) 

distribution fV ~,L ~" 

2 2 

( c )  ^¢c ) ~ e  o) ~¢c o) 
I f  L ^1 < I ^o and ^ < ^ , t h e n  

n n n 2n 
2 2 2 

( c )  ~(£0 ) (I) L A I < ^ and 
2 n 2 n 

(2) r u i n  c a n n o t  o c c u r  d u r i n g  t h e  2 nd p e r i o d  of  2 ~ c l a i m s .  

This implies that 

(E )  
P r l L  I 

[I 
2 

< i ( ~  0}} i s  <= t h e  p r o b a b i l i t y  o f  no t  g o i n g  r u i n  d u r i n g  t h e  
n 

2 

p e r i o d  o f  t h e  s e c o n d  2 ~ c l a i m s ,  

and 
( ~ )  ^(c ) 

PrlL z >= I ^o } is 
n n 

2 2 

>= the probability of going ruin during the 

p e r i o d  o f  t h e  second  2 ~ c l a i m s .  (Statement I) 
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We w i l l  see that 1 (cO) v (e°) ^ < A in the table of Intermediate Numerical 
2 n 2 n 

Results i n  S e c t i o r  5 .  

Let 

( c  1 ) A 1 = 1 - _~- f L  ~ ( I )  

probable l ' s  2 

(E 1 ) (re:l) 
where fL n ^ is the marginal distribution of L ,; associated with the 

2 
2 

cc 1 ) 
distribution, say fV ~ ,L ~' generated using c,. A I is the sum of the 

2 2 

p r o b a b i l i t y  p r o d u c t s  d i s c a r d e d  i n  p e r f o r m i n g  t h e  b i n u g e c o s .  

t h  2~ m Period of Claims: 

Let nax=32 and nay=32. For each m (m=2 ..... 13), choose e -10 1"2° and 
m 

perform the sequence of binugecos indicated in Sections 5 and 6 for 

n~2,22,23 .... 2 ~. At this point we will have generated the 

distributions fv ~,L ~ for each value of m=2,3 ..... 13. We now 

2 2 

describe how these distributions will be used. 

Assume that the claim number (m-1).2 ~ has just occurred. Focus on the 

th 2 ~ (̂cm) m p e r i o d  o f  c l a i m s .  F o r  e a c h  m : 2 , 3  . . . . . .  13 ,  l e t  v ~ b e  t h e  
2 

{C m) ( C m) 
smallest probable value of V ~ in the marglnal d i s t r i bu t i on  fv  

2 2 
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(c m) 
associated with the distribution fv ~,L ~; and, 

2 2 

l a r g e s t  p r o b a b l e  v a l u e  o f  L(~mIin t h e  m a r g i n a l  
2 

(c m) 
associated with the distribution fV ~,L &' 

2 2 

^ (e m) 
let 1 ~ be the 

2 

c m ) 
distribution fL 

2 

(~.) ~ccm-1)  ~ ( c . - i )  ^ c ) 
I f  L ^ < ^ a n d  ^ < v ( ^  m-1 , 

2 n 2 n 2 n 2 n 

t h e n  

( C )  ^ ) 
{ i )  L ^m < V (cm-l^ and  

2 n 2 n 

t h  
{2) ruin cannot occur during the m p e r i o d  o f  2 ~ c l a i m s .  

This implies t h a t  

(c } ^ (~  ) 
Pr{L .m < 1 ^m-1 } is <= the probability of no___!t going ruin during the 

n 
2 2 

p e r i o d  of  t h e  s econd  2 ~ c l a i m s ,  

and 

PrlL(~ m) >= i ccm-')} 
2 2 

>= the probability of going ruin during the 

period of the second 2 ~ claims. {Statements I I )  

We will s e e  t h a t  
^ ( C  ) ^ ( C  ) 
1 ^m < v .m 

2 n 2 n 

Results in Section 8. 

in the table of Intermediate Numerical 

L e t  

A 
m 

= 1 - 
( c  m) 

probable IPs 2 
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(e m) (Era) 
where fL ~ is the marginal distribution of L2 ~ associated with the 

2 
(e~) 

distribution, say fV ^ ,L ^' generated using c . For each value of m, 
n n m 

2 2 

is the sum of the probability products discarded in performing the 
m 

binugecos. 

Statement I and Statements I] above support the use of the sum of 

Series #i at the beginning of this Section (in addition to the sum of 

Series #2) as an upper bound for ~(u). Section 8 shows a numerical 

example, including @(u;226) for four illustrative values of u: and, 

an estimate for @(u)-@(u;226}. The Table labelled Intermediate 

Numerical Results in Section 8 may be helpful toward visualizing how 

and why the conjectured method of the current Section works. 
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Part III. Numbers, Contrasts and Conclusions 

Section 8. A Numerical Example 

We have chosen to use the methods described above to calculate @(u) for 

u=O, I00, I000 and I0000 for c=l.lO in Table 8 of Thorin and Wikstad 

(1973): 

[Cumulative] Distribution of Interclaim times is 

K ( t )  = 1 - 0 . 2 5 " e  " 0 . 4 . t  - 0 . 7 5 - e  - 2 . t  

[Cumulative] Distribution of Individual Claim Sizes is 

5 

P[Y]= Zav'(1-e-~V'Y) 

v=l 

w h e r e  

v a 
V 

I 0.6635948 
2 0.3114878 
3 0.02405664 
4 0.0008425574 
5 0.00001823254 

V 

3.675472 
0.7116063 
0.09447445 
0.009322980 
0.0004965620 

Thorin & Wlkstad claim that "In general the number of correct decimals 

are four but in most cases even five." Also, "The [cumulative] 

distribution functions have mean values equal to one." 

2 0 3  



In performing the initial discretization described in Section 3 square- 

-12 
root intervals were used, together with £=Io Before convoluting 

with [0, I] the distribution of waiting times had 82953 lines and the 

distribution of individual claim sizes had 82882 lines. 

In  p e r f o r m i n g  t h e  u n i v a r i a t e  n u m e r i c a l  c o n v o l u t i o n s  f o r  s u m s  i n  S e c t i o n  

4 and  t h e  b i v a r i a t e  n u m e r i c a l  g e n e r a l i z e d  c o n v o l u t i o n s  i n  S e c t i o n  5 a nd  

-299 
Section 7, square-root intervals were used. We used c=lo and 

- 2 0  - 4 0  - 2 8 0  
1o in Step 7.1 and 7.2, respectively; and c=Io , ..., 1o in 

Step 7.3. Univariate numerical convolutions were performed using 

-20 
nax=lO00 and c=lo 

Steps 7.1, 7.2 and 7.3 yielded the following: 

2 0 4  



i E ! 

0 io -2o 

1 1o -40 

2 Io -60 

3 I0 -BO 

4 to  - l ° °  

5 1o -12°  

6= 10 -14°  

7= 10-16o 

8 10 -180 

9 10 -2oo 

10 10 -220 

11 1o -240 

12  10 -260  

13 lo -280 

-299 
14 1o 

Intermediate Numerical Results 

^(C i) ^ ( ¢ i )  (C 1) ^ ( E l _  1) 
v n i n Pr{  L n > i n } 

2 2 2 2 

5,788,512 56 902 

5,163,687 200 793 

4,887,162 290 832 

4,553,684 413 256 

4,200,316 439186 

i3,941,165 625,146 

! 3 , 7 6 6 , 8 8 5  6 6 2 , 4 0 2  

3,345,253 708318 

3,118,569 831,957 

2,949,52311,018,835 

2,635,582 926,384 

2 , 5 6 7 , 6 7 7 i 1 , 1 8 9 , 0 3 8  

2,276,673 1,179,588 

2,034,681 1 460,415 

ii,548,109 

-11 
5.1 • 10 

-37 
3 . 6 " 1 0  

-52 
1 . 1 " 1 0  

-76 
2.1 • 10 

-78 
3 . 5 " 1 0  

-114 
9.7"10 

-121 
5 . 1 " 1 0  

-136 
1 . 2 " 1 0  

-147 
1 . 2 ' 1 0  

0 . 0  

-206 
3 . 6 " 1 0  

0 . 0  

-253 
1 . 4 ' 1 0  

• Pr{ L(~ i) ^ (el-2) 
>in ) 

2 2 

In view of the above intermediate numerical results, we made the modest 

assumption for this particular example that 

c (C i ) Pr{ L(~ s+i) > I 
2 2 

( E l -  1 ) 
Pr{  L(~ L) > I 

2 2 

-1 
= lO for i=14,15 .... 

and we obtain an estimated upper bound for the sum of Series #I; 

name ly, 
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-11 -253 I - I 0  5.2"10 ÷1.4"10 "( ) ,  w h i c h  i s  l e s s  t h a n  lO 
1 

1 - - -  
Io 

(s.2.*o -11 is clearly less than the sum of the first 12 entries in the 
rightmost column of the above table Intermediate Numerical Results.) 

For Series #2 we h a v e  

AO + Z 61 <= A0 + 
1=1 

6"n'((nax+l)'(nay+1))2" Z cl 
i=O 

= lO -7 + 6.26.(33.33)2.(i0-20-(I+I0-20+i0-40+... ) ) 

< 10 -6 , by summing the geometric series, which we use as an upper bound 

for Series #2. 

Thus, as we consider the 2nd, 3rd, ... periods of n claims, we find 

that the periods of n claims after the first n claims require that we 

add less than 2.10 -6 to our estimate of @(u;n] to get an estimate of 

~(u). 

Before the complications of Section 7 we have: 

2 0 6  



) {u ;226}  

nax.nay u= 0 102 103 104 runtlme" 

32.32 .9469 .5174 .2072 .0059 4 
64.64 .9374 .4858 .2105 .0072 72 
96.96 .9353 .4789 .2036 .0081 216 

Thorln# .9341 ,4803 .2041 .0081 1/60 

# T h o r l n ' s  f i g u r e s  • i n  h o u r s  
a r e  f o r  @(u). 

R e l a t i v e  E r r o r  In  @(u ;2  a 6 } -  - - 

n a x ' n a y  u= 0 102 103 10 ¢ 

3 2 " 3 2  . 0 1 3 7  .0772  .0152  . 2 7 1 6  
6 4 " 6 4  . 0 0 3 5  .0115  .0314 . 1111  
9 6 ' 9 6  . 0 0 1 3  .0029  .0024  . 0 0 0 0  

My computer running was done on a Gateway 486/25 o r  486/33; theirs was 

done on a Control Data 6600. 
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S e c t i o n  9. C o n t r a s t i n g  M e t h o d s  

(I) The method used in Thorin and Wikstad (1973) 

(a)  r e s t r i c t s  a t t e n t i o n  mos t ly  to the f o l l o w i n g  

c l a s s e s  of d i s t r i b u t i o n  f u n c t i o n s :  

i n t e r c l a i m  t ime d i s t r i b u t i o n s  of the  

form 

m 

1- ~. b j . e ~ j ' t ;  

1=1 

c la im amount d i s t r i b u t i o n s  of the form 

m 

1- ~. aj.eaJ'Y; 
J=l 

(b} the solution is obtained using funtions of a 

complex variable; 

(c)  a p p a r e n t l y  r e q u i r e s  some t r i a l - a n d - e r r o r ,  

s i n c e  " the  a l g o r i t h m  i s  o p e r a t i n g  wel l  o n l y  

i f  the s t a r t i n g  va lue  i s  f a i r l y  good" and "a 

s t a r t i n g  v a l u e  has to be c a r e f u l l y  chosen" .  

(d} calculates probabilities of ultimate ruin. 

My method for calculating the probability of ruin by a finite number of 

claims does not restrict the form of the (iid) interclaim time 
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distributions or the (lid) claim amount distributions, uses only real 

variables, and requires no trial-and-error. 

T h e i r  c o m p u t e r  r u n s  took  o n l y  one  m i n u t e  p e r  t a b l e  on  a CDC 6600 ,  

whereas my method requires several hours on a Gateway 486/25 or 486/33. 

1 
(A Hewlitt Packard 720 might take only ~ as long as the hours shown in 

the above table, assuming enough RAM memory to avoid paging.) 

(2)  D u f r e s n e  a n d  G e r b e r  ( 1 9 8 9 )  s o l u t i o n s  r e q u i r e  t h a t  t h e  p r o c e s s  be  

compound P o i s s o n .  I f  t h e  c l a i m  a m o u n t s  a r e  r e s t r i c t e d  t o  b e  p o s i t i v e ,  

t h e y  ( a n d  P a n j e r  ( 1 9 8 6 ) )  u s e  t h e  compound g e o m e t r i c  d i s t r i b u t i o n ,  s i n c e  

then 

1 
4(0) is known to be ~ and 

the distribution of loss at time of first claim 

is known to have probability density function 

f L ( y  ) _ 1 - P ( y )  
g 

I f  t h e  c l a i m  a m o u n t s  a r e  a l l o w e d  t o  be  p o s i t i v e  o r  negative b u t  t h e  

claim amount distribution is of the form 

n 

~ A t ~ l e - B l ' Y  w i t h  y>O 

I = l  

n 

"(y÷T)  
or ~ AiBie-~i with y>-T 

I=I 

J where the ~t s are positive parameters and 

A +A + . . . + A  =1 
1 2  n 
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then they either solve an inteEral equation or use a Monte Carlo method 

to obtain the probability of ultimate ruin. 

If the process is Sparre-Andersen but not compound Poisson, then my 

method applies; whereas their non-Monte-Carlo methods do not. 

Although they give no computer timings, I assume that their non-Monte- 

Carlo methods are more efficient than mine; that is, that for a given 

amount of computing I assume they can obtain more accurate results than 

] can. 

(3) Shiu (1989) used operational calculus to develop formulas for 

calculating the probability of ultimate ruin where the process is 

Compound Poisson. Operational calculus lies at the extreme opposite 

end of the spectrum from the rather pedestrian approach used in the 

current paper. Seah (1990) implements one of Shiu's formulas by 

incorporatin E an algorithm to reduce round-off error due to 

convolutions; and, he shows that one of Shiu's formulas is, and one is 

not, practical for computing. 
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Sect ion  10, Conclusion 

Where  t h e  S p a r r e - A n d e r s e n  p r o c e s s  i s  r e s t r i c t e d  t o  Compound p o l s s o n ,  

m e t h o d s  e x i s t  ( s e e  S e c t i o n  9) to  c a l c u l a t e  o r  e s t i m a t e  t h e  p r o b a b i l i t y  

o f  u l t i m a t e  r u i n  a n d  do so  more e f f i c i e n t l y  ( i . e .  more a c c u r a t e l y  f o r  a 

g i v e n  amount  o f  c o m p u t i n g )  t h a n  t h e  m e t h o d s  o f  t h e  c u r r e n t  p a p e r .  On 

t h e  o t h e r  h a n d ,  w h e r e  t h e  S p a r r e - A n d e r s e n  p r o c e s s  i s  r e s t r i c t e d  t o  b e  

o t h e r  t h a n  Compound p o l s s o n  and  o t h e r  t h a n  d i s t r i b u t i o n s  h a n d l e d  by  

T h o r l n  and  W l k s t a d  ( 1 9 7 3 ) ,  t h e  me thod  o f  t h e  c u r r e n t  p a p e r  f o r  

c a l c u l a t l n g  t h e  p r o b a b i l l t y  o f  r u i n  by  a f l n l t e  number  o f  c l a i m s  s t l l l  

a p p l i e s .  The a m o u n t  o f  c o m p u t e r  t i m e  r e q u i r e d  by  t h e  m e t h o d  o f  t h e  

c u r r e n t  p a p e r  d e p e n d s  on t h e  d e g r e e  o f  a c c u r a c y  s o u g h t .  

T h e r e  i s  no S p a r r e - A n d e r e n  p r o c e s s  f o r  w h i c h  t h e  p r o b a b i l i t y  r u i n  b y  a 

f i n i t e  number  o f  c l a i m s  c a n  n o t  b e  o b t a i n e d  by  t h e  me thod  o f  t h e  

c u r r e n t  p a p e r ;  a n d  t h e  c u r r e n t  p a p e r  i n c l u d e s  a c o n j e c t u r e  a s  t o  a 

m e t h o d  f o r  o b t a i n i n g  t h e  p r o b a b i l i t y  o f  u l t i m a t e  r u i n  f o r  s u c h  

processes. 
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