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Abstract

The typical firm is subject to a wide variety of risks. Understanding and
quantifying the interrelationships between individual risk elements is a significantly
important but complex challenge. If we view all the risks in a firm as an integrated
system, we can apply a computer-assisted learning process called Interpretive
Structural Modeling (ISM) to construct a structural graph and illustrate those risk
interrelationships. In this paper, we use ISM concepts and techniques to better
understand a company’s overall risk profile. Delphi techniques can be used to
“parameterize” this process according to group consensus regarding risk elements and
interrelationships. An Analytical Hierarchy Process (AHP) can then be used to quantify
relationships and weigh the significance of different risks. Such a modeling approach
can be of great value to a firm’s enterprise risk management (ERM) process.



1. Introduction

The typical firm is subject to a wide variety of risks. While there are a number of
ways to classify and categorize these risks, one approach is to place them into one of the
following four groups: hazard, financial, operational and strategic risks. Each of these
four groups would, of course, have numerous sub-categories and factors.

Often, these various risks can reasonably be considered independent. For
instance, hurricanes and earthquakes would seem, based on what we know about their
respective sciences, to be unrelated natural events. But there appears to be increasing
recognition that many risks are in fact interrelated. The movement toward an
enterprise risk management framework, for example, acknowledges that the risks and
operations of an organization largely interact, and that they should be managed
together, in recognition of that fact, and within the context of the overall corporate
mission and climate. Thus, understanding and quantifying the complex and extensive
interrelationships between individual risk elements is a significantly important
challenge.

In this paper, we demonstrate a modeling approach which can help us to
elucidate and visualize risk interrelationships. Specifically, we use Interpretive
Structural Modeling (ISM) to clarify these relationships. ISM is a method which can be
applied to a system —such as a network or a society —to better understand both direct
and indirect relationships among the system’s components. We also suggest that the
Analytical Hierarchy Process (AHP) can be used to quantify relationships, weigh the
significance of different risks and thus enhance understanding of an organization’s
overall risk profile.

The remainder of this paper is organized as follows. In Sections 2 and 3, ISM and
the AHP, respectively, are summarized. Sections 4 and 5 provide simple examples of
the application and benefits of these procedures, in a risk-based context. Section 6
concludes.

2. Interpretive Structural Modeling

ISM was first proposed by J. Warfield in 1973 to analyze the complex
socioeconomic systems. ISM is a computer-assisted learning process that enables
individuals or groups to develop a map of the complex relationships between the many
elements involved in a complex situation. Its basic idea is to use experts” practical
experience and knowledge to decompose a complicated system into several sub-



systems (elements) and construct a multilevel structural model. ISM is often used to
provide fundamental understanding of complex situations, as well as to put together a
course of action for solving a problem. (For additional detail on the generic ISM process,
see, for example, Anantatmula and Kanungo (2005) and Warfield (1976). Generic ISM
terminology referred to below can be found in these two, and many other, sources.)

The ISM procedure can be described briefly as encompassing the following steps.
The comments below have been specifically tailored to a hypothetical application of
ISM to an ERM modeling project.

(1)  Organize an ISM implementation group: To begin, a group of people with
relevant knowledge, skills and backgrounds is assembled. This group
should consist of experts from different areas throughout the firm; this
wide-ranging skill-set is critical, as ERM should ideally be embedded into
the company’s operations throughout the firm. A coordinator is
established within the group. The coordinator’s role is to promote
efficient task execution and to encourage a holistic approach to the project.
The coordinator should not only be knowledgeable about the firm’s
different departments and operations, but also have some power to
control the process and make the final decisions.

(2)  Identify and select the relevant risks: During this stage, group members
work together to document all the risks® to which the firm is subject.* This
can be done, for example, via group brainstorming. However, in firms
with an effective and embedded ERM process, this list of risks may
already exist as a product and tool of that ongoing ERM process (and was
probably, at least in part, originally derived by group brainstorming).’

(3)  Determine the Adjacent Matrix:* Through the use of the expert group
(and possibly via a Delphi approach involving those and/or other experts),
the directed relationships among the risk factors are hypothesized. This
matrix provides an initial impression of how, in what order and through
which other factors the various risk factors might ultimately be the source
of a missed objective. Here, the adjective “directed” refers to the need to

3 “|dentification of risks” is often shown as the initial step of any risk management, ERM or dynamic financial analysis process.
But risk identification must be preceded by determination or acknowledgment of the firm’s goals and objectives. Only by
knowing the objectives of an organization can one determine the possible sources which might prevent meeting those objectives.

4 More generically in ISM parlance, the “risks of the firm” are a specific case of the “elements of the system.”

5 At this point, ISM theory refers to determining a “contextual relationship” among the elements. In an ERM application, that
overall context is clearly the firm-wide interrelationships among risks—risks which might potentially prevent the firm from
fulfilling its objectives.

® Also referred to as the “Structural Self Interaction Matrix” in Anantatmula and Kanungo (2005).
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(4)

()

specify the direction of the relationship (if any) between any two risk
factors—e.g., from A to B, from B to A, in both directions between A and B,
or A and B unrelated.

Determine the Reachability Matrix: Based on the adjacent matrix, a
binary (elements are 0 or 1) matrix that reflects the directed relationships
between the risk factors is created. Basically, the reachability matrix
answers the question: yes or no—can we “reach” factor B by starting at
factor A, where by “reach” we mean is there a direct or indirect directed
relationship from A to B? (In practice, it might sometimes be possible and
more convenient to construct the reachability matrix directly simply by
using the experts” knowledge and Delphi techniques.)

Decompose the risks into different levels: Here, the reachability matrix is
decomposed” to create structural models. This is an algorithm-based
process which provides for the grouping of risks into different levels,
depending upon their interrelationships. This provides a multilevel
interpretive structural model in which the relationships among risks are
clarified.

3. Analytical Hierarchy Process

In the 1970s, Dr. Thomas Saaty developed the analytical hierarchy process (AHP)

as an effort to reflect the human thought process.! The assumption underlying AHP is
that people, by nature, tend to mentally “cluster” things together according to their
common characteristics when addressing a complex decision. AHP formalizes the
decision-making algorithm, and allows for consideration of both qualitative and
quantitative decision elements. Essentially, AHP involves interpreting the decision
process as a series of one-on-one comparisons, and then synthesizing the results, in the
process establishing a clear basis upon which the final decision was made.

The steps in the analytical hierarchy process are as follows:

(D)

Establish a structural hierarchy: This can be done in several ways, for
example by brainstorming, or, relevant for this paper, by using the
previously described ISM.

" Referred to as “Level Partitioning” in Anantatmula and Kanungo (2005).

8 See Saaty (1980).

® See Atthirawong and MacCarthy (2002).



(2)  Establish comparative judgments: After the structural hierarchy is
established, priorities among the risk factors are determined. As
Atthirawong and MacCarthy (2002) say, “A set of comparison matrices of
all elements in a level of the hierarchy with respect to an element of the
immediately higher level are constructed so as to prioritise and convert
individual comparative judgments into ratio scale measurements. The
preferences are quantified by using a” pre-specified scale (in their paper,
Atthirawong and MacCarthy use a nine-point scale). This is another point
in the overall ISM/AHP process that can be addressed via a Delphi survey
of experts. The experts can be asked their opinions regarding the relative
importance and strength of interrelationships among risk factors.!

(3)  Synthesize priorities and evaluate consistency: Based on the prior step, a
matrix is produced for each hierarchical level. Then, for each matrix, the
eigenvector and maximum eigenvalue are determined (using matrix
software, if the system is large and complex enough). The eigenvector
represents the relative weights, or importance, of the various risk factors.
The maximum eigenvalue can be used to provide an evaluation of the
overall consistency of the pair-wise comparison across the entire system.

In the following two sections, simple examples of ISM and AHP risk factor
models are provided.

4. Example I —Three Independent Risks

As a first example, suppose a simple situation wherein the “riskiness” (or the
cost or pure premium) of a personal auto insurance policyholder is a function of the
contribution of three risk factors:

Ri=age
Rz = gender
Rs = location

Here, we will assume that the first four steps of the ISM process described in
Section 2 have been completed, and, because a group of fictitious “experts” feels that

Note that there is a difference between the objectives of the Delphi studies in the ISM and AHP procedures. In the former,
experts are being asked whether there is a directed relationship between risk factors; in the latter, after structuring them
hierarchically, the experts are being asked to rank the strength of the interrelationships according to a pre-determined scale.
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these three risk factors are all mutually independent, the reachability matrix R is rather
trivial:

o O+ O
o O O
O O O

Here, the lower-right 3x3 matrix (rows/columns 2 through 4) is an identity matrix
representing the three risk factors Ri, Rz and Rs. It is an identity sub-matrix because we
have assumed independence among the three factors, and there is thus no directed
relationship between any of them (so the off-diagonal values are all zero). The first row
and column represent the “ultimate parameter” of the system —in this example, the
riskiness or cost of the auto insurance policyholder. The first column is all ones because
the directed relationship is from the risk factor to the overall system riskiness; the first
row is all zeroes because there is assumed to be no relationship in the opposite direction
(from the overall riskiness measure to the individual risk factors).!

Based on this simple model structure, the hierarchy of the elements of this
system is as follows:

Overall Risk

I |
[ Age ] Gender [ Location ]

Because of the assumption of risk factor independence and direct relationship
between each risk factor and the overall level of risk, this structural model produces
only one level of elements below the ultimate value.

Now we proceed to implement the AHP algorithm to this simple situation.
Starting with the structural model above, we now use our fictitious expert resources to
specify the pair-wise comparison matrix for the single hierarchical level of our three risk
factors. Suppose that this matrix C, based on a Delphi survey, is as follows:

1 Mathematically, the (i,j)™ element of the matrix is 1 if there is a directed relationship (either direct or indirect) from element i
to element j, and O if there is no directed relationship from i to j.
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1.00 2.00 4.00
C=/050 1.00 2.00
0.25 0.50 1.00

Each element in this comparison matrix reflects the experts’ view as to the
relative importance of each pair of risk factors (with respect to their impact on the
overall risk value). For example, the value of 2 in the (1,2) spot indicates the opinion
that factor Ri is twice as important as R2. The opposite side of this pair-wise comparison
coin is the 0.50 value in the (2,1) spot, indicating the opinion (consistent with that in the
prior sentence) that R is one-half as important as Ru.

We now proceed to find the eigenvector and the maximum eigenvalue of this
system. Recall that eigenvalues and eigenvectors are related according to the following
matrix equation:

(C-AW=0 or Cv=(UW

where C is an nxn matrix, V is an nx1 column vector, and [1]I is an nxn matrix with
eigenvalues +1,..., +n along the diagonal and zeroes off the diagonal. Applying this
structure to the comparison matrix C above, we get that the eigenvector

0.571
v =|0.286
0.143

which reflects the relative weights of the three risk factors.’? Solving the system also
produces the eigenvalues:

h=4=4=3,

so that +max = 3. As described in Atthirawong and MacCarthy (2002), this value can
now be used to determine a consistency index:

cl = Zno =0
n-1

12 In this very simple framework, calculating the elements of the eigenvector is easy: take the geometric average of the values in
each row of C—e.g., for row 1, (1 times 2 times 4) to the one-third power—and divide each by the sum of those geometric
averages across all three rows.



In our example, CI =0. In theory, for the relative weights (the eigenvector) to be
valid, the CI value should be below a certain critical value which depends upon 7; in
our example, zero is clearly less than any positive critical value, and so this model
would be judged acceptable.

5. Example II—More Complex Risk Interrelationships

Of course, this ISM/AHP approach increases in value the larger and more
complex the risk system. As a second example, we maintain the auto insurance
policyholder framework, but we increase the complexity of the first example slightly
and add several risk factors, introducing some indirect factor relationships. Suppose
our list of risk factors is doubled in number:

Ri=age

Rz = gender

Rs = location

R4 = marital status

Rs = distance driven

Rs = socioeconomic class

Furthermore, we assume that a Delphi survey indicates the following reachability
matrix R:

1000000
1100111
1010010

R=[1 0011 1 1|,
1000110
1000010

100000 1

where, analogous to Example I, the first row and column refers to the overall risk level,
and rows/columns 2 through 7 reflect, in order, the six hypothesized risk factors. For
example, the value of one in the (2,5) spot of the reachability matrix above suggests an
opinion that age does affect marital status (but not vice versa, as the value in the (5,2)
spot is zero). (We emphasize that this matrix, and all the values associated with both
the examples in this paper, are for illustrative purposes only; we are not suggesting that
these are “correct” or conform to reality.)



Although not completely necessary, it is sometimes helpful to rearrange the rows
and columns of the reachability matrix to better see the inherent structure. This can be
done by attempting to identity sub-matrices along the diagonal. For example, the above
reachability matrix can be rearranged to the following;:

Pyl
o)
0
0
0
Pe)
Pe)

\.
o
o
K
w
=

MW oo oo 0o0] R
1 1o oo ool R
11011 00 00| Ry
R:
1 0110 oo R
1 01 (01 00| R,
1 11 10 1o R
1 11 10 o1 R

where R is the overall risk level. Here, one can see that there are three pairs of risk
factors that “go together,” by virtue of the number of direct relationships identified in
each row and by the indicated sub-matrices. Thus, by applying the ISM algorithm, it
can be shown that, based on the above reachability matrix, the structural hierarchy of
this risk model has the following form:

Overall
Risk
I
| |
[ Distance Driven (Rs) ] [ Socioeconomic Class (Re) }

[Marital Status (R4)1 [ Gender (R,) }

[ Age (Ry) } [ Location (Rs) }

This depicts visually both the direct and the indirect relationships between the
risk factors and the overall risk of the system. Considering these relationships can help
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an ERM professional understand the impact on the overall system of different risk
management techniques applied to one or more individual risk factors.

At this point, the relative importance of each pair of risk factors inhabiting each
of the three levels below “Overall Risk” can be determined via the AHP approach. Each
of the three levels would be analyzed separately. For example, if for the second level, a
Delphi survey of marital status and gender yielded a comparison matrix of

3]
3 1

the resulting eigenvector would be
~|0.25
V= ,
0.75
indicating (not surprisingly, given the very simple nature, the small size of the system

and the hypothesized values in the C matrix) relative weights of %2 and %4 for marital
status and gender, respectively. This could be repeated for the other two levels.

As with Example I, the underlying purpose of Example II is pedagogical; the
calculations are slightly more challenging (although the principles are the same) with a
much larger and more complex system. More importantly, the potential value of this
ISM/AHP approach increases with the size and complexity of the hypothesized system.
Greater clarity and quantitative understanding of the various risk factor
interrelationships can be a significant aid to ERM.

6. Conclusion and Future Research

In this paper, we have described and demonstrated the application of processes,
interpretive structural modeling and the analytical hierarchy process, to a firm’s risk
factors. It is believed that the additional analytical and visual insight into risk factor
interrelationships provided by these algorithms can be of substantial benefit to the
enterprise risk management process. It is hoped that this paper will stimulate
additional interest in this area.

Future research will involve ISM and AHP application to a much larger dataset
of causal factors.
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