ACTUARIAL RESEARCH CLEARING HOUSE 1992 VOL. 1

# sEmiparanetric estimation of marranty costs 

by<br>Edward W. Frees<br>University of Wisconsin - Madison<br>School of Business and Department of Statistics<br>1155 Observatory Drive<br>Madison, Wisconsin 53706

June 1991

Keywords and Phrases: Residuals, U-statistics, renewal function, nonparametric estimation


#### Abstract

A large class of financial models of costs associated with warranties involve functions that arise in renewal theory. The simplest interesting example is the renewal function which, for the purposes of this article, may be interpreted as the expected number of failures by a specific warranty duration. To estimate the renewal function, cross-sectional regression data is assumed to be available. The data is assumed to be semiparametric in that the observation may be expressed as a known function of a vector of covariates, a vector of unknown parameters and an unknown error term while no distributional assumptions are made on the error terms. An estimator of the renewal function is constructed and conditions are provided so that it is asymptotically normal, after suitable standardization. This estimator is a special case of a class of statistics introduced here called residual-based infinite order $U$-statistics. U-statistics are complex averages over functions of observations. In this article, the observations are allowed to be residuals from a complex regression model. By appealing to this large class of statistics, several other parameters of interest in warranty analysis and related fields may be estimated. Convolutions of distribution functions and a discounted renewal function are discussed in this article. Using crosssectional regression data to estimate characteristics of a stochastic process, such as the renewal function, requires strong assumptions. In fact, an interesting aspect of this article is that this estimation can be accomplished using reasonable models for the contracts and data collection.


# Semiparametric Estimation of Warranty Costs 

## 1. Introduction

An important aspect of marketing a product is the quality of the product, both real and perceived. Because of marketing pressures, warranties are routincly provided by manufacturers to a consumer on purchase of a product. A warranty is an agreement to repair or repiace a purchased product upon failure. Thus, the financial obligation of the manufacturer is realized only upon failure of the product which is a contingent, or random, event. General accounting procedures dictate that a liability, or reserve, be established to meet this obligation. In the United States, this is part of the Financial Accounting Standards Board's Statement of Financial Accounting Standards No. 5; Accounting for Contingencies. Estimating the expected liability of a warranty is the motivation which drives the development this paper. Of course, this is only one aspect of warranty analysis which, roughly speaking, is the subject of financial implications of the reliability of products. If one takes actuarial science to be the quantitative study of financial implications of contingent events, then warranty analysis is a subset of actuarial science. Warranty analysis would not fall under a more traditional definition of actuarial science, the quantitative study of financial security systems. See Taylor (1986) for a description of a warranty system from an insurance company perspective.

There are number of important financial summary measures in warranty analysis. The simplest interesting example is directly related to the renewal function, as follows. Consider a sequence of i.i.d. random variables, $Y_{1}, Y_{2}, \ldots$, that represents successive lifetimes of a product. Under a free replacement policy of duration ' T ', the product is immediately replaced upon failure up to and including ' T ' units of time after initial purchase of the product. In this context, the renewal function evaluated at time ' $T$ ' is the expected number of replacements and is defined by

$$
\begin{equation*}
H(T)=E \sum_{k=1}^{\infty} I\left(Y_{1}+\ldots+Y_{k} \leq T\right) \tag{1.1}
\end{equation*}
$$

where I() is the indicator of a set and E denotes expectation. Assuming the cost per replacement is either fixed or can be modeled by an independent stationary process, the expected warranty cost is the expected number of replacements, H(T), times the expected cost per replacement. Several additional summary measures have been discussed in Blischice and Scheuer (1975, 1981), Mamer (1982, 1987), Nguyen and Murthy (1984) and Froes (1988) and are considered in section 3. These include models of the variability of costs and models which incorporate the time value of money and other economic aspects of the warranty agreement. The important point is that the sequence $\left\{Y_{1}, Y_{2}, \ldots\right\}$ and summary measures as in (1.1) comprise a model used to determine financial implications of the warranty contract.

To estimate summary measures auch as the reoowal function in (1.1), clearly a desirable form of data is to have identical and independent copies of the stochastic process $\left\{Y_{1}, Y_{2}, \ldots\right\}$. With this data, even if dependencies exist among the obeervations of each process, one could still consistently estimate $H(T)$. When one does not have this desirable form of the data, reliable eatimates can still be achieved by making stronger assumptions on the distribution of the process. In perticular, in Frees (1986a, b), I showed how to estimate the renewal function asouming that obeervations $Y_{1}, \ldots, Y_{a}$ are i.i.d. Building on this work, Crowell and Sen (1989) have announced the exteasion of this work where the (i.i.d.) data are gathered sequeatially, Schneider et al (1990) have discussed efficient compatational algorithms and Schneider et al (1991) have discussed extension to the censored data casc. In Frees (1989), the class of parameters extimated was substantially generalized to handle, as special cases, other finncial summary measures briefly alluded to above. For example, suppose that $\left\{h_{k}\right\}$ is a sequence of known functions where $h_{k}$ maps $k$-dimensional Euclidenn space into the real line. Assume that sufficient conditions exist so that the parameter

$$
\begin{equation*}
T=E \sum_{E=1}^{\infty} \quad b_{k}\left(Y_{1}, \ldots, Y_{k}\right) \tag{1.2}
\end{equation*}
$$

is well-defined, e.g., $b_{k}\left(Y_{1}, \ldots, Y_{k}\right)=I\left(Y_{1}+\ldots+Y_{k} \leq T\right)$. This is an extension of the concept of unbiased estimators called U-statistics to sequences that are possibly unbounded and are called infinite order Ustatistics. For example, in the context of warranty analysis, defining $h_{k}\left(Y_{1}, \ldots, Y_{k}\right)=$ $\exp \left(-\delta\left(Y_{1}+\ldots+Y_{k}\right)\right)\left[\left(Y_{1}+\ldots+Y_{k} \leq T\right)\right.$ means that $\tau$ can be interpreted as the expected number of renewals discounted at the rate of intereat 8. See, for example, Mamor (1987) for a discussion of this parameter.

There are a number of ways of collecting data to approximate the above summary measures. In this paper, I relax the stringent assumption that the observations are i.i.d. and assume, instead, that the data are cross-sectional, or regression, data. One traditional formulation is to assume that each observation ( $\left.Y_{i}, X_{i}\right)$ follows the nonlinear regression model

$$
\begin{equation*}
Y_{i}=g_{i}\left(\theta, X_{i}\right)+e_{i}, \quad i=1, \ldots, n \tag{1.3}
\end{equation*}
$$

Here, $\mathbf{Y}_{\mathrm{i}}$ is the response or dependeat random element. $\mathbf{X}_{\mathrm{i}}$ is the covariate or independeat element, $\theta$ is a $\mathbf{p}$ dimensional vector of unknown parameters, $\left\{e_{i}\right\}$ is an i.i.d. sequence of unobserved random elements, and $\left\{s_{i}\right\}$ is a sequence of known functions. In this paper, I also consider a more general formulation due to Cox and Snell (1968). Here. $\left\{G_{i}\right\}$ and $\left\{R_{i}\right\}$ are sequences of known functions satisfying the relationships,

$$
\begin{equation*}
Y_{i}=G_{i}\left(\theta, e_{i}\right), \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{i}=R_{i}\left(\theta, Y_{i}\right) \tag{1.5}
\end{equation*}
$$

The model in (1.4) and (1.5) is semiparmmetric in the sense that while the dependent element $Y_{i}$ is parameterized by $\theta$, no parametric assumptions are made concerning the distribution of $\left\{\mathrm{e}_{1}\right\}$. Among other smoothness conditions on (1.4) and (1.5), it is assumed that sufficient conditions are available so that root-n consistent estimates of $\theta$ are available; see assumption Al below. The model outlined in (1.4) and (1.5) includes the noalinear regression model in (1.3) and otber important special cases. To handle some examples in multivariate regression below, assume that $\left\{Y_{i}\right\}$ and $\left\{e_{i}\right\}$ are $q$-dimeasional random vectors. This formulation, using an estimate $\theta$ of $\theta$, allows us to define the residuals as $r_{i}=R_{i}\left(\theta, Y_{i}\right)=R_{i}\left(\theta, G\left(\theta, e_{i}\right)\right)$. Now, the sequence $\left\langle r_{1}, \ldots, r_{n}\right\rangle$ is only approximately i.i.d. However, the fact that $r_{i}=e_{i}$ suggests that one can use the residuals in calculating 2 statistic $T_{n}=T_{n}\left(r_{1}, \ldots, r_{n}\right)$ and that the distribution of $T_{n}\left(r_{1}, \ldots, r_{n}\right)$ will be nearly the same as that of $T_{n}\left(e_{1}, \ldots, e_{n}\right)$. Quantifying this proximity bas been the subject of considerable attention in the literature. In Section 2, I extend this literature by quantifying the proximity in the case that the statistic is an infinite order $U$-statistic. The results of this section may be of independent interest and thus are selfcontained.

To tie together the model of financial implications and the model for the data collection formally, begin with $\left\{e_{i j}, i=1,2, \ldots j=1,2, \ldots\right\}$, a rectangular array of mean zero i.i.d. random variables with finite variance. Assume that we observe $\left\{\left(Y_{i 1}, X_{i}\right)\right\}$ and that the observations follow model (1.4) and (1.5). The interest is in estimating a summary measure of the stochastic process $\left\{Y_{0,1}, Y_{0,2}, Y_{0,3}, \ldots\right\}$. As an example, consider the renewal function in (1.1) and regression data model in (1.3). The goal is to estimate

$$
\begin{align*}
H_{0}(\theta, T) & =E \sum_{k=1}^{\infty} I\left(Y_{0,1}+\ldots+Y_{0, k} \leq T\right) \\
& =E \sum_{k=1}^{\infty} I\left(e_{1}+\ldots+e_{k}+k g_{0}\left(\theta, X_{0}\right) \leq T\right) . \tag{1.6}
\end{align*}
$$

In Section 3, the results of Section 2 are used to show that the residuals of the regression modeling, together with $\hat{\theta}$, can be used to estimate $H_{0}(\theta, T)$. The intuition is that the covariate $X_{0}$ is specified and hence the regression function is known up to the vector of parameters $\theta$. The distribution of the errors is assumed to be common to all observations sumpled and heace can, in principle, be reliably estimated. Some readers may wish to focus on the illustrations of renewal function estimators that are presented in Section 4.

Using crosa-sectional regression date to estimate characteristics of a stochastic process requires strong assumptions. In fict, en interesting aspect of this paper is that this estimation can be accomplisbed using reasonable models for the contracts and data collection.

## 2. Residual-Based Infinite Order U-Statistics

The main contribution of this section is to extend the residual-based estimation work of Sukhatme (1958) and Randles $(1982,1984)$ to the case of infinite order U-statistics (Frees, 1989). It is convenient to present the results for a regression structure that is more general than considered by Sukhatme and Randles.

Let $\left\{h_{k}\right\}$ be a sequence of kernels where $h_{k}$ is of order $k$ and is indexed by $\lambda \in R^{p}$, i.e., $h: R^{q k} \times R^{p}$ $\rightarrow R$. Let $\left\{c_{\text {ak }}\right\}$ be a triangular array of constants such that

$$
h_{n}^{*}\left(e_{1}, \ldots, c_{n} ; \lambda\right)=\sum_{k=1}^{n} c_{\text {nk }} h_{k}\left(e_{1}, \ldots, e_{k} ; \lambda\right) .
$$

Thus, the kernel $h_{j}^{*}$ is not symmetric in its arguments. The parameter of interest is

$$
T=\lim _{m_{0 \infty} \infty} T_{\mathrm{n}}=\lim _{m_{\infty} \infty} E h_{n}^{\circ}\left(e_{1}, \ldots, e_{\mathrm{a}} ; \theta\right)
$$

where the limits are assumed to exist. The estimator of $\tau$ investigated in this soction is

$$
\begin{equation*}
U_{a}^{*}(\bar{\theta})=(n!)^{-1} \Sigma_{\alpha} h_{\Delta}^{*}\left(r_{\alpha_{1}}, \ldots, r_{\alpha_{a}} ; \dot{\theta}\right) \tag{2.1}
\end{equation*}
$$

Here, $\Sigma_{\alpha}$ means the sum over $n$ ! permutations of $\{1,2, \ldots, n\}$ of the form $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. For example, it turns out that defining $h_{k}\left(e_{1}, \ldots, e_{k} ; \lambda\right)=I\left(e_{1}+\ldots+e_{k}+k g_{0}\left(\lambda, X_{i}\right) \leq T\right)$ and $c_{\text {nk }}=1$ implies that $U_{0}^{*}(\theta)$ is a useful estimate of $H_{0}(\theta, T)$, defined in (1.6). This and further examples are explored in Section 3. The statistic $U_{0}^{*}(\theta)$ would be a U-statistic, mod thus have several known properties (cf., Serfling (1980) and Sen (1981)), except for three detiils. First, the estimated parameter $\dot{\theta}$ is included in the evaluation of the statistic. Second, the statistic is evaluated using residuals in lieu of i.i.d. elements. Third, the statistic may be of infinite order. That is, if there exists a finite $m$ such that $c_{m k}=0$ for $a l l n>m$, thea $h_{n}^{*}$ is said to be a finite order kernel and infinite order, otherwise. The traditional $U$-statistic set-up is to require $c_{n k}=1$ for all $n \leq m$. The finite order case where $c_{\text {at }}$ is not constant in $n$ can be hendled by straightforward projection and triangular array techniques (cf., Shapiro and Hubert, 1979). The purpose of this section is to explore the
proximity of $U_{n}^{0}(\dot{\theta})$ to the $U$-statistic evaluated at $\theta$ and using the i.i.d. errors $\left\{e_{i}\right\}$.

As noted by Randles (1984), the average of a function of the residuals in (2.1) can be related to the weighted average of a function of i.i.d. errors, as follows. First, define the perturbed errors $e_{i}(\lambda)=$ $R_{i}\left(\lambda, G_{i}\left(\theta, e_{i}\right)\right)$ and aote that $e_{i}(\theta)=e_{i}$. Now define the weighted kernel

$$
\begin{equation*}
h_{k, \alpha}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right)=h_{k}\left(e_{\alpha_{i}}\left(\lambda_{1}\right), \ldots, e_{\alpha_{k}}\left(\lambda_{1}\right) ; \lambda_{2}\right) \tag{2.2}
\end{equation*}
$$

Since $r_{i}=e_{i}(\hat{\theta})$, we have that the fixed kernel $h_{k}$ evaluated using residuals equals the weighted kernel $h_{k, a}$ evaluated using i.i.d. errors, i.e.,

$$
h_{k}\left(r_{\alpha_{1}}, \ldots, r_{\alpha_{k}} ; \lambda\right)=h_{h_{k}, \alpha^{\prime}}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \dot{\theta}, \lambda\right)
$$

for each $\lambda \in R^{P}$. This observation is trise using the broad Cox and Snell formulation in (1.4) and (1.5) as well as the simpler model in (1.3) investigated by Randles (1984).

With the notation

$$
U_{n}\left(\lambda_{1}, \lambda_{2}\right)=\Sigma_{k=1}^{n} c_{n k}(n!)^{-1} \Sigma_{\alpha} b_{k, \alpha}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right)
$$

and

$$
\tau_{0}\left(\lambda_{1}, \lambda_{2}\right)=E U_{n}\left(\lambda_{1}, \lambda_{2}\right)
$$

we have $U_{n}^{*}(\dot{\theta})=U_{n}(\dot{\theta}, \dot{\theta})$ and $T_{n}=\tau_{n}(\theta, \theta)$.

Theorem 2.1 : Under the regularity conditions in assumptions A1-A3 below, we have

$$
\mathbf{n}^{1 / 2}\left(\mathrm{U}_{\mathrm{a}}(\dot{\theta}, \dot{\theta})-\tau_{\mathrm{a}}(\dot{\theta}, \dot{\theta})-\left(\mathrm{U}_{\mathrm{n}}(\theta, \theta)-\tau_{\mathrm{n}}(\theta, \theta)\right)\right) \rightarrow_{p} 0
$$

Remarks: The proof of Theorem 2.1 is in the Appendix. In many applications, it turns out that $\mathrm{a}^{1 / 2}\left(\mathrm{~T}_{\mathrm{a}}(\dot{\theta}, \dot{\theta})-_{\mathrm{a}}(\theta, \theta)\right)=o_{p}(1)$ so that $U_{\mathrm{a}}^{0}(\dot{\theta})$ inherits the properties of the U -statistic $U_{\mathrm{a}}(\theta, \theta)$. This depends on whether the gradient of $\tau_{\mathrm{a}}$ at $\theta$ eventually vanishes and is made precise in Corollary 2.1 below. Theorem 2.1 is an extension of Theorem A. 9 of Randles (1984) and Theorem 2.8 of Randies (1982) to handle infinite order Ustatistics and multivariace, generalized residuals.

Prior to stating the regularity conditions, I first collect some useful notution. For $\lambda \in R^{p}$, define ; $\lambda$ ! to be the maximum of the coordinates of $\lambda$ and, for $\mathrm{d}>0$, define the cube $\mathrm{K}(\lambda, \mathrm{d})=$ $\left\{\lambda^{*} \in R^{p}:\left|\lambda^{*}-\lambda\right| \leq d\right\}$. Let $\left\{\epsilon_{d}\right\}$ be a sequeace of constunts such that $\epsilon_{d} \rightarrow 0$ as $d \rightarrow 0$. Let $\left\{\gamma_{i}, k\right\}, i=1,2$. be sequeaces of constents such that $\sup _{\mathrm{a}} \Sigma_{\mathrm{k}} \mathrm{r}^{-1}\left|c_{\mathrm{p}, \mathrm{k}}\right| \gamma_{i, k}<\infty, i=1,2$.

## Assumptions

A1. Assume that $\mathbf{n}^{1 / 2}(\dot{\theta}-\theta)=O_{P}(1)$, that is, there exists a sufficiently large $M$ so that $\mathrm{P}\left(\dot{\theta} \in \mathrm{K}\left(\theta, \mathrm{M}^{-1 / 2}\right)\right) \rightarrow 0$.

Ascume, for each $\lambda_{1}, \lambda_{2} \in K\left(\theta, M \mathrm{a}^{-1 / 2}\right)$, that
A2. $E \sup \left(\mid b_{k, a}\left(e_{\alpha_{1}} \cdots,{ }_{a_{k}} ; \lambda_{i}, \lambda_{2}\right)\right.$

$$
\left.-h_{k, \alpha^{( }}\left({ }_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right) \mid: \lambda_{1}^{*} \in K\left(\lambda_{1}, d\right), \lambda_{2}^{*} \in K\left(\lambda_{2}, d\right)\right\} \leq d \gamma_{1, k},
$$

and


$$
\left.-\left.b_{k, a}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right)\right|^{2}: \lambda_{1}^{*} \in \mathbb{K}\left(\lambda_{1}, d\right), \lambda_{2}^{*} \in \mathbb{K}\left(\lambda_{2}, d\right)\right\} \leq \epsilon_{d} \gamma_{2, k}^{2} .
$$

In the finite order case, Rundles observed (1982, Lemma 2.6 and 1984, Condition A.6) that A2 and a uniformly bounded kersel implies A3. In the infinite order case, it is interesting to note that A2 and the fact that $h_{k}$ is uniformly bounded does not necessanily imply A3.

The application, and relevance, of the assumptions can be best illustrated by considering the simplest example in U-staristic theory, estimating the varinace.

## Example 2.1. Estinating the Error Variance.

Coasider data from the multiplicative error model,

$$
\begin{equation*}
Y_{i}=g_{i}(\theta) a_{i} \tag{2.3}
\end{equation*}
$$

and initially assume the goal is to estimate the variance of the transformed aditive model

$$
Y_{i}^{*}=g_{i}^{*}(\theta)+e_{i}^{*}
$$

where $Y_{i}^{*}=\log Y_{i}, g_{i}^{*}=\log g_{i}$ and $e_{i}^{*}=\log e_{i}$. To estimate $\sigma^{2}=\operatorname{Var}\left(e_{i}^{*}\right)$, the well known (cf. Serfling, 1980, page 173) unbiased kernel of order 2 is $h_{2}(x, y)=(x-y)^{2} / 2$. This is sufficient for the kernel $h_{b}{ }^{\circ}$, taking $h_{k}$ $=0$ for $k \neq 2$ and $c_{n, 2}=1$. For simplicity, now drop the asterisk notation. Lea $\dot{\theta}$ be an estimate of $\theta$ satisfying A1 and define the residuals $r_{i}=Y_{i}-\left(\hat{g}(\hat{\theta})\right.$. Thus, using (2.1), an estimate of $\sigma^{2}$ is $U_{n}^{*}(\dot{\theta})=$ $\left(\frac{n}{2}\right)^{-1} \Sigma_{i<j}\left(r_{i}-r_{j}\right)^{2} / 2=(n-1)^{-1} \Sigma_{k}\left(r_{i}-\bar{r}_{n}\right)^{2}$, where $\bar{r}_{n}=n^{-1} \Sigma_{k} r_{k}$.

Now, with (2.2) and the perturbed errors, $e_{i}(\lambda)=Y_{i}-g_{i}(\lambda)=e_{i}+g_{i}(\theta)-g_{i}(\lambda)$, we have $h_{2, \alpha}\left(e_{\alpha_{1}}, e_{\alpha_{2}} ; \lambda, \lambda_{2}\right)=\left(e_{\alpha_{1}}(\lambda)-e_{\alpha_{2}}(\lambda)\right)^{2} / 2$. Require that $g_{i}$ be uniformly Lipschitz in a neighborhood of $\theta$, more specifically, for some positive constant $C$, $\sup _{i}\left|g_{i}\left(\lambda_{1}\right)-g_{i}\left(\lambda_{2}\right)\right| \leq C\left|\lambda_{1}-\lambda_{2}\right|$ for all $\lambda_{1}, \lambda_{2} \in$ $\mathrm{K}\left(\theta, \mathrm{M}^{-1 / 2}\right)$. It is straight forward to chock that this is sufficieat for A 2 and A 3 . Further, since

$$
E b_{2, \alpha_{1}}\left(e_{\alpha_{1}}, e_{\alpha_{2}} ; \lambda, \lambda_{2}\right)=\sigma^{2}+\left(g_{\alpha_{1}}(\theta)-g_{\alpha_{1}}(\lambda)-g_{\alpha_{2}}(\theta)+g_{\alpha_{2}}(\lambda)\right)^{2} / 2
$$

we have

$$
\begin{aligned}
\tau_{\mathrm{n}}(\lambda, \lambda)-\tau_{\mathrm{n}}(\theta, \theta) & =\left(\frac{n}{2}\right)^{-1} \Sigma_{\mathrm{i}}<\mathrm{j}\left(g_{i}(\theta)-g_{i}(\lambda)-g_{j}(\theta)+g_{j}(\lambda)\right)^{2} / 2 \\
& =(\mathrm{n}-1)^{-1} \Sigma_{\mathrm{i}}\left(g_{i}(\theta) \cdot g_{i}(\lambda)\right)^{2}-(\mathrm{n}(\mathrm{n}-1))^{-1} \Sigma_{\mathrm{i}}\left(g_{\mathrm{i}}(\theta)-g_{i}(\lambda)\right) \\
& \leq O\left(i \theta-\left.\lambda\right|^{2}+\mathbf{n}^{-1}|\theta-\lambda|\right) .
\end{aligned}
$$

Hence, with A1,

$$
\begin{aligned}
n^{1 / 2}\left(\tau_{\mathrm{n}}(\dot{\theta}, \dot{\theta})-\tau_{\mathrm{n}}(\theta, \theta)\right)= & O\left(\mathrm{n}^{1 / 2}(\dot{\theta}-\theta)^{2}+n^{-1 / 2}(\dot{\theta}-\theta)\right)=O_{p}\left(n^{-1 / 2}\right) \\
& =O_{p}(1) .
\end{aligned}
$$

Thus, $U_{\mathbf{a}}^{*}(\dot{\theta})$ inherits the asymphotic first order properties of $\mathrm{U}_{\mathrm{a}}$. From, for example, Serfling (1980, page 192), assuming finite fourth moments of the errors and the uniform Lipschitz conditions on ge we have $0^{1 / 2}\left(v_{a}^{*}(\dot{\theta})-\sigma^{2}\right) \rightarrow D\left(0, E e^{4}-\sigma^{4}\right)$.

## Example 2.2. Seemingly Unrelated Regreasions

## Now consider the model

$$
\begin{equation*}
Y_{i n}=X_{i x} \theta_{1}+e_{i x}, \quad i=1, \ldots, n . \quad t=1, \ldots, q . \tag{2.4}
\end{equation*}
$$

This is the linear version of model (1.3) where I write $\mathbf{Y}_{\mathbf{i}}=\left(\mathbf{Y}_{\mathrm{i}, \mathrm{l}}, \ldots, \mathrm{Y}_{\mathrm{i}, \mathrm{q}}\right)^{\prime}$ to suggest that the model (2.4) can be viewed as separtite equations (in t) rather than multivariate regression. It is well-known, especially in the econometric literature (cf., Schmidt, 1976), that parameter efficiency is improved by combining equations and using generalized least squares (GLS) in lieu of ordinary least squares (OLS) estimates of $\theta=\left(\theta_{1}, \ldots, \theta_{q}\right)^{\prime}$. Spocifically, assume that $\left(e_{1, p}, \ldots, e_{2, i}\right\}$ are i.i.d. for each $t$ and define $\Sigma$ to be a $q \times q$ matrix whose $(i, j)^{\text {th }}$ element is $\Sigma_{\mathrm{i}, \mathrm{j}}=\operatorname{Cov}\left(\mathrm{e}_{1, \mathrm{i}}, e_{1, j}\right)$. One procadure for estimating $\theta_{\mathrm{t}}$ is to use ordinary least squares for each equation. It is known that OLS for estimating $\theta$ reduces to using OLS for each equation for estimating $\theta_{1}$. Computationally, this is simpler than using genenlized least squares. Further, in the case that $\Sigma$ is a scalar multiple of the identity matrix, OLS estimates are as efficient as GLS estimates. Thus, it is of interest to estimate $\Sigma$ based on OLS estimators to see if the more complex GLS calculations are warranted.

With the notation $e_{i}=\left(e_{i, 1}, \ldots, e_{i, q}\right)^{\prime}$, define the kernel $h_{2, i, j}\left(e_{1}, e_{2}\right)=\left(e_{1, i}-e_{2, j}\right)\left(e_{1, j}-e_{2, j}\right) / 2$. Since $E h_{2, i, j}\left(e_{1}, e_{2}\right)$ equals $\Sigma_{i, j}$, this kernel serves as our unbiased estimator for the ( $i, j{ }^{\dagger}{ }^{\boldsymbol{h}}$ element. In example 2.1, the case of $i=j$ was considered and the calculations for $i \neq j$ are virtually the same. To this end, let $\hat{\theta}_{\text {oLs }}$ be the least square estimate of $\theta$ and define $r_{j}$ to be the corresponding vector of residuals. Define the residual based astimate of $\Sigma_{i, j}$ to be $S_{i, j}(r)=\left(\frac{9}{2}\right)^{-1} \Sigma_{i<i} h_{2, i, j}\left(r_{v}, r_{j}\right)$ and define the unobserved estimator $S_{i, j}(e)$ similariy. As in Example 2.1, assuming bounded covariates, it can be checked that

$$
\begin{equation*}
s_{i, j}(r)-s_{i, j}(e)=o_{p}\left(n^{-1 / 2}\right), \tag{2.5}
\end{equation*}
$$

and thus $\mathrm{S}_{\mathrm{i}, j}(\mathrm{r})$ inherits the asymptotic properties of $\mathrm{S}_{\mathrm{i}, \mathrm{j}}(\mathrm{e})$. Denote S to be the matrix whose $(\mathrm{i}, \mathrm{j})^{\text {dh }}$ element is $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$. To see the applications of this result, recall that there are several statistics available for testing the null
hypothesis $H_{0}: \Sigma=\sigma^{2} I_{q}$, where $\sigma^{2}$ is a scalar and $I_{q}$ is $q q \times q$ ideatity matrix. Weli-known examples include Bartlett's (1954) statistic det ( $S)^{n} / \Pi_{i=1}^{q}\left(S_{i, i}\right)^{n}$ and the Lagrange Multiplier statistic ( $\left.q_{1}\right)^{-1} \Sigma_{i<j} S_{i j}^{2}$ in, for example, Breusch and Pagan (1980). Both of these examples are continuous transforms of $\left\{\mathrm{S}_{\mathrm{i}, \mathrm{j}}\right\}$, say $\mathrm{M}(\mathrm{S})$, and have well-known asymptotic properties when calculated using i.i.d. observations. With ( 2.5 ) and the continuous mapping theorem, it is straightforward to chock that $M(S(r))$ will inherit the asymptotic properties of $M(S(e))$.

To apply the main result under broad settings, listed below are additional regularity conditions that hold in several important cases.

A4. For sufficiently large $n$, assume that the gradient $\nabla_{T_{n}}(\theta, \theta)$ exists, is finite and satisfies $\sup _{\mathrm{a}}\left|\tau_{\mathrm{a}}(\lambda, \lambda) \cdot\left(\tau_{\mathrm{a}}(\theta, \theta)+(\lambda-\theta)^{\prime} \nabla \tau_{\mathrm{a}}(\theta, \theta)\right)\right|=\sigma(|\lambda-\theta|)$.

A5. Assume that $\mathrm{U}_{\mathrm{n}}(\theta, \theta)=\tau_{\mathrm{n}}(\theta, \theta)+\Sigma_{\mathrm{k}} \mathrm{h}_{1, \mathrm{n}}\left(e_{\mathrm{k}}\right)+o_{p}\left(\mathrm{n}^{-1 / 2}\right)$, where $h_{1, n}(x)=E\left\{U_{n}(\theta, \theta)-T_{n}(\theta, \theta) \mid e_{1}=x\right\}$ a.s.

A6. Assume that there exists a known function $\psi$ such that $\dot{\theta}=\theta+\Sigma_{k} Z_{k n} \psi\left(e_{k}\right)+o_{p}\left(n^{-1 / 2}\right)$ where $\left\{Z_{k n}\right\}$ is a triengular array of known vectors.

Corollary 2.1 Under the regularity conditions A1-A6, we have

$$
U_{n}^{*}(\dot{\theta})=\tau_{n}(\theta, \theta)+\Sigma_{k=1}^{n}\left\{Z_{k n^{\prime}} \nabla \tau_{n}(\theta, \theta) \psi\left(e_{k}\right)+h_{1, n}\left(e_{k}\right)\right\}+o_{p}\left(n^{-1 / 2}\right)
$$

Remarks: The proof of Corollary 2.1 is immediate from Theorem 2.1 and is omitted. Corollary 2.1, and the usual triangular array central limit theorems, immediately yield the limiting distribution for $\mathrm{U}_{\mathrm{n}}^{\bullet}(\dot{\theta})$. Assumption A4 is a mild smoothness requirement on the expected value of the kernel, not the kernel itself. Sufficient conditions for A5 were provided by Hoeffding (1948) in the finite order case and by Frees (1989) in the infinite order case. The expansion in A6 is standard, sce Yohni and Maronna (1979, Theorem 3.1) for linear model Mestimates which include maximum likelibood estimater and Welsh (1987, Theorem 1) for linear model Lestimates. Wu (1981, Theorem 5) establishes A6 for nonlinear least squares.

I close this section with an example of Corollary 2.1 using finite order kernels. Examples using infinite order kernels can be found in Section 3.

Now coosider estimating the variability of the untransformed, multiplicative error model (2.3). The motivation is that it is the variance of e that is directly linked to the variance of the observations, not the variance of the transformed errors. Define the perturbed errors $e_{i}(\lambda)=Y_{i} / g_{i}(\lambda)$ and, for an estimate $\theta$ of $\theta$, define the residuals $r_{i}=e_{i}(\hat{\theta})$. From (2.2), we have

$$
b_{2, \alpha}\left(e_{\alpha_{1}}, e_{\alpha_{2}} ; \lambda, \lambda_{2}\right)=\left(e_{\alpha_{1}} g_{\alpha_{1}}^{\left.(\theta) / g_{\alpha_{1}}(\lambda)-e_{\alpha_{2}} g_{\alpha_{2}}^{(\theta) / g_{\alpha_{2}}}(\lambda)\right)^{2} / 2.2 .20 .}\right.
$$

To satisfy $\mathbf{A 2}$ and $\mathrm{A}^{3}$, require as before that $\mathrm{m}_{\mathrm{a}}$ is uniformly Lipechitz and also require that $\mathrm{g}_{\mathrm{i}}$ is uniformly bounded away from zero. This is sufficient to satisfy A.2 and A3. The proof is straightforward and is omitted.

To check A4, we have

$$
\begin{aligned}
\tau_{\mathrm{n}}(\lambda, \lambda) & =\left(\frac{\mathrm{a}}{2}\right)^{-1} \Sigma_{i}<j E\left(e_{i} g_{i}(\theta) / g_{i}(\lambda)-e_{j} g_{j}(\theta) / g_{j}(\lambda)\right)^{2} / 2 \\
& =\sigma^{2} / \mathbf{n} \Sigma_{i}\left(g_{i}(\theta) / g_{i}(\lambda)\right)^{2}
\end{aligned}
$$

and thus,

$$
\nabla_{T_{a}}(\theta, \theta)=\sigma^{2 / n} \sum_{i} g_{i}(\theta)^{2} \partial /\left.\partial \lambda\left(g_{i}(\lambda)\right)^{-2}\right|_{\lambda=1}=-2 \sigma^{2 / n} \sum_{i} \nabla_{\mathcal{B}_{i}}(\theta) / g_{i}(\theta)
$$

Thus, asaming $g_{i}(\lambda)=g_{i}(\theta)+(\lambda-\theta)^{\prime} \nabla_{\mathcal{f}_{i}}(\theta)+\alpha(|\lambda-\theta|)$, we hove

$$
\begin{aligned}
& \left|\Gamma_{\mathrm{n}}(\lambda, \lambda)-\left(\tau_{\mathrm{n}}(\theta, \theta)+(\lambda-\theta)^{\prime} \nabla_{\tau_{n}}(\theta, \theta)\right)\right| \\
& \quad \leq \sigma^{2} / \mathrm{n} \Sigma_{i}\left|\left(g_{i}(\theta) / g_{i}(\lambda)\right)^{2}-1+2(\lambda-\theta)^{\prime} \nabla_{g_{i}}(\theta) / g_{i}(\theta)\right|=\alpha(|\lambda-\theta|)
\end{aligned}
$$

uniformly in $n$, which is sufficient for A4.

Assumption A5 is esseatially a central limit theorem for traditional $U$-statistics and is satisfied as above. For this example, it turns out (cf., Serfling, 1980, p.182) that $h_{i, n}(x)=\left((x-E e)^{2}-\sigma^{2}\right) /(2 n)$.

Assumption A6 is satisfied by appealing to the usual central limit theorems for nonlinear regression after transforming to the additive model. For example, Wu (1981, p.509) provides conditions so that A6 bolds with $\forall\left(e_{i}\right)=\log \left(e_{i}\right)$ and $Z_{\mathbf{t n}_{0}}=\left(\Sigma_{i} \nabla_{\boldsymbol{g}_{i}}(\theta) \nabla_{\boldsymbol{g}_{i}}(\theta)^{\prime}\right)^{-1} \boldsymbol{\nabla}_{\mathbf{g}_{\mathbf{k}}}(\theta)$.

## 3. Regression - Based Renewal Function Estimation

In this section, the general theory of Section 2 is applied to several summary measures related to the rencwal function that are useful in warranty analysis and another parameter of importance in actuarial science, the probebility of ruin. For simplicity, only the regresion data model in (1.3) with additive errors is explicitly considered in this section. It turns out that the limiting distribution of the reauling nonparametric estimator is particularly eppealing when the kernel can be expressed as a function of the partial sums of the stochastic process of the financial model.

### 3.1. Convolution and Renewal Function Estimation

Consider the data model in (1.3). Assume that we are interested in the summary measures with characteristics $\mathrm{X}_{\mathrm{o}}$ and that the corresponding regreasion function at that point is $\mathrm{g}_{0}\left(\theta, \mathrm{X}_{\boldsymbol{\alpha}}\right)=\mathrm{g}_{\mathrm{o}}(\theta)$. In this subsection, $I$ discuss the estimation of the parameter $\tau_{n}=\sum_{k=1}^{p} c_{p k} F^{(k)}\left(T-k g_{0}(\theta)\right)$, where $F^{(k)}\left(T-k g_{0}(\theta)\right)$ $=P\left(e_{1}+\ldots+e_{k}+k g_{0}(\theta) \leq T\right)$ is the $k$-fold convolution of the distribution function evaluated at $T-k g_{0}(\theta)$. When $c_{n k}=1$ for some fixed $k$ and is zero otherwise, for all $n$, then $\tau_{n}$ is the $k$-fold convolution. When $c_{\text {ne }}$ is identically equal to one, then $r_{n}$ is essentially the renewal function in (1.6).

I begin by discussing an estimate of the $\mathbf{\Sigma}$-fold convolution. For an extimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ satisfying A1, define the residuals $r_{i}=Y_{i}-g_{i}(\hat{\theta})$. Let $b_{k}\left(e_{1}, \ldots, e_{k} ; \lambda\right)=I\left(e_{1}+\ldots+e_{k} \leq T-k g_{0}(\lambda)\right)$ and define

$$
\hat{F}_{n}(k)(\hat{\theta}, T)=(n!)^{-1} \Sigma_{\alpha} b_{k}\left(r_{a_{l}}, \ldots, r_{\alpha_{k}} ; \hat{\theta}\right)
$$

to be the estimate of the $\mathbf{k}$-fold convolution $\mathrm{F}^{(\mathbf{k})}\left(\mathbf{T}-\mathbf{k g}_{0}(\theta)\right)$. An interesting interpretation begins with the fact that $\mathrm{F}^{(\mathbf{k})}\left(\mathbf{T}-\mathbf{k g}_{\mathrm{o}}(\theta)\right)$ can be expressed as $\mathrm{P}\left(\mathbf{Y}_{1}+\ldots+\mathrm{Y}_{\mathbf{k}} \leq \mathbf{T}\right)$. If we define $\hat{\mathrm{Y}}_{\mathrm{o}, \mathrm{i}}=\mathrm{g}_{\mathrm{o}}(\hat{\theta})+\mathrm{r}_{\mathrm{i}}$, then $\left\{\hat{\mathrm{Y}}_{0, \mathrm{i}}\right\}$ can be thought of as the bootstrap distribution of the dependent variable at $X_{0}$. Freedman (1981) provides an introduction to the use of the bootstrap technique in the linear model set-up. Thus, the estimator of the $\mathbf{k}$-fold convolution is the same as in Frees (1986) except using the bootstrap distribution in lieu of the unobserved i.i.d. random variables. Thus, we can also express the estimate of the $\mathbf{k}$-fold convolution as

$$
\begin{equation*}
\hat{F}_{\mathrm{n}}{ }^{(k)}(\hat{\theta}, \mathrm{T})=(\mathrm{P})^{-1} \Sigma_{\mathrm{c}(\mathbb{I})} 1\left(\hat{Y}_{0, i_{1}}+\ldots+\hat{Y}_{0, \mathrm{i}_{\mathrm{L}}} \leq \mathrm{T}\right) \tag{3.1}
\end{equation*}
$$

Here, the notation $\Sigma_{c(k)}$ means sum over all distinct combinations $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$. With this notation, the estimator of $\tau_{n}$ is

$$
\begin{aligned}
U_{a}^{*}(\hat{\theta}) & =(n!)^{-1} \Sigma_{a} \Sigma_{k=1}^{a} c_{a k} h_{k}\left(r_{\alpha_{l}}, \ldots, r_{\alpha_{k}} ; \hat{\theta}\right) \\
& =\sum_{k=1}^{n} c_{a k} \hat{F}_{a}^{(k)}(\hat{\theta}, T)
\end{aligned}
$$

As in Section 2, useful quantity that is intermediate berween $\tau_{a}$ and $U_{\mathbf{a}}^{+}(\dot{\theta})$ is $\tau_{\mathrm{a}}(\dot{\theta}, \dot{\theta})$, where

To establish the limiting distribution of these extimates, we nead some mild smoothness assumptions on the distribution and regression functions. Similar to Section 2, I assume

L1. The regression function is uniformly Lipschitz of order one in a neighborbood of $\theta$, i.e., for some positive constant $C, \sup _{1}\left|g_{i}\left(\lambda_{1}\right)-g_{i}\left(\lambda_{2}\right)\right| \leq C\left|\lambda_{1}-\lambda_{2}\right|$ where $\lambda_{1}, \lambda_{2}$ are in some neighborhood of $\theta$.

L2. The density of $F^{(k)}, f^{(t)}$, exists at $T-\mathrm{kg}_{0}(\theta)$ and satisfies
(i) $\sup _{\mathrm{a}} \Sigma_{k} \mathbf{k}^{2}\left|c_{\mathrm{n}, \mathrm{k}}\right| \mathrm{f}^{(\mathrm{k})}\left(\mathrm{T}-\mathbf{k g}_{0}(\theta)\right)<\infty$ and
(ii) $\mathrm{F}^{(\mathrm{k})}\left(\mathrm{T}-\mathrm{kg}_{0}(\theta)+\epsilon\right)=\mathrm{F}^{(\mathrm{k})}\left(\mathrm{T}-\mathrm{kg}_{0}(\theta)\right)+\epsilon \mathrm{f}^{(\mathrm{k})}\left(\mathrm{T}-\mathrm{kg}_{0}(\theta)\right)+\alpha(\epsilon)$, uniformly io k .

Theoriem 3.1 Assume that A1, L1 and L2 hold for the data model in (1.3). Then, for a fixed $T$ and $X_{0}$,

$$
\mathrm{a}^{1 / 2}\left(\mathrm{U}_{0}(\dot{\theta}, \dot{\theta})-\tau_{\mathrm{n}}(\dot{\theta}, \dot{\theta})-\left\{\sum_{\mathbf{k}=1}^{\mathrm{l}} \mathrm{c}_{\mathrm{nk}}\left(F_{\mathrm{n}}^{(k)}(\theta, \mathrm{T})-\mathrm{F}^{(k)}(\theta, \mathrm{T})\right)\right\}\right) \rightarrow_{p} 0,
$$

where $F_{n}(\mathbf{k})(\theta, T)=\left({ }_{k}\right)^{-1} \Sigma_{e(k)} I\left(e_{i_{1}}+\ldots+e_{i_{k}}+\mathbf{k}_{\mathbf{g}_{0}}(\theta) \leq T\right)$ is a $U$-statistic of order $k$.

## PROOF:

The proof is immodiate from Theorem 3.1, atter checking A2 and A3. To prove A2, recall the inequality, $|I(x \leq y)-I(x \leq z)| \leq I(|x-(y+z) / 2| \leq|y-z| / 2)$ for real numbers $x, y$ and $z$ Thus,

$$
\begin{aligned}
& \left|h_{k, \alpha^{\prime}}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}^{*}, \lambda_{2}^{*}\right)-b_{k_{2}, a^{\prime}}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right)\right| \\
& =\mid I\left(\Sigma_{j=1}^{k}\left(e_{\alpha_{j}}+g_{\alpha_{j}}(\theta)-g_{\alpha_{j}}\left(\lambda_{1}^{*}\right) \leq T-k g_{0}\left(\lambda_{2}\right)\right)\right. \\
& \quad-I\left(\Sigma_{j=1}^{k}\left(e_{\alpha_{j}}+g_{\alpha_{j}}(\theta)-g_{\alpha_{j}}\left(\lambda_{1}\right) \leq T-k g_{0}\left(\lambda_{2}\right)\right) \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq I\left(\left|\Sigma_{j=1}^{k}\left(e_{\alpha_{j}}+g_{\alpha_{j}}(\theta)-\left(g_{\alpha_{j}}\left(\lambda_{1}^{0}\right)+g_{\alpha_{j}}\left(\lambda_{1}\right)-g_{0}\left(\lambda_{2}\right)-g_{0}\left(\lambda_{2}\right)\right) / 2\right)-T\right|\right. \\
& \left.\left.\leq \quad \mid \Sigma_{j=1}^{\mathrm{t}}\left(g_{\alpha_{j}} \lambda_{1}\right)-g_{\alpha_{j}}\left(\lambda_{1}\right)-g_{0}\left(\lambda_{2}\right)+g_{0}\left(\lambda_{2}\right)\right) \mid\right) \\
& \leq I\left(\mid \Sigma_{j=1}^{k}\left(e_{\alpha_{j}}+g_{\alpha_{j}}^{\left.\left.(\theta)-\left(g_{a_{j}}\left(\lambda_{1}\right)+g_{\alpha_{j}}\left(\lambda_{1}\right)-g_{0}\left(\lambda_{2}\right)-g_{0}\left(\lambda_{2}\right)\right) / 2\right)-T \mid \leq 2 k C d\right), ~(1)}\right.\right. \\
& \leq I\left(\sum_{j=1}^{k}\left(g_{\alpha_{j}}\left(\lambda_{1}\right)-g_{0}\left(\lambda_{2}\right)\right) / 2-2 \mathrm{rCd}\right) \\
& \leq \Sigma_{j=1}^{k}\left(e_{\alpha_{j}}+g_{\alpha_{j}}(\theta)+\left(g_{0}\left(\lambda_{2}\right)-g_{\alpha_{j}}\left(\lambda_{1}\right)\right) / 2\right) \cdot T \\
& \left.\leq \Sigma_{j=1}^{k}\left(\mathbf{g}_{a_{j}}\left(\lambda_{1}^{*}\right)-g_{0}\left(\lambda_{2}^{*}\right) / 2+2 \mathbf{r C d}\right)\right) .
\end{aligned}
$$

Define $\left.\eta_{U}\left(\alpha_{j}\right)=\sup \left(g_{\alpha_{j}} \lambda_{j}^{*}\right): \lambda_{i}^{*} \in K\left(\lambda_{1}, d\right)\right\rangle, \eta_{L}\left(\alpha_{j}\right)=\inf \left(g_{\alpha_{j}}\left(\lambda_{1}^{*}\right): \lambda_{1}^{*} \in K\left(\lambda_{1}, d\right)\right\}$, and similarly define $\eta_{U}(0)$ and $\eta_{\lambda}(o)$ using ' $o$ ' for $\alpha_{j}$ and $\lambda_{2}$ for $\lambda_{1}$. By Assumption $L 1$, we have $\left|\eta_{U}\left(\alpha_{j}\right)-\eta_{L}\left(\alpha_{j}\right)\right| \leq C d$. Thus,
$E \sup \left|b_{k, a_{1}}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}^{*}, \lambda_{2}^{*}\right)-h_{k_{k} a_{0}}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right)\right|$

$$
\begin{aligned}
& \leq E I\left(\sum_{j=1}^{k}\left(\eta_{L}\left(\alpha_{j}\right)-\eta_{L}(0)\right) / 2-2 k C d\right) \\
& \leq \sum_{j=1}^{k}\left(e_{\alpha_{j}}+g_{\alpha_{j}}(\theta)+\left(g_{0}\left(\lambda_{2}\right)-g_{\alpha_{j}}\left(\lambda_{1}\right)\right) / 2\right)-T \\
& \left.\left.\leq \sum_{j=1}^{k}\left(\eta_{U}\left(\alpha_{j}\right)-\eta_{U}(0)\right) / 2+2 k C d\right)\right) . \\
& \left.=F^{(k)}\left(\Sigma_{\mathrm{j}=1}^{\mathrm{k}}\left(\eta_{\mathrm{u}}\left(\alpha_{\mathrm{j}}\right)-\eta_{\mathrm{U}}(0)\right) / 2+2 \mathrm{kCd}+\mathrm{T}-\Sigma_{\mathrm{j}=1}^{\mathbf{k}}\left(\mathrm{g}_{\alpha_{\mathrm{j}}}(\theta)+\left(\mathrm{g}_{0}\left(\lambda_{2}\right)-\mathrm{g}_{\alpha_{\mathrm{j}}} \lambda_{1}\right)\right) / 2\right)\right) \\
& -F^{(k)}\left(\Sigma_{j=1}^{k}\left(\eta_{L}\left(\alpha_{j}\right)-\eta_{L}(0)\right) / 2-2 k C d+T-\Sigma_{j=1}^{k}\left(g_{\alpha_{j}}(\theta)+\left(g_{0}\left(\lambda_{2}\right)-g_{\alpha_{j}}\left(\lambda_{1}\right)\right) / 2\right)\right) \\
& =F^{(k)}\left(T-\mathrm{kg}_{0}(\theta)\right) \\
& +(1+o(1)) \mathrm{f}^{(\mathrm{k})}\left(\mathrm{T}-\mathrm{kg}_{\alpha}(\theta)\left(\left(\sum_{\mathrm{j}=1}^{\mathrm{k}}\left(\mathrm{~g}_{\alpha_{\mathrm{j}}}(\theta)-\left(\eta_{\mathrm{U}}\left(\alpha_{\mathrm{j}}\right)+\mathrm{g}_{\alpha_{j}}\left(\lambda_{1}\right)\right) / 2\right)+\mathrm{k}\left(g_{0}\left(\lambda_{2}\right)-\eta_{\mathrm{U}}(0)\right) / 2+2 \mathrm{kCd}\right)\right.\right. \\
& -\left\{\left(F^{(\mathbf{)})}\left(\mathrm{T}-\mathrm{kg}_{0}(\theta)\right)\right.\right. \\
& +(1+o(1)))^{(k)}\left(T-\mathbf{k g}_{\sigma}(\theta)\left(\left(\Sigma_{j=1}^{k}\left(g_{\alpha_{j}}(\theta)-\left(\eta_{L}\left(\alpha_{j}\right)+g_{\alpha_{j}}\left(\lambda_{1}\right)\right) / 2\right)+\mathbf{k}\left(g_{0}\left(\lambda_{2}\right)-\eta_{L}(o)\right) / 2 \cdot 2 \mathbf{k C d}\right)\right\}\right. \\
& \leq 6 \mathrm{kCd} \mathrm{f}^{(\mathrm{k})}\left(\mathrm{T}-\mathrm{kg}_{0}(\theta)\right)(1+\alpha(1)) .
\end{aligned}
$$

By L1, the or 1 ) does not depend on i. By L2, this is sufficieat for A2. The proof for A3 is similar and is omitted.

I now present illustrations of Theorem 3.1 for the convolution and renewal function cases. Another example of Theorem 3.1, not discussed here, is the variance of the number of renewals in, for example, Frees (1988). For simplicity, assume the multiple linear regression model for the data,

$$
\begin{equation*}
Y_{i}=X_{i}^{\prime} \beta+\epsilon_{i} \tag{3.3}
\end{equation*}
$$

Also assume some stability of the covariates sequence,

$$
\begin{equation*}
\mathrm{n}^{-1} \Sigma_{\mathrm{i}=1}^{\mathrm{n}} X_{i} \rightarrow \mu_{\mathrm{X}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{-1} \Sigma_{i=1}^{p}\left(X_{i}-\mu_{X}\right)\left(X_{i}-\mu_{X}\right)^{\prime} \rightarrow \Sigma_{X} \tag{3.5}
\end{equation*}
$$

where $\Sigma_{X}$ is a positive definite metrix. Relations (3.3) - (3.5) are the usual ones made in applied econometrics, cf., Schmidt (1976), and are akin to assuming that the covariates are drawn from a random sample.

Corollary 3.2-CONvolution Estimator For the data model in (3.1)-(3.3), assume that the covanates are bounded and that $L 2$ bolds. Let $\hat{\theta}$ be the least squares estimate and assume that the errors have finite third moments. Then, for a fixed $T, X_{0}$ and $k$,

$$
\mathrm{a}^{1 / 2}\left(\hat{F}_{\mathrm{a}}^{(k)}(\hat{\theta}, \mathrm{T})-\mathrm{F}^{(k)}(\theta, \mathrm{T})\right) \rightarrow_{\mathrm{D}} \mathrm{~N}\left(0, A \vee A R_{1}\right)
$$

where the asymptotic variance is AVAR $_{I}=f^{(k)}\left(T-k X_{o}^{\prime} \theta\right)^{2} \sigma^{2}\left(\mu_{X}-X_{o}\right)^{\prime 2-1}\left(\mu_{X}-X_{0}\right)$
$+\mathbf{k}^{2} \operatorname{Var}\left(F^{(k-1)}\left(T-k X_{o}^{\prime} \theta-e\right)\right)+2 k f^{(k)}\left(T-k X_{0}^{\prime} \theta\right) \mu_{X^{\prime}} \Sigma^{-1}\left(\mu_{X^{-}} X_{o}\right) \operatorname{Cov}\left(e, F^{(k)}\left(T-k X_{o}^{\prime} \theta-e\right)\right)$.

## Proof of Corollary 3.2:

I appeal to Corollary 2.1. Assumptions $A 1$ and $A 6$, with $Z_{k n}=n^{-1} \Sigma^{-1} X_{k}$ and $\psi(x)=x$, are satisfied by the usual triangular array central limit theorem. Assumptions $A 2$ and $A 3$ are satisfied as in the proof of Theorem 3.1. Assumption $A 4$ is immediate from $L 2$, where $\nabla \tau_{a}(\theta, \theta)=f^{(k)}\left(T-k X_{0}^{\prime} \theta\right)\left(X-X_{0}\right)+o_{p}\left(n^{-1 / 2}\right)$. Assumption AS is standard in U-statistics theory, see for example Frees (1986, equation (3.3)), where $b_{1_{n}}(e)=$ $\mathrm{k} / \mathrm{n}\left(\mathrm{F}^{(k-1)}\left(\mathrm{T}-\mathrm{k} X_{0}^{\prime} \theta-e\right)-F^{(k)}\left(T-k X_{0}^{\prime} \theta\right)\right.$. Thus, from Corollary 2.1, we have

$$
\begin{aligned}
& +k / n \Sigma_{i=1}^{n}\left(F^{(k-1)}\left(T-k X_{0}^{*} \theta-e_{i}\right)-F^{(k)}\left(T-k X_{0}^{\prime} \theta\right)\right)+o_{p}\left(n^{-1 / 2}\right) .
\end{aligned}
$$

This, Slutsky's Theorem, (3.4), (3.5) and the usual central limit theorem are sufficient for the proof.

For the renewal function, let $m=m(n)$ be an integer such that $m \rightarrow \infty$ as $n \rightarrow \infty$. Define the estimate of the renewal function

$$
\begin{equation*}
\hat{H}_{o, 0}(\hat{\theta}, \mathrm{~T})=\Sigma_{\mathbf{k}=1}^{\mathrm{m}} \quad \hat{F}_{\mathrm{a}}^{(\mathbf{K})}(\hat{\theta}, \mathrm{T}) . \tag{3.6}
\end{equation*}
$$

The following is the result which motivated this study.

Corollary 3.3-Renewal Function Estimator Under the assumptions of Corollary 3.2 and Theorem 3.1 of Frees (1986),

$$
\mathrm{n}^{1 / 2}\left(\hat{H}_{0, \mathrm{n}}(\theta, \mathrm{~T})-\mathrm{H}_{0}(\theta, \mathrm{~T})\right) \rightarrow_{\mathrm{D}} \mathrm{~N}\left(0, \mathrm{AVAR}_{2}\right)
$$

where $H_{0}(\theta, T)$ is the renewal function defined in (1.6) and $\mathrm{AVAR}_{2}=$
$\left(\Sigma_{K=1}^{\infty} f^{(k)}\left(T-k X_{0}^{\prime} \theta\right)\right)^{2} \sigma^{2}\left(\mu_{X}-X_{0}\right)^{\prime} \Sigma^{-1}\left(\mu_{X} X_{0}\right)+\sum_{r=1}^{\infty} \quad \Sigma_{s=1}^{\infty}$ rs $\operatorname{Cov}\left(F^{(r-1)}\left(T-r X_{0}^{\prime} \theta-e\right), F^{(t-1)}\left(T-s X_{0}^{\prime} \theta-e\right)\right)$ $+2\left(\sum_{k=1}^{\infty} f^{(k)}\left(T-k X_{0}^{\prime} \theta\right)\right) \mu_{X^{\prime}} \Sigma^{-1}\left(\mu_{X} X_{0}\right) \Sigma_{k=1}^{\infty} k \operatorname{Cov}\left(e, F^{(k)}\left(T-k X_{o}^{\prime} \theta-e\right)\right)$.

The proof of Corollary 3.3 is similar to Corollary 3.2 and is omitted. Further discussion and numerical examples of Corollary 3.3 can be found in Section 4. Consider the case $p=1$ and $X$ as identically constant for the model in (3.3). In this case, $\left\{Y_{j}\right\}$ is an i.i.d. sequence. Here, the asymptotic variance reduces to $A V A R_{2}$ $=\sum_{r=1}^{\infty} \quad \Sigma_{1=1}^{\infty}$ rs $\operatorname{Cov}\left(F^{(r-1)}(T-e), F^{(-1)}(T-e)\right)$. A coosistent extimator for $A V A R_{2}$ was established in Theorem 4.1 of Frees (1986). More generally, consistent estimation of the asymptotic variance is a difficult problem. The usual jackionife estimate scems to only capture the middle term in the expression of AVAR ${ }_{2}$. The problem is complex since, even if $X_{o}^{\prime} \theta$ may be rescaled to equal zero, one must still estimate the renewal density, $\Sigma_{k=1}^{\infty} f^{(k)}(T)$, using residuals from a prelimiagry regression fit. Estimation of this asymptotic variance is an interesting possibility for future research.

### 3.2. Partial Sums

A setting which includes the renewal function estimator of Subsection 3.1 but still restrictive enough to achieve easily interpretable results occurs when each kernel is a function of the sum of observations. I illustrate this setting by considering the discounted renewal function, an important parameter in warranty analysis.

Now, suppose we are interested in summary measures of the form

$$
\begin{equation*}
r=E \sum_{\mathbf{E}=1}^{\infty} s_{k}\left(Y_{0,1}+\ldots+Y_{0, k}\right) \tag{3.7}
\end{equation*}
$$

where $\left\{Y_{0,1}, Y_{0,2}, \ldots\right\}$ is the unobserved stochastic process of interest, $\left\{Y_{0, i}\right\}$ are independent and follow $Y_{0, i}=X_{0, i}^{\prime} \beta+e_{0, i}$, and $\left\{s_{k}\right\}$ is a sequence of kown functions. Define $S_{k}(x)=E s_{1}\left(e_{1}+\ldots+e_{k}+x\right)$ and let $\boldsymbol{\nabla} \mathrm{S}_{\mathbf{h}}(\mathrm{x})$ be the corresponding derivative with respect to x .

As in subeection 3.2, assume the duta follows the multiple linear regression model in (3.3)-(3.5).
Similar to (3.1), the residual-based infinite order U-statistic estimate is

$$
\begin{equation*}
U_{\mathrm{a}}^{+}(\dot{\theta})=\Sigma_{k=1}^{m}\left(\frac{\mathrm{p}}{\mathrm{k}}\right)^{-1} \Sigma_{\mathrm{c}(\mathbf{k})} \mathbf{s}_{k}\left(\hat{Y}_{0, i_{1}}+\ldots+\hat{Y}_{0, i_{k}}\right) \tag{3.7}
\end{equation*}
$$

where $\left\{\hat{Y}_{0, i_{1}}, \ldots, \hat{\mathrm{Y}}_{0, \mathrm{i}_{k}}\right\}$ is the empirical, or boolstrap, distribution at $\mathrm{X}_{\mathrm{o}}$. The expression in (3.7) is useful for computing the statistic. Similar to (3.2), the quantity useful for computing the asymptotic distribution is

$$
\left.T_{n}(\lambda, \lambda)=\sum_{k=1}^{m}\left(\frac{n}{k}\right)^{-1} \Sigma_{c(k)} S_{k}\left(\sum_{j=1}^{k} X_{i_{j}} \Omega-\theta\right)-X_{0} \lambda\right)
$$

and thus

$$
\left.\nabla \tau_{\mathrm{a}}(\theta, \theta)=\Sigma_{\mathbf{k}=1}^{\mathrm{m}} \nabla \mathrm{~S}_{\mathbf{k}}\left(-\mathrm{k} \mathrm{X}_{0} \theta\right) \overline{\mathrm{X}}-\mathrm{X}_{\mathrm{o}}\right) .
$$

For example, assuming $s_{1}(x)=e^{-\delta x} \mathrm{I}(\mathrm{x} \leq \mathrm{T})$, then T in (3.7) is the discounced reaewal function evaluated at T, cf., Mamer (1987). This yields $S_{k}(x)=\int e^{-\delta(e+x)} I(e \leq T-x) d F^{(k)}(e)$ and thus $\nabla S_{k}(x)=-\delta$ $S_{k}(x)-e^{-T T} f^{(k)}(T-x)$.

## 4. חlustrative Renewal Function Calculations

To illustrate the calculations for the renewal function in Subsection 3.1 and the discounted version in Subsection 3.2, consider the fictitious data set in Table 1. This data represents experience of failures of a type of photocopy machine from each of 20 randomly selected offices. Here, $\left\{Y_{i}\right\}$ represents the time to failure of the photocopy mechine from initial mechine installation and $\left\{\mathrm{X}_{11}\right\}$ is a measure of the amount of use on a monthly basis, called USAGE. The variable $\left\{\mathrm{X}_{2 \mathrm{i}}\right\}$, or TYPE, is an indicator as to the predominant type of user in an office; $X_{2 i}=1$ indicates that the $i^{\text {ith }}$ office is staffed with primarily professional users, $X_{2 i}=0$ indicates the presence of primarily clerical workers. For this data, the linear regression model with $p=3$ was fit. Using
the dras in Table 1, the fitted regremion equation coms out to be

$$
\begin{equation*}
\hat{\mathbf{Y}}=55.9-0.1984 \mathrm{USAGE}+14.3 \mathrm{TYPE} . \tag{4.1}
\end{equation*}
$$

The data, with two superimpoeed fittod regresion linet, appear in Figure 1.

| TABLE 1. ILLUSTRATTVE DATA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offe: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| MONTES | 10 | 22 | 23 | 30 | 22 | So | 20 | 46 | 10 | 0 | 11 | 40 | 38 | 30 | 14 | 4 | 20 | 44 | 64 | 56 |
| Usage | 246 | 120 | 166 | 175 | 151 | 8 | 238 | 31 | 295 | 277 | 372 | 92 | 104 | 224 | 305 | 200 | 210 | 164 | 68 | 124 |
| TYFE | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | t | 1 | 1 |
| Bookerm | 9.2 | 10.5 | 11.3 | 15.1 | 16.7 | 17.2 | 17.6 | 18.9 | 18.9 | 19.7 | 22.3 | 23.08 | 23.4 | 24.8 | 24.9 | 26.3 | 26.4 | 26.9 | 27.9 | 31.0 |
| Values m USAGE = |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { PSO and } \\ & \text { TYPE }=0 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Now, sappose that we wish to eatimate the expected aumber of failures by $T=12$ moaths for an office composed of primarily professional workers (TYPE $=0$ ) and with the usage variable at 250 . From equation (4.1), the expected time matil failure it

$$
\hat{Y}_{0}=55.9-0.1984(250)+14.3(0)=6.3 .
$$

From standard linear model theory and the above data, it is easy wocheck that the standard deviation associsted with this fit is approximately 2.8. Now, consider a well-known reacwal Heoretic bound

$$
\begin{equation*}
t / \mu-1 \leq H(t) \leq t / \mu+\sigma^{2} / \mu^{2} \tag{4.2}
\end{equation*}
$$

which is valid for $t \geq 0$ provided that $\sigma^{2}$ is finite, cf. Carlsoo and Nerman (1986). Replacing parameters by estimates, one might use the midpoint of the bound in (4.2) to suggest an eatimate of $\mathrm{H}(\mathrm{t})$. In this case, the estimate turns out to be


FIGURE 1. The lower fitted regression line correspondr to failure times experienced by clerical workers (Type $=0$ ) and she upper fined regression line corresponds to professionals (Type $=1$ ).

$$
\begin{equation*}
\hat{H}(T)=T / \hat{\mu}+\gamma^{2} /\left(2 \hat{\mu}^{2}\right)-1 / 2 \tag{4.3}
\end{equation*}
$$

which is approximately $12 / 6.3+2.8^{2} /\left(26.3^{2}\right)-1 / 2=1.51$ in this case. The corresponding estimated bound is ( $\mathrm{T} / \hat{\mu}-1, \mathrm{~T} / \hat{\mu}+\partial^{2} / \hat{\mu}^{2}$ ), or $(.905,2.103)$. This type of approximation was discussed in Frees and Nam (1988) for the spocial case of i.i.d. data. For that situation, the approximation does well as $t \rightarrow \infty$, but performs poorly when $T$ is less than the mean.

As an alternative approximation, consider the semiparametric estimator defined in (3.6). To construct this estimator, one first fits the regression equation as in (4.1) to get $\left\{\mathrm{r}_{\mathrm{i}}\right\}$, the vector of residuals. For USAGE $=250$ and TYPE $=0$, we then construct the bootstrap distribution of observations $\left\{\dot{Y}_{o, i}\right\}$, where

$$
\hat{Y}_{o, i}=\hat{Y}_{o}+r_{i}=6.3+r_{i} .
$$

Values of $\left\{\hat{Y}_{0, i}\right\}$ are included in Table 1. Estimates of the $\mathbf{k}$-fold convolutions can then be constructed using (3.1). Analogous to Frees (1986), this estimate is the average over all possible evaluations of
$\mathbf{l}\left(\hat{Y}_{0, i_{1}}+\ldots+\hat{Y}_{o, i_{k}} \leq T\right.$ ). In Table $\mathbf{2}$ is an example of calculations for various values of $k$, the level of convolution. Using these values, the semiparametric estimate of the renewal function is $\hat{\mathrm{H}}_{\mathrm{o}, \mathrm{a}}(\hat{\boldsymbol{\theta}}, 12)=.7500+$ $.4421+\ldots+.0009=1.62$.

| TABLE 2. CONVOLUTION ESTIMATES <br> FOR USAGE $=250$ AND TYPE $=0$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $\hat{F}_{\mathrm{a}}{ }^{(k)}(\hat{\theta}, 12)$ | .7500 | .4421 | .2421 | .1119 | .0485 | .0174 | .0050 | .0009 |

In Table 3 is a comparison of the renewal function estimators for various values of USAGE, TYPE, the EXPected fitted value of $Y\left(Y_{0}\right)$ and DURATION (T). These estimates are based on the illustrative data in Table 1. The USAGE was selected to represent offices with high (USAGE=250) and low (USAGE=100) levels of activity. The warranty duration of $T=12$ and 24 months were selected to show the effects of duration levels that are a fraction of the mean and greater than the mean. Interpret the situation where the warranty is a fraction of the mean to be an insurance against an "unlikely" failure while the situation where the warranty is greater than the mean is more of a product service contract. In the latter situation, approximations such as in (4.3) seem to fair well, especially given the ease of computing such bounds. In the former situation, the semiparametric estimators seem to provide qualitatively more appealing approximations. See Frees (1986) and Frees and Nam (1988) for a more complete discussion of this issue in the i.i.d. case.

Also in Table 3 is an illustration of the estimation of discounted renewal function estimates. The discounted renewal function is

$$
T=E \Sigma_{k=1}^{\infty} \exp \left(-\delta\left(Y_{0,1}+\ldots+Y_{0, k}\right)\right) I\left(Y_{0,1}+\ldots+Y_{0, k} \leq T\right)
$$

The estimates were computed using (3.7) with $s_{k}(x)=e^{-\delta x} I(x \leq I)$ and, as above, $m=8$. As anticipated, the discounted renewal function is smaller for larger values of $\delta$. Further, the larger the warranty duration ( T ), the greater the effect of $\delta$ on the estimated renewal function. While the methods of this article produce asymptotically (as $n \rightarrow \infty$ ) consisteat estimates of the discounted renewal function, no simple reliable approximations analogous to (4.3) seem to be available.

| TABLE 3. RENEWAL FUNCTION ESTIMATES |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE | usage | $\begin{gathered} \text { EXP Y } \\ \text { (Q) } \end{gathered}$ | DURATION <br> (T) | H(T) | $\delta$ |  |  |
|  |  |  |  |  | 05 | 18 | 2\% |
| 0 | 250 | 6.4 | 12 | 1.514 | 1.618 | 1.540 | 1.470 |
|  |  |  | 24 | 3.428 | 3.483 | 3.104 | 2.783 |
| 0 | 100 | 36.1 | 12 | -0.166 | 0 | 0 | 0 |
|  |  |  | 24 | 0.169 | 0 | 0 | 0 |
|  |  |  | 36 | 0.499 | 0.500 | 0.367 | 0.269 |
|  |  |  | 48 | 0.835 | 1.000 | 0.698 | 0.489 |
| 1 | 250 | 20.7 | 12 | 0.087 | 0.150 | 0.135 | 0.122 |
|  |  |  | 24 | 0.669 | 0.666 | 0.560 | 0.472 |
| 1 | 100 | 30.4 | 12 | -0.260 | 0 | 0 | 0 |
|  |  |  | 24 | 0.002 | 0 | 0 | 0 |
|  |  |  | 36 | 0.216 | 0 | 0 | 0 |
|  |  |  | 48 | 0.454 | 0.350 | 0.226 | 0.146 |

## 5 Concluding Remarks

In this paper I have studied the use of cross-sectional regression data in semiparametric of costs arising from some simple warranty contracts. The main device was the residual-based infinite order U-statistics introduced in Section 2. This formulation suggests a number of possible extensions. Extensions to the estimation of costs arising from more complex renewal policies should be straightforward using the theory developed in Section. One review of such policies may be found in Frees and Nam (1988). Extensions to other renewal theoretic type measures should be feasible. For example, for the i.i.d. case, the probability of ruin parameter was investiguted by Frees (1986c). Extensions to other types of sampling schemes would also prove of interest. For example, Blischke and Schever (1975) cite the importance of censored data in warranty samasis.

## REFERENCES

Bartlett, M. S. (1954), "A note on multiplying factors for various Chi-aquared approximations," Journal of the Royal Seurizical Saciery B 16, 296-298.

Bickel, P.J. (1975), "One-step Huber estimates in the linear model," Journal of the American Statistical Association 70, 428-434.

Blischice, W. R. and Schever, E. M. (1975), "Calculations of the cost of warranty policies as a function of estimated life distributions, Naval Research Logistics Quarterty 22, 681-696.

Blischke, W. R. and Schever, E. M. (1981), "Application of renewal theory in analysis of the free-replacement warranty," Naval Research Logisticr Quarterly 28, 193-205.

Breusch, T. S. and Pagan, A. R. (1980), The Lagrange multiplier lest and its applications to model specification in ecocometrics, "Review of Economic Studies 47, 239-253.

Carlson, H. and Nerman, O. (1986) "An alternative proof of Lorden's renewal inequality,"Advances in Applied Probability 18, 1015-1016.

Cox, D. R. and Snell, E. J. (1968), "A general definition of residuals," Journal of the Royal Sratistical Sociery, Series B, vol. 30, pp. 248-275.

Crowell, J. I. and Sen, P. K. (1989), "Sequential nonpanametric estimation of the renewal function at a point," IMS Bulletin 18, no. 3, Abstract No. 210-46.

Freedman, D. A. (1981), "Bootstrapping regression models," Annals of Statistics 9, 1218-1238.
Frees, E. W. (1986a), "Warranty anolysis and renewal function estimation," Naval Research Logistics Quarterly 33, 361-372.

Frees, E. W. (1986b), "Nonparametric renewal function estimation," Annals of Statistics 14, 1366-1378.

Frees, E. W. (1986c), "Nonparametric estimation of the probability of ruin," AST1N Bulletin 16S, 81 90.

Froes, E. W. (1988), "On estimating the cost of a warranty," Journal of Business and Economic Statistics 6, 79-86.

Frees, E. W. (1989), "Infinite order U-statistics," Scandinavian Journal of Slatistics 16, 29-44.
Frees, E. W., Nam, S. (1988), "Approximating expected warranty costs", Management Science 34, 1441-1449.

Hoeffding, W. (1948), "A class of statistics with asymptotically normal distribution," Annals of Mashemarical Statistics 19, 193-225.

Mamer, J. W. (1982), "Cont analysis of pro ratin and free replacement werranties," Naval Research Logistics Quarterty 29, 345-356.

Mamer, J. W. (1987), 'Discounted and per unit costs of product warranty,' Management Science 33, 916-930.

Nguyen, D. G. and Murthy, D. N. P. (1984), "Cost analysis of warranty policies," Nowal Research Logistics Quarterty 31, 525-541.

Randles, R. H. (1982), "On the asymptotic normality of statistics with extimated parameters," Annals of Slatistics 10, 462-474.

Randles, R. H. (1984), "On tests applied to residuals," Journal of the American Statistical Association 79, 349-354.

Schmidt, P. (1976), Economarics, Marcel Dekker, New York.
Schneider, H., Lin, B. S., and O'Cinoeide, C. (1990), "Comparison of nomparannetric estimators for the renewal function," Applied Statistics 39, 55-61.

Schneider, H., Lin, B. S., and Tmn, C. (1991), "Comparison of renewal function estimators for ceasored dati," submitted to Journal of Staristical Computation and Simulation.

Sen P. (1981). Sequential Nonparametrics: Invariance Principles and Statistical Inference. Wiley, New York.

Serfling, R. J. (1980), Appraximations Theorems of Mathematical Siaristics, Wiley, New York.
Shapiro, C. P. and Hubert, L. (1979), "Asymptotic normality of permutation statistics derived from weighted sums of bivariate functions," Annals of Statistics 7, 788-794.

Sukhatme, B. V. (1958), "Testing the hypotheses that two populations differ only in location," Annals of Marhematical Stariszics 29, 60-78.

Taylor, J. M. (1986), "Extended warranty insurnace," Journal of the Instituse of Actuaries Student Society 29, 1-24.

Wu, C. F. J. (1981), "Asymplotic theory of nonlinear least squares estimation," Annals of Statistics 9, 501-513.

Yohai, V. J. and Maroma, R. A. (1979), "Asymptotic behavior of M-estimators for the linear model," Annals of Statistics 7, 258-268.

## APPENDDX

## Proof of Theorem 2.1

Differeat aspects of the mechod of the proof can be found in Sukhatme (1958), Bickel (1975), Randies (1982, 1984) and Frees (1989), although the details in this paper are different. Because these different aspects are scallered over a number of papers, an outline of the proof is provided here.

To begin, I firsa use (2.2) to define a centered version of $h_{h, a}$,


Thus,

$$
\begin{align*}
Q_{n}\left(\lambda_{1}, \lambda_{2}\right) & =n^{1 / 2}\left(U_{n}\left(\lambda_{1}, \lambda_{2}\right)-\tau_{n}\left(\lambda_{1}, \lambda_{2}\right)-\left(U_{n}(\theta, \theta)-\tau_{n}(\theta, \theta)\right)\right) \\
& =n^{1 / 2}(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{n} c_{n k} W_{k, \alpha}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda_{1}, \lambda_{2}\right) . \tag{A.I}
\end{align*}
$$

Now, define $\mathrm{M}(\mathrm{n})=\mathrm{Mn}^{-1 / 2}$, where M is the large constant in assumption A 1 . Then, sufficient for the Theorem is

$$
\begin{equation*}
\sup \left\{\left|Q_{0}\left(\lambda_{1}, \lambda_{2}\right)\right|: \lambda_{1} \in K(\theta, M(n)), \lambda_{2} \in K(\theta, M(n))\right\} \rightarrow_{p} 0 \tag{A.2}
\end{equation*}
$$

This is true, since for $\epsilon>0$,

$$
\begin{aligned}
P\left(\left|Q_{a}(\dot{\theta}, \dot{\theta})\right|>\epsilon\right) \leq P & \left(\sup \left\{\left|Q_{n}\left(\lambda_{1}, \lambda_{2}\right)\right|: \lambda_{1} \in K(\theta, M(n)), \lambda_{2} \in K(\theta, M(n))\right\}>\epsilon\right) \\
& +P(\dot{\theta} \notin K(\theta, M(n))) .
\end{aligned}
$$

and the second term on the right hand side tends to zero by assumption A1.

Now, as in Bickel (1975), partition the cube $\mathbf{K}(\theta, M(n))$ with a mesh of size $\delta$, to be specified later. Thus, a typical cube in the partition is of the form $\left(\theta+j_{1} \delta M(a), \ldots, \theta+j_{p} \delta M(n)\right)$ where $j_{i}=0, \pm 1, \pm 2, \ldots$,
$\pm([1 / \delta]+1)$ and $[$.$] is the greatest integer function. There are N(\delta)=([1 / \delta]+1)$ such cubes. Let $K_{1}, K_{2}, \ldots$, $\mathrm{K}_{\mathrm{N}(0)}$ be some ordering of the cubes and for the the cube, $\mathrm{K}_{\mathrm{i}}$, let $\theta+\mathrm{r}_{\mathrm{i}} \mathrm{n}^{-1 / 2}$ denote the position of its lower left hand vertex.

Now, define the mutually exclusive sets

$$
E_{i}=\left\{\sup \left\{\left|Q_{n}(\lambda)\right|: \lambda \in U_{j<i} K_{j}\right\}<\epsilon \leq \sup \left\{\left|Q_{a}(\lambda)\right|: \lambda \in K_{i}\right\}\right\} .
$$

Here, I use only one parameter $\lambda$ for simplicity. Thus,

```
\(P\left(\sup \left\{\left|Q_{0}(\lambda)\right|: \lambda \in K(\theta, M(n))\right\}>\epsilon\right)=P\left(U_{i \leq N(\delta)} E_{i}\right)\)
```

$$
\begin{align*}
& =P\left(U_{i \leq N(\delta)}\left(E_{i} \cap\left(\left\{\left|Q_{0}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right|>\epsilon / 2\right\} \cup\left\{\left|Q_{n}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right| \leq \epsilon / 2\right\}\right)\right)\right) \\
& \begin{aligned}
& \leq P\left(\max _{i \leq N(\delta)}\left\{\left|Q_{n}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right|>\epsilon / 2\right\}\right) \\
&+\Sigma_{i \leq N(\delta)} P\left(E_{i} \cap\left\{\left|Q_{n}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right| \leq \epsilon / 2\right\}\right) \\
& \leq P\left(\max _{i \leq N(\delta)}\left\{\left|Q_{n}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right|>\epsilon / 2\right\}\right) \\
&+\Sigma_{i \leq N(\delta)} P\left(\sup \left\{\left|Q_{0}(\lambda)-Q_{n}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right|: \lambda \in K_{i}\right\}>\epsilon / 2\right)
\end{aligned}
\end{align*}
$$

Sufficient for the first term on the right hand side of (A.3) to tend to yero is

$$
\begin{equation*}
\operatorname{Var}\left(Q_{0}\left(\theta+\lambda n^{-1 / 2}\right)\right) \rightarrow 0 \tag{A.4}
\end{equation*}
$$

for $\lambda \in R^{P}$, since there are only a finite number of terms in the maximum. Now, let $\alpha, \beta$ be two permutations of $\{1,2, \ldots, n\}$. From (2.2), consider $\operatorname{Cov}\left\{W_{r, \alpha}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{r}} ; \theta+\lambda a^{-1 / 2}\right)\right.$, $\left.W_{s, 0}\left(e_{\theta_{1}}, \ldots, e_{\beta_{1}} ; \theta+\lambda n^{-1 / 2}\right)\right\}$. If $\mathrm{r}+3 \leq \mathrm{n}$, the number of such covariance terms having zero elements in
 these ternis, the covariance term is zero. For other terms, use assumption A3 and Cbebyshev's inequality to bound the covariance yielding

$$
\operatorname{Cov}\left\{W_{r, a^{\prime}}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{r}} ; \theta+\lambda n^{-1 / 2}\right), W_{s, \sigma}\left(e_{\beta_{1}}, \ldots, e_{\beta_{s}} ; \theta+\lambda n^{-1 / 2}\right)\right\} \leq C \epsilon_{M(n)} \gamma_{2, r} \gamma_{2, s}
$$

for some positive constant C. Thus,
$\left.n \operatorname{Var}(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{n} c_{a k} W_{k, 0}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \theta+\lambda n^{-1 / 2}\right)\right)$

$$
\begin{align*}
& \leq n \sum_{r=1}^{n} \sum_{i=1}^{p}\left|c_{n r} c_{m o}\right|\{I(r+s \leq n / 2)(1-(n-r) /(i))+I(r+s>n / 2)\}\left(C C_{M(n)} \gamma_{2, r} \gamma_{2,2}\right) \\
& \leq C_{\epsilon_{M(0)}}\left\{\Sigma_{r+a \leq \Delta / 2}\left|c_{\mathrm{rr}} c_{\mathrm{m}}\right| 2 \mathrm{r} \leq \gamma_{2, r} \gamma_{2, \mathrm{~s}}+\Sigma_{\mathrm{r}+1>\mathrm{n} / 2}\left|\mathrm{c}_{\mathrm{mr}} \mathrm{c}_{\mathrm{ms}}\right| \gamma_{2, \mathrm{r}} \gamma_{2, \mathrm{~s}}\right\} \\
& \rightarrow 0 \text {, } \tag{A.S}
\end{align*}
$$

by the requirement that $\sup _{\mathrm{n}} \Sigma_{\mathrm{z}} \mathbf{k}\left|c_{\mathrm{a}, \mathrm{k}}\right| \gamma_{2, k}<\infty$. The fact that $\mathrm{n}\left(1-\binom{\mathrm{a}}{\mathrm{a}} /(\mathrm{n})\right) \leq 2 \mathrm{rs}$ when $\mathrm{r}+\mathrm{s} \leq \mathrm{a} / 2$ can be established after several lines of routine algebra. This is sufficient to establish (A.4).

## I now establish

$$
\begin{equation*}
P\left(\sup \left\{\left|Q_{D}(\lambda)-Q_{D}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right|: \lambda \in K_{i}\right\}>\epsilon / 2\right) \rightarrow 0 \tag{A.6}
\end{equation*}
$$

To this end, define

$$
H_{k, a}\left(e_{\alpha_{i}}, \ldots, e_{\alpha_{k}} ; K_{i}\right)=\sup \left\{\left|W_{k, 0}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda\right)-W_{k, \alpha}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \theta+\eta_{i} n^{-1 / 2}\right)\right|: \lambda \in K_{i}\right\}
$$

Now,

$$
\begin{align*}
& \sup \left\{\left|Q_{n}(\lambda)-Q_{n}\left(\theta+\eta_{i} n^{-1 / 2}\right)\right|: \lambda \in K_{i}\right\} \\
& \leq \sup \left\{n^{1 / 2} \mid(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{p} c_{n k}\left(W_{k, \alpha}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \lambda\right)-W_{k, 0}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; \theta+\eta_{i} n^{-1 / 2}\right)\left\{: \lambda \in K_{i}\right\}\right.\right. \\
& \leq n^{1 / 2}(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{n}\left|c_{n k}\right| H_{k, a}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; K_{i}\right) . \tag{A.7}
\end{align*}
$$

With assumption A2, we have

$$
E n^{1 / 2}(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{n}\left|c_{n k}\right| H_{k, a}\left(e_{\alpha_{1}}, \ldots, e \alpha_{\alpha_{k}} ; K_{j}\right) \leq 2 M \delta \Sigma_{k=1}^{n}\left|c_{n k}\right| \gamma_{l, k} .
$$

Thus, by the requirement that $\sup _{\mathrm{n}} \Sigma_{\mathrm{k}}\left|c_{\mathrm{n}, \mathrm{k}}\right| \gamma_{1, k}<\infty$, ooe can pick the mesh size $\delta$ such that $M \delta \sum_{k=1}^{n}\left|c_{\text {ak }}\right| \gamma_{1, k}<\epsilon / 4$ for all n. Hence, by (A.7) and the Markov inequality
$P\left(\sup \left\{\left|Q_{0}(\lambda)-Q_{R}\left(\theta+\pi_{j} n^{-1 / 2}\right)\right|: \lambda \in K_{i}\right\}>\epsilon / 2\right)$

$$
\begin{aligned}
& \leq P\left(n^{1 / 2}(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{n}\left|c_{n k}\right|\left(H_{k, a}\left(e_{\alpha_{l}}, \ldots, e_{\alpha_{k}} ; K_{i}\right)-E H_{k, \alpha}\left(e_{\alpha_{l}}, \ldots, e_{\alpha_{k}} ; K_{i}\right)\right)>\varepsilon / 4\right) \\
& \leq 16 / e^{2} \operatorname{Var}\left(n^{1 / 2}(n!)^{-1} \Sigma_{\alpha} \Sigma_{k=1}^{p}\left|c_{n k}\right|\left(H_{k, a}\left(e_{\alpha_{1}}, \ldots, e_{\alpha_{k}} ; K_{i}\right)-E H_{k, a}\left(e_{\alpha_{i}}, \ldots, e_{\alpha_{k}} ; K_{i}\right)\right)\right) \\
& \rightarrow 0
\end{aligned}
$$

similarly to (A.5). This is sufficieat for (A.6) and heace the reault.

