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ABSTRACT 

A large class of financial models of costs associated with warranties involve 
functions that arise in renewal theory. The simplest interesting example is the 
renewal function which, for the purposes of this art ic le,  may be interpreted as 
the expected number of fai lures by a specific warranty duration. To estimate the 
renewal function, cross-sectional regression data is assumed to be available. 
The data is assumed to be semiparametric in that the observation may be expressed 
as a known function of a vector of covariates, a vector of unknown parameters and 
an unknown error term while no distr ibutional assumptions are made on the error 
terms. An estimator of the renewal function is constructed and conditions are 
provided so that i t  is asymptotically normal, after suitable standardization. 
This estimator is a special case of a class of stat ist ics introduced here called 
residual-based in f in i te  order U-statistics. U-statistics are complex averages 
over functions of observations. In this art icle, the observations are a11owed 
to be residuals from a complex regression model. By appealing to this large 
class of stat ist ics, several other parameters of interest in warranty analysis 
and related fields may be estimated. Convolutions of distr ibut ion functions and 
a discounted renewal function are discussed in this art ic le.  Using cross- 
sectional regression data to estimate characteristics of a stochastic process, 
such as the renewal function, requires strong assumptions. In fact, an 
interesting aspect of this ar t ic le  is that this estimation can be accomplished 
using reasonable models for the contracts and data collection. 
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Semiparametric Estimation of Warranty Costs 

1. Introduction 

An important aspect of marketing • product is the quJity of the product, both real and perceived. 

l~canse of marketing pressures, warranties ate routinely provided by mmufacmmrs to t consumer on purchase 

of a product. A warranty is an agreement to relmir or replace • Imrchased product upon failu~. Thus, the 

financial obligation of the manufacturer is realized only upea failure of the product which is a contingent, or 

random, event. Genend accotmting procedures dictate that • liability, ca" reserve, be established to meet this 

obligation. In the United States, this is part of the Financial Accotmtlng Standards Boa~l's Stalement of 

Financial Accounting Standards No. 5; Acconnt/ng for Contingencies. Estimating the expected liability of a 

warranty is the motivation which drives the development this paper. Of cout, se, this is only one aspect of 

warranty analysis which, roughly speaking, is the subject of financial implications of the reliability of products. 

If  one takes acnumal science to be the quantitative study of financial implications of contmgem events, then 

warranty analysis is a subset of actuarial science. Warranty analysis wotdd not fall under a more traditional 

definition of actuarial scieaice, the quantitative study of financial security systems. See Taylor (1986) for a 

description of • warranty system from an insurance company perspective. 

There are number of important financial sunmmry measures in warranty analysis. The simplest 

interesting example is directly related to the renewal function, as follows. Consider a sequence of i.i.d, random 

variables, Yl, Y2 . . . . .  that represents s=_~cc~ssive lifetimes of • product. Under a free replacement policy of 

duration 'T',  the product is immediately replaced UlXm failure gp to and including "T' umts of tnne after initial 

purchase of the product. In this context, the nmewal function evaluated at time "T' is the expected number of 

replacoments and is defined by 

H(T) = E E~= l I(Yl + ... + Yk < T). (1.1) 

where I( ) is the indicator of • set and E denotes expectation. Assuming the cost per replacement is either fixed 

or can be modeled by an indepm,bnt stationary process, the expected warranty cost is the expected number of 

repl~.?.cme~t~. H(T), tunes the expected cost per replacement. Several additional summary measures have been 

discussed m Blischke and Schener (1975, 1981), Mamer (1982, 1987), Nguyen and Murthy (1984) and Frees 

(1988) and are considered m section 3. These include models of the variability of  costs and models which 

incorporate the time value of money and other economic aspects of the warranty agr=ement. The important 

point is that the sequence {Y1, Y2 . . . .  } and summary measures as in (1.1) comprise a model used to determine 

financial imptications of the warranty contract. 
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To a s t m l ~  smmnm'y memmes inch as the nmewal function in (1.1), clesdy • desirable form of data is 

to have identical and mdepmdeat  copies of the stochastic p~o~eas {YI, Y2 . . . .  }. With this data, evem if  

depmdez~ee eximt among the obaervaliom of each process, cae  could still comigteafly eaunate  H(T). Whe~ 

one does not have this desirable form of  the data, reliable intimates can still be achieved by making stronger 

as~mmp~om on the distrihntion of the pt, cce~ .  In particular, in Flees (1986a, b), I showed how to estimate the 

f'ul~fim asimmir,~ that obas~81fiol~ YI . . . .  ' Ya are i.i .d. Building on this work, Crowell and Sen 

(1989) have smumaesd the extemica  of th~ wock whe~ the (i.i.d.) data are gathered r, equ~t ia l ly ,  Schneider el 

ai (1990) have discussed efficient ~n lmta f i cmd a lgor i thm and Schneider et ad (1991) have discussed extension 

to the cemored data case. In Frees (1989), the class of pm'ameters estimated was s~x~tntially generalized to 

handle, as special cases, other ~ summary measm~s briefly alluded to above. For example, suppose that 

{ht} is a sequence of known functions where h k inaps k-d/lnemiol~al Euc l lde~  ~ into the real line. Assume 

that sufficient conditiom ex/st so that the pm.ame~ 

r = E E ~ ' .  2 h t ( Y ,  . . . . .  Yk), (L2)  

is weU-defi~ed, e . l . ,  ht(Y t . . . . .  Y~) = I(YI + ' "  + Yk ~; T). This is an extension of the concept of 

unbiased estimators called U-statistics to sequences that are poa ib ly  unbounded and are called infinite order U- 

s~ttist/~. For example, in the context of warranty analysis, defining hk(Y ] . . . . .  Yk) = 

exP( '1~ ' l  + ... + Yk))I(YI + .-. + Yk < T) means thal "r can be interpreted as the expected number of 

renewals discounted at the rate of iatmest & See, for example, M a m ~  (1987) for • discussion of this 

l~rameter. 

The~  tre a number of  ways of collecting data to approximate the above summary messares. In this 

paper, I relax the stringent ,mmmption that the observatiom are i.i.d, m d  assume, insteP,  that the data are 

cross~ecbonal, or regression, data. One traditional formulation is to assume that each observation (Yi, Xi) 

follows the nonlmesr r e g r e ~ o n  model 

Y~ = l~(o, Y~ + % i = I  . . . . .  n. (1.3) 

Here, Yi is the responas or depeedeet random element, ~ is the covtr i l te  or iadepmdeut element, 0 is t p- 

dimemional vector of unkaowu perameteN, {el} is tn i.i.d, sequea~  of  unobasrved random elements, and {gi) 

is • sequence of known functions. In this paper, I also consider 8 more genend formu~tioe due to Cox and 

Snell (1968). Hen~, (Gi) and (Ri) are ~ l u ~ c e s  o f l m o ~  fimctiom satisf34nil the n~lation.ships, 
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and 

Yi = Gi(0, ei), (1.4) 

= ~ O .  YD. (1.5) 

The model in (1.4) and (1.5) ~ m e a m ~  ia the ~ that while the d e p z a d ~  element Yi is 

by 0, no parm~e~c mmmp¢ions me made ~ g  the distribution of {~}. Among other 

smoothness coaclitions on (1.4) and (1.5), it is a s m m ~  that sufliciaat conditions are available so that root-n 

c.onsistem estimates of  0 are available; see assumption AI below. The model outlined in (1.4) and (1.5) 

includes the nonlinear n~gresmon model in (1,3) and other important special cases. To handle some examples in 

multivariate regzeuion below, ~ that {Yi} and {~} are q-dimefafiomd nmdom vectors. This formulation, 

using an estimate ~ of  0, allows m to define the residuals as r i i,. Ri(~ , Yi) " Ri(~, G(0, ~)  ). Now, the 

sequear.e {r I . . . . .  re} is only ap lnox izm~y i.i.d. However, the fact that r i =. e i sugge~s that one can use the 

re .duals  in calcuinting • stttistic T n = Tn(r I . . . . .  re) and that the distribution of To(r I . . . . .  re) wil l  be nearly 

the same as that o f  Ta(e I . . . . .  e e l  Quantifying this proximity has been the subject of considerable attention m 

the literature. In Section 2, I extend this Literature by quantifying the proximity in the case that the statistic is 

an infinite order U-statisnc. The results of this section may be of  independent interest and thus are self- 

colltained. 

To tie together the model of f in~cial/mpfications and the model for the data collection formally, begin 

with {~,  i=  1,2 .... j = 1,2 .... }, a rectangular array of mean zero i.i.d, random variables with finite variance. 

Assume that we observe {(Yil, X0} ~ l]utt the ob~rvgt iol~ follow model (1.4) and (1.5). The mternst is m 

esumalmg • smmlmry me*.mre of the stochastic pvooeas (Yo, I, Yo,2, Yo,3,'"}" As an example, consider the 

renewal function in (1.1) and regression data model in (1.3). The goal is to estimate 

Ho(0, I") = E I;~.~ It~o,, + ... + ¥o,k S T) 

= E~=t l(e, +... +e k + kgo(0, Xo) ~ T). (1.6) 

In Section 3, the results of Section 2 are used to show that the residuals of the regression modeling, together 

with ~, can be used to estimate Ho(O , T). The inmitio~ is that the covar/at~ X o is specified and he~.~ the 

regresszon function is knowu up to the vector of penunsters O. The distribuuon of the errors is assumed to be 

common to all observations sampled and l~ace can, in pmzciple, be refiably estimated. Some readers may wish 

to focus on the illustrations of rmewal function estimawrs that ate presented in Section 4. 
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Using cmm-sectkmal regression data to est~mte character izes  of • smc.has~ process requires strong 

MmUnl~ons. In fact, an mteres~ug aspec~ of this l~tper is that this es~inmt~n c=m be accomplished using 

reasonable models for the coutra~ts and data colloclion. 

2 .  Residua l -Based  Inf ini te  O r d e r  U-Stat is t ics  

The ~ ~ t r i b q ~ / o o  of  this ~ o n  is to ex to l l  the ~ l / c h ~ - ~ I ~ d  e ~ i m ~  work of Sukhaune 

(1958) and Randles (1982, 1984) to the case of infinite on~r  U-s /a t i~cs  (Frees, 1989). It is conve:meut to 

present the results for a regrossioQ s t r u c ~  that is move general than cons/deled by S ~  and Randles. 

Let {hk} be • sequemce of kernels where h k is of order k and is indexed by ), E R P, i.e., h :R qk x R p 

"" R. Let {c=k) be a triangular array of comtants such that 

~(el ..... eo; X) = E~. l ¢.,, hk(el ..... ~; >,). 

Thus, the kernel h~ is not symmetric in its ~ t s .  The parameter of m t e n ~  is 

T = l i m ~ .  ro = l im~. .  E h~(e 1 . . . . .  Co: e) 

w h e ~  the limits t re  aseumed to exist. The estimator of ~ inves~gated in this section is 

~(~)  = (n!) -1 E~ h ~ ( r ,  . . . ,  ro ,  ; e). (2.X) 

Here, ~a means the sum over n! ic~.rmutstions of {1,2 ..... n} of the form a = {ct I, a 2 ..... an~. For 

example, it turns out that defining hk(e | ..... ek; ),) = l(e t + ... + % + k go(k.X 0 ~ T ) and cnk m l 

implies that Un(~ ) is • useful estimate of Ho(#, I"), dcfiaed in (1.6). This and fuxthcr examples are explored in 

Sectmo 3. The statistic U~u(~) woudd be • U-stat i~c,  and thus have sevend known pmpe~es  (cf., Serflmg 

(1980) and Sea (1981)), except for three c~,tails. First, the estimated ~ 0 is included in the evaluation 

of the statistic. Second, the s t~ s t i c  is evaluated using residuals in lieu of  i.i.d, elements. Third, the statistic 

may be of iafmite  order. Tluu is, i f there ex is t sa  finite m such that c.~, = 0 for t l l  n > m, theu 1~ is said to 

be • finite order ke~.l and infinite order, otherwise. The traditional U-stslis~c sex-up is to require cnk = 1 for 

all n ~ m. The finite order case where c a is not coestant in u can be handled by straightforward projection 

and triangular array techniques (cf., Shapiro and Hubert, 1979). The purpose of this section is to explore the 
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proximity of L~a(~ to the U ~ c  evaluated at S and using the i.i.d, errors {~}. 

A• noted by ]~and!~ (1984), the avenge of • function of the residuals in (2.1) can be related co the 

weighted average of a function of i.i.d, e~ors, as follows. First, defiae the perturbed errors el(), ) = 

PICA, o~(e, • i) ) and no~ that e~(S) = e~. Now define the weighted kernel 

.... • Xt, X.z) m CAt) ..... eakcA I) ; k2) (2.2) hk,a(eal' e ak ,  hk(eal 

Since r i s ~(~), we have that the fixed ~ h k evab,-m ,I using ~emdm~ equals the weighted kernel hk. a 

evaluated using i.i.d, errors, i.e., 

hk(ral . . . .  , rak , 

for each X E R p. This observation is true using the broad Cox and Snell formulation m (1.4) tad (1.5) as well 

as the simpler model in (1.3) investigated by Randles (1984). 

With the notation 

and 

. . . . .  " Xt, xz) u.0~l. ~z) ~ - i  c~  (.!)-i E.  ~ , o ( e a f  eat ,  

THEOgEIVl 2.1 : Under the regulm~ty conditions m assumpt/ons AI - A3 below, we have 
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Remarks: The pruof of Theozem 2 . 1 i s  m the A p ~ .  Inmmyapp l i ca t i0m,  it mms  out that 

.,/2 (.,,(b, b) ~.(e,  e)) ,. op(1) ,o e a t  u : (b )  i n h ~ t s  the p ,m,e~es  of ~ U ~ c  u~(0, e). Tht,  d e p e ~  o .  
whether the gntd/mt of T a at 0 eventually vanishes and is made imscise in Corollary 2.1 below. Theorem 2.1 is 

an exlemion of  Theo~m A.9 of Rmutles (1984) and Theorem 2.8 o f ~  (1982) to handle infimte order U- 

suai~ic~ m d  multivariate, I~msndized ~ i d u a l s .  

I I Prior to stabng the regularity conditions, I fir~ collect some useful notalion. For X 6 R P, define t X, 

to be the max;,m,m of the coordinates of X and, for d > 0, define the cube K(X,d) = 

{Z ° E RP:  I X ' - X l  ~ d}. Let {~d} be asequence ofcowlantssuc.h thaXed- '*0u  d ~ 0 .  Let {T;,k}, i=1 ,2 ,  

be mqueau~ of ~ such that mpa ~'k ki-l Ica.kl "It,k < ~, i= t.2. 

AI.  A.umme that n 1/2 (b - 0) ,- Op(l), that is, theae exists a ~atl~icieafly huge M so that 

p (b ~ Kfe, M .'v2)) -- o. 

Assume, for each 7,1, )'2 E K(0, M n'l:2), that 

" h~a(eat . . . . .  eak ; Xt, ~'2) I : X~ E K(Xt,d), X~ E K(~,d)}  < d Vl,k, 

tad 

*3.  E ,,,p ( I h , .~%, . . . . .  oo,  ; x;, ~,~) 

In the finite order case, Randles observed (1982, I_emma 2.6 and 1984, Condition A.6) that A2 and a 

utmformly bounded kernel implies A3. In the infinite order case, it is interesting to note that A2 and the fact 

that h k ix uniformly bounded does not necessarily imply A3. 

The applica~oa, and felevmce, of  the assumptions can be best illustrated by considering the simplest 

example in U - s t a t i c  theory, cremating the vanance 

"~76 



~m~le 2. ] .  EJ:imozing the Error Varianc~ 

Comider data from the multiplica~ve error model, 

Yi = gi(O) ~ (2.3) 

and initially assume the ilotl is to estimate the variance of the trmmformed additive model 

Y;  = g;(0) + e.~ 

where Y~ = log Yi, g~ = log & and e~ = log ~. To estimate 02 = V t r  (e~, the well known (of. Serflmg, 

1980, page 173) unbiased kernel of order 2 is h2(x,y) -- (x-y)2/2. Th~ is sutficimt for the kernel h~, taking h k 

m O f o r k ~ 2 a n d c e ,  l m l .  Forl6mpficity, now dmp the tsterisk notation. L e t O b e a n e s t i n m t e o f O s a t i s f y m g  

AI  and define the = d u a l s  r i = Y i -  {i(6). ~ = ,  using (2.1), an estimate of  o 2 is U~e(9 ) = 

( ~ ) "  ~ < j  (r i - rj)2/2 = (n- i ) "  ]~t (rl " 7e) 2, where "~'= = n "  ];= r k. 

Now, with (2.2) and the perturbed errors, el(x) = Yi " gt(X) ffi ~ + gt(0) - gi(k), we have 

; X, k 2) = (eat(X) - ea2(X))2 / 2. Require that gi be tmiforndy IApschitz m a neighborhood of 0, h2,a(e~t, e a  2 
more specifically, for some positive constant C, ~ I gt(xl) " gi(X2) I ~; C [ Xl - )'2 [ for all Xt, X 2 G 

K(8, M n't/Z). It is straight forward to check that this is ~af~ciemt for A2 and A3. Further, since 

E h2,a(eal, ea2 ; X, X 2) = o2 + (gal(~) - ga l (x )  - go2(0) + ga2(x)) 2 / 2, 

we have 

to(x ,  x)  - T.(0, o) = ( ~ )4 Z;i< j (~(e) - ~(7,) - gi(0) + =j(X))2 / 2 

= (n - l )  -I E i (gi(0) - ~ ( x ) )  2 - (n ( . - ] ) ) '=  E i (~ (e )  - ~ (X ) )  

< o ( I  e - ×  12 + n-= I 0 - ×  ]) .  

He=~ce, w~th AI,  

,1 j/z (,o(b, b) - T=(s, 0)) = O(u x/z (b-e) 2 + n-~r2 (b-0) )  = op(n ~ )  

= Op(l). 
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Thus, U~a(e) inherits the asymptoUc first order pmper~e= of U u. From, for example, Serfling (1980, page 192), 

Issumln]g fiDJte fourth momet~ts of the errors and the uniform Lipschitz coedif io~ on &, we have 

~t~ (u;(~) - ~) -.~ ~(o, ~- • 4 - °% • 

Exampte 2.2. Seerningly Unrelated Regressions 

Now cousJder the model 

Y= = Xtt# t + %, i = l  . . . . .  n. t = l  . . . . .  q. (2.4) 

T'ms is the linear versiun of model (1.3) whe~  I write Yi = (Yi,t . . . .  , Y~,~' to sugge~ that the model (2.4) can 

be mewed as ~ (m t) rath~ than multivariate relD'e~on. It is well-known, especially in the 

econometric literature (of., Schmidt, 1976), that parameter efficiency is improved by combining equalfions and 

using genenlized least squares (GLS) m lieu of ordinary least squares (OLS) e s t m m ~  of 0 = (#t . . . . .  ~q)'- 

Specifically, Imsume that {el, t . . . .  , ea, t} lu~ i.i.d, for each t and define ~ to be • q x q matrix whose (i,j) th 

elemeot is ~,j  = Coy(el,i, el./). One procedure for estimating #t is to use ordinary least squares for each 

equsttou. It is known that OLS for estimating 0 reduces to using OLS for each equation for esUmatmg 6 t. 

Computationtlly, this is s~nnpler tlum using generalized least squares. Further, in the case that ]; is = scalar 

multiple of the identity matrix, OLS estimates are as efficieut as GLS estimates. Thus, it is of interest to 

esOmate ~. based m OLS estimators to see if  the more complex GLS calculations are warranted. 

With  the notat ion e i = (el. 1 . . . . .  ~.q)' ,  define the kernel h.2,i,j(el, e2)= (el. i - e2,i) (el, j - e2,j) / 2. 

Since E h2.i,j(e t, ¢2) equals "~t`/, this kernel serves as our unbiased eatimator for the ( i , j~  element. In example 

2.1, the case of  i = j  was considered and the ca lcul~ons  for i ~ j  are virtually the same. To this end, let 6OLS be 

the least squa~ eslimate of 0 and define r i to be the corresponding vector of res;dtmis. Define the residual 

based estimate of  T.,ij to be Sij(r ) - ( ~ )-I ~=<t h2,ij(r=, rt) and define the unobserved esttmator ~x,j(e) 

similarly. As in Example 2.1, ass~Jming bounded covtriates, it caa be checked that 

Si`/(r) - ~`/(e) = op(n't/2), (2.5) 

and thus Si,j(r ) inherits the asymptotic properties of ~`/(e). Denote S to be the matrix whose ( i j ~  element is 

Si, j. To see the applications o f  this result, recall that there are several statistics available for testing the null 
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hypothesis Ho: ]: = 02 lq, whea~ 02 is • scalar and Iq is • q x q identity matrix. Well-known exang)les mclude 

Bartlett's (1954) stalastic det ( S )a / if?= I (~,i)a and the IJgrange Multiplie~ gtatistic ( ] ) !  El< j S2j in, for 

example, Brensch and Pagan (1980). Both of  these examples are c, ontinuo~t tranMorm~ of {Sid }, ~ay M(S), and 

have well-known w/mptotic prtqmrties whan calculated maag i.i.d, observat/om. With (2.5) and the contmuons 

mapping theorem, it is stnightforv~rd to check that M(S(r)) will inherit the a~mptotic properties of M(S(e)). 1 

To apply the main result under broad settings, listed below are additional regularity conditions that hold 

in s e v e ~  important cases. 

A4. For sufficiantly large n, essume that the gradimt VTa(O, O) e x i t ,  is finite and satisfies 

sup. I ~ . ~  x) - (~o(O, e) + O, - ¢)' sz~o(o, e)) I = o( IX - Ol). 

AS. A.mame that Ua(0, 0) ,- ¢a(0, 0) + ]:k hl,a(et) + °v(n'lr2), whelre 

hl,o(x ) = I/{Uo(0, 0) - ¢.(0, 0) I e t  = x} LS. 

A6. Asmune that there exists a known function ~ such that 0 = 0 + ~k Ztm '~(%) + %(n'I/'2) where {Z~} 

is • triangular array of known vectors. 

COROLLARY 2.1 Under the regularity conditions A1 - A6, we have 

u_'(0) = ~.~(0, 0) + ~ .  ~ { z ~ '  vT.(o, o) ~ )  + h~,~(eO) + ov(--] ':).  

Remarks: The proof of CoroUary 2.1 is imm,,wliat~ from Theorem 2.1 and is omitted. Corollary 2.1, and the 

usual triangular array central limit theorems, immediately yield the limiting distribution for U~'(0). Assumption 

A4 is • mild smoothae~ reqmrement on the expected value of the kecne.l, aot the kernel itself. Sufficient 

c.¢au~tiooa for A5 were provided by Hoeffding (1948) m the finite order case and by Frees (1989) in the infinite 

orde~ case. The exlamsion in A6 is stemiard, see Yohai aad Maromm (1979, Theorem 3.1) for linear model M- 

estmmtes which include maximum likelihood estimates and Welsh (1987, Theorem 1) for linear model L- 

estmzates. Wu (1981, Theorem 5) establishes A6 for nonlinear least squares. 

I close this section with an exeng~le of Corollary 2.1 using finite order kernels. Examples using 

infinite order kernels can be found in Section 3. 
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Now coasic~r es~uslm$ the vam~li~ of the .memnsformed, nml~p~cabve error model (2.3). 

mo~valion is that it is the vmriam~ of  • that is ~ y  linked to the v ~  of the obucvano~s, not the 

variance of the Unmsformed errors. Define the pemubed ~,-~o,~ ~,0,) ffi Yi / gi(X) and, for an estmmze 0 of e, 

define the residuals r i = ~(0). From (2.2), we have 

~z,a(eax, ea2 ; k, X- z) - (eat  gat(e)  / gat(>,) - ea2 ga2(0) / ga20,))2 / :2. 

To satisfy A2 and A3, requue as before that & is uniformly Lipochitz and also require that gi is u~formiy 

bounded away from zero. This is sufficient to satisfy A2 and A3. The proof is straightforward and is omitted. 

To c.,hoc.k A4, we have 

~.(x, x) = ( ~ )-~ ~,<j  E (~, g~(e) / g~0,) - e~ g i(e) / gj(x)) z / 2 

and thus, 

V'rn(0, e) = ~ / n  ~i gi(0) ~ ~IBX (gi(X))'21;,,.~ = -2 ~ / n  ~i Vgi(0) / gi(~) " 

Thus, m u m m I  &O,) = li(~) + (X- ¢)' Vl~( ~ + o( IX-  ~1), we lmve 

o~/u D, l (g~(~) / g~(k)) z -  x + 2 0 , - 6 9 '  cg~(e) / g~(¢) I = o ( l x - o l ) ,  

uniformly m n, which is saffficiml for A4. 

Asmmaptiou A5 is __,~__gtlly • ceatral limit theorem for traditional U - m t ~ c s  •ad is sattsfied as above. 

For this example, it turns out (cf.. Serflinlg. 1980. p. 182) thal ht..(x ) ffi ((x-E e)2-~)/(2n). 

Aasumptiou A6 is satisfied by appealing to the usual cemtral limit theorems for nonlinear regression 

after transforxmdag to the additive model. For example, Wu (1981. p.509) provides conditions so that A6 holds 

with ~,,(ei) ffi log (~) and Zlm = ( ]~i Vgi(O) Vgi(~)' yl Vgk(0)" • 
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3. Regression -BasedRenewaiFunctionEstimafion 

In this ~t:tion, the fftm~al theot 7 of  Section 2 is applied to sevm~l summary measures related to the 

renewal f u n ~ o n  that are useful m win-mary ana/yms and mother parameter of importance in actuarial science, 

the pmb~UiW of ram. For simplicity, only tlm r~mmioa dam model m (1.3) with additive errors is explicitly 

¢o~,.s/dcred in this section. It rams out that the limiting di~but ic~a of the resulting nonparm~tr ic  ~ttmator is 

parucularly appealing when the kerm~ can be e x ~  ms • functinu of the pm.tml sums of the stochmst~c 

~ of the fiMncial model 

3.1. Comoluf ion  and Remewai Ftmc~ioa ~ m n t i ~ t  

Consider tbe data model m (1.3). Atmame thst we are mmtttm~ m the tmmmm-y reinsures with 

characteristics Xo and that the corresponding regmsmon function st that point is go(e, X o) = go(O). In this 

s'ul~waion, I discuss the estimmion of tim ~ r u = ~ .  t c ~  F(k)(T - k go(O)), where F(k)(T - k go(o)) 

= P(e| + ... + ok + k go(O) < T) is the k-fold convolution of the dimibution function evaluated st 

T - k go(O). Whea C=k = l for some fixed k and is zero otherwise, for all n, rhea ~'n is the k-fold convolution. 

Whea cnk is ideatically equal to tree, then r u is ___~sf.e~__~lly the rtmew~ ftmction in (1.6). 

I begin by discussing an estimate of the k-fold convolution. For an ¢mimste ~ of e saOsfymg AI,  

define the r~idmfls r i : Yi - gi(8) • Lea ht(e I . . . . .  ek; X) = I (e l+  ... + • k < T - k go(X) ) and define 

f:n(k)(0, T) = (n!) "l ~ a  hi(roq, -'-, rak  ; ~) 

to be the estimate of the k-fold convolution F00(T - kgo(0)). An mteremting interpretation begins with the fact 

that F00(T - kgo(o)) can be exprms~  as P(YI + ' "  + Yk ~ T). If  we define Yo,i m go(e) + ri, then { ~'o,i } 

can be thought of as the bootstrap distrilmtion of  the ~ t  variable at X u. Freedman (1981) provides an 

introduction to the usa of  the bootstrap technique in the linear model set-up. Thus, the estimator of  tim k-fold 

convolution is tim same as in F m  (1986) except u.linff the ~ distr ib~ion m lieu of the tmoMrved  i.i.d. 

random variables. Thus, we can also express the estimate of the k-fold couvoluticm ms 

f:o~)(b, T) = ( [ )-t X,00 Xd, o,il + ... + ~o,i  k ~ T). (3. t) 

Here, the notation Ecfk) means sum over all distinct combmstions {il, ..., ik} of {1,2 ... . .  n}. With this 

notation, the estimator of r u is 
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.... ; ~) T~n(9) = ( n!)'l ~a ~ = t  ¢'~ hk(rat, rr, k 

As in Section 2, a .mful  quanti~ that is ~ ~ r .  and l.~,(~) is re(0, 0), where 

%(>,. ×) = ~ = L  c,,z ( | )'1 I:~c, ) F0:) f r .  ~2~., ~ijO, ) . gii(~ 0 . zoO,)) ). (3.2) 

To establish the limiting di~nbution of these es~nates we need some mild smoothne~ assumptions on 

the distribution mul relpresmoa functi.om. Similar to Se~(m 2, I assume 

L1. The regression functkm is uniformly Lipschltz of order one in • neighbodxx)d of e, i.e., for some 

positive cousumt C, sup, I gi(Xl) - giCA2) I :; C I kl - k2 [ where kl, k 2 are m some neighborhood of 

0. 

L2. The density of F 0~), t ~), exam at T-kgo(e ) end sabsfies 

(i) sup. I: k k ~ I Cn,kl Pk)fr-kgo(e)) < m and 

(ii) F(k)('r-kgo(8)+¢) = F(k)('r-kgo(S)) + e f'~)(T-kgo(e)) + o(~), uniformly in k. 

TIE,OttO4 3.1 Assume that At, LI and 1.2 hold for the data model in (1.3). Then, for a fixed T and Xo, 

n ~ (v.(~, ~)-  .oCe. e)- {~.~ ~,  0:.~)(0, "r)- ~')(o, 1")) ) ) --p 0, 

where Fn(k)(8, T) = ( ~ )-I ~c0~) l(eit + -.- + eik + kgo(8) < T) is a U-statistic of order k. 

PROOF: 

The proof is immediate from Theorem 3.1, after checking A2 and A3. To prove A2, recall the 

,-equality, I I(x~;y) - I(x~;z) I ~; I( Ix-(y+z)/21 ~ ly-zl/2 ) for real numbers x,y and z. Thus, 

. . . . . . . .  • o ~  _ % ~  x,. x~)I 

ffi J I( ~ =  t (eaj + gaj(8) " gc¢j(~;) < T -  kgQ(~ ) 

- + - gc, j(Xl) < T - k~CA2) ) * I( ~ =  ~ (eaj gaj(0) i 
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I( l I;~., (eo~ + =~(O) - ( =0 C~,') + =0,~,) - go~" ~('~,~z))/2 )- T 

• ~ I ~., ( ,,,, 0,~ - ga/X,) - gO,-i.'.') + ~(~) I ) 

x( [ llik=, (%j ÷ go,j(s) - ({~/x,') + {~(x,)- go(Xz') - ~.(~)t'z )- T ~ 2~C~ ) 

s I( I:]L, ( g~0,b - goC~)~ - ~c4 ) 

k + + (~CA 9 - gajO,,)):2 ) -  Z < ~;j.~ (ec~ gc~(8) 
k (g~j(X~) S r~j =, . - go( '~) /2 + 2.kcd ) ). 

Define ,lu(OCj) = sup (gajCAl'): k~ ~ KCAI, d)}, ,{L(aj) = inf (gajCXl'): X~ E KCA l, d)}, and similarly define ,Iu(o) 

and ,Tx(o) using 'o '  for otj and X 2 for hi. By Assumption LI, we have [ ,{u(c,j) - ,yL(aj) [ ,c Cd. Thus. 

E sup { hLa(eal , ..., eak .... eak , 

E I (  IZ~= t (~L(aj) - 'h.(°)) ~ - ~c..~i ) 
k 

< Ej =I (eaj + go:j(#) + (go(X9 " gc,jO',))/2 ) " T 
k S Ej = l (~U(aj) " ~U(°)) F2 + ZkC_.d ) ). 

F(k)( k = IZj., ( n,~a# - ~o))t2 + 2kC~ + T - ~i-, (gaj(°) + (go(k9 - gai(X,))/2 )) 

- F¢.)( k Ej=, ( ,Iu(ap - ,71.(o))/'2 - 2kCd + T - ~j=l (gaj(0) + (go(k'2) " gaj(kl))/2 )) 

= FOOCT-k~(a)) 

+ ( l+o( l ) )~k) ( 'T-kg~) ( (  Ek=l (g~j(~)-(~U(~j)+g~j(Xl))/2) + k(ago(~k~) -~u(O))/2+ 2kCd) 

- { (FC~)(T-kgo(0)) 

+ (1 +o(l))f(k)(T-kgo{0)(( ~ k  I (g,.,j(O)'(~g(°j)+gaj(Xl))/'2) + k(go(X2) "V/L(°))/2" 2kCd)} 

< 6 kCd Fk)('r-kgo(O)) (1 + o(t)). 

By L1. the o(1) does no~ depead on i. By L2, this is sufficieot for A2. The proof for A3 is similar and is 

o,-,ttea. • 
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I now present illumatiom of Theorem 3.1 for the ¢cmvolution and renewal function ca,u~. Another 

e~-,~, le of Theorem 3.1, not diso,_~e-I_ here, is the variance of the numix~ of renewals in, for example, Frees 

(1988). For simplicity, assume the multiple linear regression model for the dart, 

Also umame some stability of the covm'iat~ sequence, 

(3.3) 

and 

n-I a ~i= l  Xi "*/'ix (3.4) 

u-~ ~ = i  Oci-~x) ~ - # x ) '  "" r-x (3.5) 

where T., x is • positive definite matrix. Retat/oes (3.3) - (3.5) are the usual ones made in applied econometrics, 

of., Schmidt (1976), and are akin to auumln$ that the covm'ia~ are drawn from • random sample. 

COROLL~Y 3.2 - CONVOLUTION ESTIMATOII For the data model in (3.1) - (3.3), assume that the covanates 

are bounded and that I..2 holds. Let 0 be the least squares estimate and assume that the errors have finite third 

moments. Thin, for • fixed T, X. o and k, 

n 1:2 ('Fa"k)(0, T) - Ffk)(0, T)) ~ N(O, AVAR|) 

~ ,symp~otic v~im~ ~ xv~ t = :')fr-k x~ 0)z F 0,x-xg'E-t0~x-xo) 
+ k 2 v~-'fr-k X'o 0-e)) + 2k p0fr-k x~ 0) ~,x'~]0~x-X9 Co~(e. F~k)fr-k X~ 0-e)). 

I~OOF OF CC~OLLAXY 3.2: 

I appeal to Corollary 2.1. ~ o a s  AI and A6, with Z ~  = n' l~ "1 X k and ~(x)=x,  are satisfied 

by the usual triangular array c4~md limit theorem. Assumptions A2 and A.3 are satisfied as in the proof of 

Theorem 3.1. Assunxption A4 is immediate from 1.2, where VTn(e, 0) = t~)(T-k Xo 0) (X - Xc,) + op(n|:2). 

Aasumptioct A.5 is standard in U-gatistics theory, see for example Frees (1986, equation (3.3)), where bln(e ) = 

k/n (F(k'l)(T.-k Xe B-e)- FOC)('l'-k X' o 0)). Thus, from CoroLlary 2.1, we have 

~oo~)(~, -[-) = F~>(0 ' T) + .~ ~.~ :~J)O'-k X'o 0) Xl ~ (X  - X ~  e; 

+ k/n ~.] f~")fr-k X~ 0-~)- ~)fr-k X'o e)) + op(,-"z). 

This, Slutsky's Theorem, (3.4), (3.5) and the usual central limit theorem are sufflci~t for the proof. • 
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For the renewal fuac6on, let m - re(n) be an integer inch that m -* ee as a "* oo. Define the estimate 

of  the rmewal  function 

~Io,o(~, 1") = L'~k.X ~.(~)(~), T). (3.6) 

The following is the result which motivated this study. 

COItOH, A~Y 3.3 - RI~EWAL FUNCTION ESTIMATOR Under the assumptiom of Corollary 3.2 and Theorem 

3.1 of  Frees 0986) ,  

n xn (',:Io.,(}, 13 - ~(0, T)) - ~  )~(0, AVAR 2) 

where He(0 , T) is the renewal function defined in (1.6) and AVAR 2 - 

( E~=  1 ~>fr-k X~ 0)F d Ox-Xo)'L'%,x-XO + l:~=~ I:~'.L rs CovtT~"J)Cr-r X'o O-e), F('-uCr-s X'o O-e)) 

+ 2( I:~.t P')(T-k X~ 0)) ~,x'~%,x-X~ I:~=~ k Co~(¢, F~)(T-k X~ 0-~)). 

The proof  of Corollary 3.3 is similar to Corollary 3.2 and is omitted. Further discussion and numerical 

examples of Corollary 3.3 caa be found in Section 4. Consider the case p =  1 and X as idemically constant for 

the model in (3.3). In this case, {Yi) is an i.i.d, sequence. He,re, the asymptotic varumce reduces to AVAR 2 

= ~[~r=l ~ ' - I  t"S Cov(F(r-I)(T-e), F(tl)( 'r-e)). A c43osif, tellt estinlatof for AVAR 2 was established m 

Theorem 4.1 of Frees (1986). More g e n e r a l l y , / t  esl~aiticm of  the asymptotic varumce is a difficult 

problem. The usual jackknife estimate seems to only capture the middle term in the expression of AVAR 2. 

The problem is complex since, even if  X o 0 may be mscaled to equal zero, one must sl~ll estimate the renewal 

dm~sity, ] :~  =1 ix'k)(']'), using residuals from • prelimilmry regression fit. Estima~on of this asymptotic 

variance is an interesting ix)arability for future research. 

3.2. Par t ia l  Sums 

A setting which includes the renewal f i a ~ o n  eatimator of Subsection 3.1 but still restrictive enough to 

achieve easily interpretable re.t i ts occurs when each kernel is a function of  the sum of observations. I illustrate 

this setting by considering the discounted renewal function, an impoaant parameter in warranty analysis. 

Now, suppose we are interested in summary m , ~ r e s  of the form 
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= E I ;~ ' .~  st(Yo, x + --. + Yo,=) (3.7) 

where (Yo, l, Yo,2 . . . .  } is the unobserved stochastic process of mtete=, {Yo.i} an= ~ e a t  and follow 

Yo,i -- X~,i B + co,i, and {st} is a sequence of known fumctiom. Define Sk(X ) = E sk(e I + ... + e k + x  ) and let 

VSk(x ) be the com=spondmg derivative witb ~ to x. 

As in subsw.tion 3.2, summe the data follows the multiple linear regression model in (3.3)-(3.5). 

Similar to (3.1), the realdunl-b~ed infinite order U-sta l is~ eslimste is 

u'.(~ = ~ . ,  ( p, )-' ==a) ' ~ o , i ,  + ' + ~o,~= )" (3.7) 

where {~'o,il . . . . .  ~'o,ik } is the enq~irical, or bootstrap, distribution at X o. The expression in (3.7) is useful 

for computing the statistic. Similar to (3.2), the quantity useful for computing the asymptotic distribution is 

• . (x,  x) = ~'== x ( P, )-I E=c= ) st ( E~== ~ x~ ( x -  0) - xo x) 

and thus 

v,=(a. 0) = ~ =  1 vs=(-k Xo o) ( ~ -  x o .  

For example, aumming st(x ) = e ~x I(x "= T), the= ~" in (3.7) is the discounted renewal function 

evaluated at T, of., Ma~- r  (1987). This yields St(x) = J • "~e+x) l(e =; T - x) dF(k)(e) and thus VSk(X ) = --6 

Sk(x) - • "°r t~)(T - x). 

4. Illustrative Renewal Function Calculations 

To illustntte the calculations for the renewal functioa in Subsectic~ 3.1 and the discounted version in 

Subsection 3.2, consider the fictitious data se / in  Table 1. This data represents experience of failures of a type 

of photocopy machine from each of 20 nmdomly selected offices. Here, {Yi} represents the time to failure of 

the photocopy machine from initial machine installation and {Xli } is • measure o f  the amount of  use on a 

momhly basis, called USAGE. The variable {X2~ }, or TYPE, is an indicator as to the [~aX[Ominant type of  User 

in an office:;  X2i = I indicates that the i e= office is staffed with primarily professional users ,  X2i = 0 indicates 

the presence of primarily clerical workers. For this data, the linear regression model with p=3  was fit. Using 
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tbe d=~ in Table I .  ¢~'e fitted ~lffe=nan equUoa mma out m be 

~" = $5.9 - 0.1984 USAGE + 14.3 TYPE. 

TI= data, with two mperLteq~ued fitted ,~s=,.,,..Noa lineu, ~ ,~ . . -  in Figm~ 1. 

(4. t) 

offx= 

T A B L E  I .  I L L U S T R A T I V E  D A T A  

1 2 3 4 $ 6 7 I 9 tO I1 12 13 14 15 16 17 1|  19 20 

4 0 ~  10 2:2 28 30 22 SO 20 41 10 0 l |  40 31 30 14 4 20 44 64 .~6 

,1SAGE I 246 I20 166 175 | J |  ~ ~ |  $1 ~ ~ Z .n  F~ 104 Z24 ~0~ 2~0 2tO i64 68 124 

~E ' | 0 I I 0 I | 0 ! 0 1 0 0 I 1 0 0 t 1 I 

~OUUlp 

.1SAG E -- 

~0 " ~  

I'YP1E - 0 

9.2 IO..q I[-1 I$.1 16.1 17.2 17.6 18.9 |8.9 19.7 22.3 23.08 23.4 24.8 24.9 263 26,4 26.9 2"7.9 31.0 

Now, =uppo=e chat we w i ~  to es~una~ the e.xpecled m m d ~  of  f'~urc= by T ~ I 2  mouth= f o r m  office 

composed o f  prixmu'gy p~fesaiomd vmdmrs (TYPE-0 )  md with the = .q~  vuiabl© a~ 250. From equ~ou 

(4. t), the expected time un i t  f = l u ~  is 

~'o " 55.9 - 0.1984 (250) + 14.3 (0) - 6.3. 

From standard linear modeJ theory and the above ~ it is easy to check tlua the standard deviation associated 

with this fit is ~ l y  2.8. Now, cousid= • weil-kDOWU ~ dm~'uic bound 

t / ~ - I  < H(t) ~ t / / =  + ~ / ~  2 (4.2) 

which is vatid for t;¢0 provided that ¢2 is EnJce, of., Cazlsc= and Nerman (1986). Replacing puxmeteN by 

es~mat,.~ oae might use the midpoint of the bound in (4.2) to ~aggest u ~ of  H(t). In this c u e ,  the 

es~m=tt, turns out to be 
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FIGURE I. The lower f i t ted regression line corre~onds to failure times experienced by clerical workers 
( 7 ~  m O) and the upper futed regression line corresponds to professionals (Type = 1). 

i~(T) = T/~ + d z / (2 ~ ) -  Zf2 (4,3) 

which is approximately 12/6.3 + 2.82/(2 6.32) - 1/2 = 1.51 m this case. The corresponding estimated bound 

is ('r/t~ * 1, T/f~ + ~2 //~2), of (.905, 2.103). This type of approximation was discussed in Frees and Nam 

(1988) for the special case of i.i.d, data. For that s i t a~on ,  the approximation does well as t -* ~ ,  but 

performs poorly when T is l e~  than the mean. 

As an t l ten~t ive  appmxinu, tiou, consider the semipartmemc esUmator defined in (3.6). To construct 

this esOmator, o~e first fits the regeesmoe e q u ~ o n  as in (4.1) to gel {r~}, the vector of residuals. For 

USAGE=250 and TYPE-O,  we them coust r~t  the bootstrap distribution of observations {'~'o,~}, where 

~to,t = Yo + ri = 6.3 + q. 

Values of {'Yo,i} are included m Table I. ~ t e s  of the k-fold convolutlons can them be constructed using 

(3.1). Analogous to Frees (1986), this estimate is the average over all posmble evaluations of  
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+ ... + Y < T). In Table 2 is an example of  calonlations for various values of  k, the level of  
l(Yo,it o,i k 

convolution. Using these values, the set.parametric estimate of the renewal function is I~o,t,(8, 12) = .7500 + 

.4421 + ... + .0009 m 1.62. 

TABLE 2. CONVOLUTION ESTIMATES 

FOR USAGE -- 250 A N D  TYPE = 0 

k I 1 2 3 4 5 6 7 8 

Fa(k)(~, 12) 1.7500 .4421 .2421 .1119 .0485 .0174 .0050 .0009 

In Table 3 is a comparison of the nmewal function eshnmtors for various values of USAGE, TYPE, 

the EXP~t-,M fitted value of Y (¢t'o) and DURATION (T). These e~mates  are based on the illustrative data in 

Table 1. The USAGE was sel~t_-~_ to represem offices with high (USAGE=250) and low (USAGE= 100) 

levels of activity. The warranty duration of T=  12 and 24 months were selected to show the effects of duration 

levels that are a fraction of the mean and greater than the mean. Interpret the situation where the warranty is a 

fraction of the mean to be an insurance against an "unlikely" failure while the situation where the warranty is 

greater than the mean is more of a product service contract In the latter situation, approxim,ttions such as m 

(4.3) seem to fair well, especially given the ease of computh~g such bounds. In the former situation, the 

s e m i t e  estimators seem to provide qualitatively more appenlmg approximations. See Frees (1986) and 

Frees and Nam (1988) for a more complete discussion of this issue in the i.i.d, case. 

Also in Table 3 is am illustraUon of the esUmation of discounted nmewal fiuu:tion estimates. The 

discounted renewal function is 

~" = E ~ - I  e x p  ( -6 (Yo ,  l + . . .  + Yo,k))  I (Yo ,  I + "'" + Yo,k ~ T )  

The estimates were computed using (3.7) with Sk(X) - e 6x I(x ~ T) and, as above, m=8.  As anticipated, the 

di~.ounted renew~ function is smaller for larger values of & Futthe~, the larger the warranty duration (T), the 

greater the effect of/~ on the estimated nmewal function. While the methods of this article produce 

asymptotically (as n --) m) conmstent ef, nmates of the discounted nmewal function, no simple reliable 

approximations analogous to (4.3) seem to be available. 
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TABLE 3. V.EN".-~AL FUNCTION ~ T E S  

USAOE ~ Y DURATION 

0 250 6 A 12 

24 

0 100 36.1 12 

24 

36 

441 

1 ?.50 20.7 12 

24 

1 100 50.4 12 

24 

36 

411 

0% 

1.514 1.615 

3.4211 3.4K3 

• -0.166 0 

0,169 0 

0.499 0.5O0 

0AL35 1.000 

0.067 0.150 

0.669 0.666 

-0.260 0 

-O.O22 0 

0.216 0 

0.454 0.350 

1% 2~ 

1.540 1.470 

3.104 2,711.3 

0 0 

0 0 

D.367 0.269 

0.698 0.4419 

0,135 0.122 

0_560 0.472 

0 0 

0 0 

0 0 

0,226 0.146 

5 Concludlnf Rmvmrks 

in this ~ | have studied ~ use of cl~m--scctio~ ~ c l ~  in s~-~p~Jmc~'ic of cogs msmg 

from some simple w~'nmty contracts. The m device was the resiclxud-I~sed i~-mite order U-su, tistics 

mtrod,~_~'~ m Sec~cm 2, This formulation suggests • number of  p o ~ b l e  e x ~ i o m ,  Extensions m the 

es~ma~on of  cogs  arising from more complex ~ policaes should be ~ra i~at forward  using the theory 

developed m Section. One r~-~ew o f  such policies may be fmmd m F n ~ s  and N a m  (1988). Exteasions to other 

t h e o n ~ c  type mmmarm should be f e l i b l e .  F ~  example, for the i.i .d, c u e ,  the probability of nun  

pm-ame~  was investigated by Frees (1986c). F, xumsiom to ~ types o f  sampling schemes would Llso prove 

of  m~rest .  For  example, Blischke and Schex~r (1975) cite the importance o f  censored c l ~  in warranty 

~ y s x s .  
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APPENDIX 

Proof of Theorem 2.1 

Differmt aspec~ of the method of the proof caa be fotmd in Sukhatme (1958), Bickel (19"75), Randles 

(1982, 1984) and Frees (1989), tlthmagh the details in this paper are differem. _Be,.it~ these different aspects 

ire ~'-~--.-ed over a n ~  of Impers, an outline of the proof is provided here. 

To begin, I first use (2.2) to define a centered version of ha,ca, 

e(x k ; Xt, )'2) bLa(eal, eat , ; X i, X2) E hk, a(ecq, eak • X|, )`2) WLa(ecll, ..., m ..., - ..., , 

; 0, 0) - E hk,a(eal . . . . .  ; 8, 6)). - Olk,a(eal, -.., eak ca k 

Thus, 

Q . t X l ,  Jv2) . ,  n xr2 CU.O~,, X2) - To(X 1, X2) - ('do(O, 0 - T°(O, 0)) 

. . . . .  " )`l, ~.). 'sLr2 ( 's!)'l ~a ~kk-I cnk Wk,a(eeq, eok, (A. l) 

Now, define M(n) = M n v2, where M it the huge constant in umm~tion AI. Them, suflicieat for 

abe Theerem is 

sup {IQ=(XI, k2) I : k! E K(e, M(n)), X 2 E K(8, M(n))} ~ 0. (A.2) 

This is true, since for ( > 0, 

P( IQu(0, 8)l >~ ) < P (sup { lQn(Xl, ),2)l : ),1 E K(0,M(u)), k 2 E K(O,M(o))} > e ) 

+ P (0 q~ K(0,M(n))) .  

and the second term on the right hand side tends to ~ by asm.mnpUou AI. 

Now, as in Bickel (1975), partition the cubc K(O, M(n)) with a mesh of stzc ~, to be specified laler. 

Thus, a typic~ cube m the partition is of the form (6 + Jl ~$M(n) . . . . .  6 +jp 6M(n)) where Ji = 0, + 1, + 2 . . . . .  
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-I-([I15]+ I) and [.] is lh~ ipreme~ m~-'gea ftmctioa. ~ am N(~) - ([I/~$]+ I) p such cubes. Let K I, K 2 ..... 

Ks(s3 be some ordering of the cubes and for the P cube, Ki, let e ~- ~i n-lr2 dmo~ the position of its lower left 

hand ve~.e.x. 

Now, clefioe the mutually exclusive se~s 

= { sup {10°(X) l  : ), E U j<  i K.j ) < ~ ,= sup { I q ° ~ ) l  : ~- E K i } }. 

He, re, I use only one parmne.u~ X for mmplicity. Thus, 

p (sup { IQoCA)I : X E K(0,M(n))} > e ) = P ( Ui<N(S3 F_. i ) 

= P (  Ui,cN(s3 ~ i r~ ({IQu(# + ~ n-la) l  > e/2} u {Iqu(O + ~ n l a ) l  (: e/2)))) 

< P (maxlsN(s3 {10°(e + ~; n-I~) l  > e/2}) 

+ ~.,=N(S3 P( E i n {10 . (e  + ~in l r 'z) l  < , /2})  

.~ P (max~.(~ {Iqo(e + mn'~a)I > c12}) 

+ ~<N(S3 P( =P {IO.,(X)- Q°(# + n~.~rZ)l: ~KI) > c/2). 

(A.3) 

Su~cion¢ for the first term on the right Imnd side of (A.3) to umd to zero is 

VII" (Qo(O + X n'I/'2)) -* O, (A.4) 

for k E R p, s~c¢  there m'e only • finite number of ter'~n~/n the n~umimmn Now, let a ,  /~' be two 

permutations of {1,2 . . . . .  n}. From (2.2), consider Coy {Wr,a(eal . . . . .  e ; 6 + ), n l a ) ,  
cq. 

Ws,~e l, ..., e l  ; e + k n l a ) } .  If  r+sc :n ,  the number of such covaria~.e tel'ms having zero elcments in 

commoo is n! (n-r)! (n--s)t / (n-r--s)!. Thus, the proportion of lermm l i v i n g  zero elements is (n~-~ / ( ~ ). For 

these terms, the covanance term is zero. For other terms, use assumption A3 and Che.byshev's inequ.dity to 

bound the covmrim~ce yielding 

; # + k nI/2), Ws.~(c~1, ; # + ;~ n l a ) }  ¢: C eM(n) "12,~ "r2,, Coy {Wr,a(eal . . . .  , ear .... • 
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for so~e  pos/S~ve constant C. Thus, 

.... ; 0 + X n 'In))  n Vat((n!)  °1 E a ~ - I  Cmk Wk,a(¢Czt o eak 

= n (ut) -2 E~ ~ ~ - 1  ~,,-I c .  c .  Co~0v .... w ~  ) 

• ~ n ~ = t  L'~*=I Ic~r cn.] { l ( r+s ' :n /2 )  (I - (n-~r) / (~) + I ( r+s>n/2)}  (C ~M(.) 72,r YI,*) 

C c'M(~) { Er+,.c~2 Jcffi cml 2 r $ Y2.r'Y2., + Er+*>,:2 Ic=cml Y2.r 7Z.. } 

-4' 0, (A.5) 

by 0~ ~ t  tl~m supn ,~ k Ic~l "r2.k < o.. T~ f~t m~n(Z- (~'J)/(.~)) ~ 2 rs when r+s,Cn/2 

can be c~abl i sh~  aft~ sevta'al line* of ~ Idg~ora. This is sufficie~ to eslablish (A.4). 

I now establish 

p( sup {IQaCA) " Qa(0 + 711 n'lt2)l: ) ,EKi) > e/2) --. 0. (A.6) 

To this end, define 

Hk,a(eor I . . . . .  • k; Ki) = sup{JWk,~(eal . . . . .  eak; k)-WLa(ea! ..... ©ak;8+~ n'It2)]: k E Ki}. 

NOW i 

sup ( I Qua) - Q,(O + ~i n'I/2) I: ),E Ki} 

< sup { n ja l(n!) 4 E~ ~ = l  c.,~ OVk,(,(ec, l ..... eak; X) - Wk,deal ..... eak; e + nl n'1~)I: ~,(~I~} 

~: nl/2 (a!)'l ~a ~ = !  lC~kl I"Ik,a(e,.,,! ..... eak; ](i)" (A.7) 

With ~ t l l ~ O l t l  A2, we h ive  
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E n Ir~ (n!) I £¢, 2~ Ic~l H~(eal ..... ca: ]C O ~ 2 M a ~-s lc.~l +l.k' 

Thus, by the requi~me~t that sup. ~k [CLkl 3'1,k < co one c a  pick the mesh stze ~ such that 

M S ~ = 1  Ic.t[ ~l.k < E/4 for tll n. Hence, by (A.7) and the Markov mequafity 

P( sup {[Qa(~) - Q.(0 + ~n ' l /2) l :  XEKi} > ~/2) 

< P ( at/2 (n!) "l ~a ~ - I  *cakl (Hk,a(eat ..... Oak; Ki)- E I ~ ( e a l  ..... eak; Ki)) > e/4) 

16/~ Vtr (n It2 (n!) "1 ~a ~ - 1  Ic~[ ('l'ILa(eal ..... eat; I~) - E HLa(eat ..... eak; K~))) 

• -D 0, 

similarly to (A.5). This is mfficie~t for (A.6) and hence the rmuh. • 
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