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ABSTRACT 

A mathematical framework for benefits and choices must be created, in order to model 
benefit selection. This paper creates such a framework by defining benefit plans as 
reimbursement functions. These are then used with a defined choice function to calculate the 
cost deviation due to selection. Finally, utility functions can be applied to this framework, to 
predict choice. 

I. INTRODUCTION 

The problem of selection has been recognized by actuaries since the early days of the profession, 
and has been a continuing concern since then. Highan [14] in 1851, for example, authored an 
article in the first volume of the Journal of the Institute, entitled "On the Value of Selection as 
exercised by the Policy-holder against the Company." Similarly, McClintock [19] in 1892, in 
an early volume of the Transactions of the Actuarial Society of America, published an actuarial 
essay "On the Effect of Selection." 

During the early periods, the analysis was primarily descriptive, and concerned with 
identifying situations conducive to adverse selection and the associated haTards. In recent years, 
the emphasis has changed towards an attempt to model the selection process and an analysis of 
the sensitivity of those models. Moreover, while the initial concern was raised by actuaries in 
the context of insurance, it has come to be recognized as an issue common to a number of 
commodities, and, as such, has become an important field of study in economics. 

A number of issues have emerged. The optimal form of an insurance contract for a risk- 
adverse insured was studied by Borch [5], Arrow [2], Raviv [22], Bfihlmann and Iewell [7] and 
Blazendo [4]. Models which addressed the difficulty created by asymmetric market information 
regarding the riskiness of the insured where developed by Akerlof [I]), Rothchild and Stiglitz 
[23], Wilson [25], Miyazaki [20], and Spence [24]. Still others have studied the role of wealth 
in this decision process. These have included Gould [13] who concluded that it was not 
appropriate to consider demand without regard for the wealth position of the individual, Mayers 
and Smith [18], and Doherty and Schiesinger [11], who showed how assets con'elate with the 
demand for insurance. 

This paper extends the analysis by dealing with some of the statistical aspects of choice 
in benefit plans. Although the techniques presenaxl could be used for any choice in insurance 
plans the focus will be on group health benefit plans. By group health benefit plan we will mean 
a system in which the members of a group are eligible to receive insurance benefits for some 
part of the cost of their (and sometimes their family's) medical case. The insurance beaefits 
may require the payment of premiums. Generally the particular plan of benefits and premiums 
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are unique to each group. The group is usually formed for some other purpose than the 
insurance coverage. The most common groups are the employees of a single employer. 

Most of the remarks will deal with the traditional health insurance indemnity plans in 
which the group members obtain health care from licensed health care providers and then are 
reimbursed for a portion of the charges made by these providers. Some benefit plans include 
a provision for an employee choice between more than one formula for the amount of 
reimbursement. The employee may be required to contribute different premiums for each 
option. 

Employee choice in group health benefits has only started to become popular in the last 
5 or 10 years in the United States. Of course, trivially, most plans have always allowed the 
choice of rejecting the coverage if the employee is required to pay premiums for the coverage. 
Thus, there is a choice between the benefit plan and a null plan. 

H. R g E V l B U R S ~  

Before we can write some expressions for the effects of selection or predict it we need 
to express the whole set of choices and outcomes in a functional and probabilistic setting. 

Let the random variable X be the covered charges for an individual during a period, 
usually one year. Assume that X is a one dimensional positive random variable. 

We define the notation: x ÷ = max {0,x} = ~0 x<0 
tx x>0 

Let r(X) be the amount of reimbursement in a benefit plan for covered charges equal to 
X, where r is a function called here a reimbusement function. Note that we are assuming that 
the amount of reimbursement is determined only by the total of covered charges during the year 
and not by when the services were performed or by which providers. 

Although any function r could be a reimbursement function we note that they generally 
have the following properties: 

I. They are continuous: lim r(x) = r(a); 
x ~  

H. They are nondecreasing: x > y =, r(x) > r(y); 

III. x > y ~ r(x) - fly) _< x-y; and 

IV. r(0) = 0 
Property I says that the amount reimbursed cannot vary too much for small changes in 

covered charges. Property II says that as the covered charges increase the reimbursement cannot 
decrease. Proigrty III says that amount of reimbursement cannot increase faster than covered 
charges. Property IV says that there is no reimbursement when there are no covered charges. 
Example 2.1 

The reimbursement function can be the identity function: r(x) = x. This is full 
reimbursement for all covered charges. 
E, xample  2.2 

The reimbursement function can be identically equal to zero: r(x) = 0 for all x. This 
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is the case of  no benefits. 
Example 2.3 

For a g i v e n  fixed constant d,  

r (x)  ffi ( x - d ) *  = / 0 x < d  
[ x - d  x > d .  

This is called full coverage after a deductible. The constant d is the deductible. 
Example 2.4 

For a constant c, 0 < c <  1, r(x) = ex. The constant is called the coinsurance rate. 
Example 2.5 

We can have both a deductible and coinsurance (a combination of  examples 2.3 and 2.4): 

r(x) = c(x-d) ÷ = ~ 0 x < d  
I c ( x - d )  x > d . 

Example 2.6 
There can be a limit on the coinsurance of  example 2.4. For  constant L > 0  and c, 

0 < c < l :  1 

r(x) = ex + [(1-c)x-L] + = ~ cx x<Ll(1-c)  
t x - L  x > L / ( l - c ) .  

Here L is known as the coinsurance limit. Note that L is not the amount of  covered charges that 
has to be reached before ~ reimbursement but rather is the maximum that is not reimbursed. 
Example 2.7 

Examples 5 and 6 can be combined to get a plan with deductible, coinsurance, and 
coinsurance limit. 

r(x) = c(x-d) ÷ + [(1-c)(x-d)-L] + = d) d<_x<Ll(l-c)÷d 

[ x-~a-'-t, u(x-c)÷a<x 
In this case L+d is sometimes called the out-of-pocket limit. 
F.xample 2.8 

Often there is an overall individual annual benefit maximum. For a constant M: 

r(x) = min{x,M} = ~ x x<M 
! M x>_M. 

Example 2.9 
There can be the combination of  examples 2.7 and 2.8. This would be a plan with 

deductible, coinsurance, coinsurance maximum, and overall annual maximum: 

r~x) = m i n { c ( x - a ) "  + [ O - c ) ( x - a ' ) - L ] ' ,  M} - 

0 x < d  
c(x-d) d<x<Ll(1  -c)+d 
x - d - L  L/(I -c)  +d_.<_x < M+d÷L 
M M+d+L <_x 

JNote that we have deviated from the usual convention of reserving the uppercase for random vm'iable$. 
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For this example we will define the intervals: B = [d,L/(l-c)+d),  C = [L/(l-c)+d, M+d+L) ,  
and D = [ M + d + L ,  oo). Even though this looks rather complicated, this is often just called a 
comprehensive major medical plan of benefits. Of course, examples 2.1 through 2.8 can be 
treated as special cases of this example 2.9. All of  the r 's  in examples 2.1 through 2.9 satisfy 
the properties I through IV above. 

Table 1 illustrates some sample r's. r~ is a very rich plan. r2 reimburses less and r3 is 
a cheap plan. r4 is the null or 0 reimbursement of example 2.2 and r~ is the full reimbursement 
of example 2.1. 

~ p l e  2.10 
Assume that the random variable X has the discrete distribution: 

Pr{X=~} -- 1~ for k=O, 1, 2,... and a constant s called the unit or ~ . 2  

Of course, ~ pk=l. Using the r 's of example 2.9, we can calculate some values: 
k-O 

EIr(X)]-- ~ c(ks-d) Pt + ~ (ks-d-L) pk+ ~_. M Pk . 
h E B  h E C  linED 

ElF(X)] = ~_~ cT(ks-d)2p,+ ~ (ks-d-L)Tp,+ ~ M2p. . 
h e l l  ksEC IaED 

and 
Var[r(X)] -- E[r2(X')] - E2[r(X)]. 

Where we have used the notation: r2(X) -- [r(X)] z or E2(X) =[E(X)] 2. 
Table 2 shows an example of such a distribution. This distribution was based on some 

data obtained from Health Care Service Corp. (Blue Cross Blue Shield of Illinois). 
Table 3 shows the expectation and variance of the 5 reimbursements ofexample 2.9 when 

using this distribution, with s=$1,O00. 
Example 2.11 

Similarly, let X have the mixed distribution where Pr{X=0}=p0 and 

f do. i,  ,uoo on,  uo, 
J 

and Klugman [15, page 50] for a discussion of mixed distributions. Again, assuming the ~k of 
example 2.9, we have the values, 

E[r(X)]=I c ( t - d~ t )d t÷  Ic( t -d-Lf f ( t )d t+lMf( t )d t ,  

and 

Table 3 also shows a calculation of these values using the Pareto distribution with the same mean 
and variance as the discrete distribution and 1~=0. The Pareto distribution is discussed in [9] 
and [15]. It is often used for claim size distributions. The Pareto has density: fix) = 
ah'~CA+x) ~ l  and expectation of Xl(a-1) 

~"his formulation has the advantage of  simplicity. An alternate formulation would be that the P r { k s < X < ( k + l ) s }  
s l~lt. 
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HI. COST DEVIATIONS DUE TO SELECTION 

We assume that a group is composed of m individuals, m > I. The covered charges for 
individual i will be denoted with the positive random variable X,, I ~ i ~ m. ~ as~me lhat 
each individual is given a choice at the beginning of the year between n reimbursement 
functions: rt(x) ..... r,(x). In order to avoid long subscripts we will write rj(x) = r0,x), I ~j ~n. 
We define the "mean group reimbursement at rj" ~ the random variable 

r1~ i-| • 

In the prechoice environment, insurers have been estimating E(~I,j) by using relatively 
complicated manual rating formulas that take into account the characteristics of the group, the 
individuals in the group, and rj. The formulas are complicated because they must reflect the 
deductible, the coinsurance, and so on) Incidentally, insurer's will often use the group's 
experience to estimate E(~j). 

Assume that the i-th member of the group, 1 ~ i ~ m, chooses reimbursement level 
X(D, I Sx(i)_<n. Thus X(i) is a function x:{l,2 ..... m} ~{l,2,...,n} cal]ed the choice function. 
Also, we define P(j), 1~j_-_n as the annual premium payable by an individual for 

reimbursement j. The total reimbursement to the group R =~ r0f(i),X~), the total premiums paid 
i-I 

- 

P= P(X(O), and G = P -R = ~ [P0f(0) -r(x(i),X~)] is the insurer's gain. 
i - I  i - I  

r~L~dV~LE 3.1 
We have a set of Xi, I < i < m ,  mutually independent and identically disUibutexl as in 

example 2.10. The set of functions rj(x) ffi r(j,x), 1 _<j -<n, are as in example 2.9 where d(j), 
c(j), L{j) and M(j) con'espond to rj and therefore we have the intervals B(j), C(j) and D(j). For 
a choice function X, we can calculate the values: 

E[r(x(i),X~)] ffi ~ cCx(i ) ) [ks-d(x(0)~ + ~ [ks-d(x(t))-LCy(i))~ k 
J'-E ~ ( l ) )  ~ E ~ ( O )  

and 

+ ~ M(x(0)p, 

~r'(x(0,x,)]  = ~ c'Cx(0)lks-d(x(0)]2P~ + 
ta E B(X(0) ~ E ~X(0) 

+ ~ M'(,Y(O)pt. 
~ E D(xO) ) 

From these we can then calculate: 

[ks-d0f(i))-L(x(0)]2pk 

3Of courme, this is not true for simple reimbursement functions such as ha examples 2.1, 2.2, and 2.4, where: 
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I 

I=I 

Var[R] = ~ rarlr(x(0.X.)], 
i - I  

(given a set of P~'s) E[GI, and Var[Gl. 
r_,,am pk 3.z 

We can let the X~ have the distribution of example, 2.1 I. We can also have the 
reimbursements rj's and the choice function x(i) of example 3.1. Then: 

E[r(X(f),X,)] = _[~o~)c(x(O)[t-d(x(i))] j~t) dt+ _{ c0,c0)It-d(x(0)-L(x(0)] fit) dt 

+ J[o~)M(x(O)'fit) dt 
and 

E[r2(x(O,X)] = f~(o)cZ(x(O)[t-d(x(O)] 2 .~t) dt+ [c~o))[t-d(x(O)-L(x(i))] 2 fit) dt 

+.{o~(o)M2(x(O) j~t) dt 
The expressions for Var[r(x(i),X0], El-R], VariR], E[G], and Vat[G] are the same as in example 
3.1. 

Now we define the "cost deviation due to selection", a random variable for a group with 
m individuals as: 

A = R - ~  ~'[X(0] 
l=l 

i - l  = [ ~I/:= I 

This is called the cost deviation due to selection because A is equal to the deviation in the 
reimbursement due to the choice ×. Since 

R = A + ~ '~[x(0], 
i=l 

and 

[ M i=l  / I t  i=I  

the problem of estimating E[R] is reduced to estimating E[A] and using the traditional rating 
techniques (e.g. manual rates as discussed above) for E[~l'(x(i))] in the second term. 

Here are some of the properties of A (proofs omitted): 
I. A is exactly equal to the amount that the actual reimbursement exceeds what the 

reimbursement would have been if each individual was reimbursed at the mean 
rate for the group. That is, if we define the mean reimbursement for the group 
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for 

then 

~x) -1~.~. r(x(k),x), 

i - I  i-I  

a(O - -  r~(O~-Rx,). 

H. If the X1 are identically distributed then E(A)=0. 
HI. If x is a constant, x( l )  = x(2) =. . .  =x(m), then A=0 .  
IV. Often the insurer sets P(i) = E[~(i)]. In which case E(G) = -E(A). 
V. If the values of x(i) axe treated as random variables, that are independent of the 

X,  then E(A)=O. 
Example 3.3 

Table 4, presents a hypothetical group with m= lO0. Shown for each individual is E(X,) 
and the choice x(i). Here n =4 and the four choices are #1 through #4 of example 2.9. Table 
5 shows the expectations and variances of ~I,(j) (1 <j  <4),  R/m, and A/m. These have been 
calculated under the two assumptions: 1) Each X, has the distribution of example 2.10 with 
s=ECX~)/1433.67, and 2) Each X~ has the distribution of example 2.11 (table 3, Paxeto) with 
X=E(Xj)(I. 15738). This value of ), will give a Pareto distribution with the required expectation. 

Table 4 also shows for each individual in the group an example outcome of values for Xi, 
the corresponding values of r(j,Xt) for j = 1,2, and 3, and the value of A(i). Thus there were 
covered charges of $153,970 (compare to the expected value of 141,360), reimbursements R of 
$129,546 and A of $30,007. 

The values of EfX~) can be thought of as the expected covered charges due to known (to 
the insurer) characteristics of the individuals in the group, such as their ages. In such case E(A) 
can be thought of as the expected cost deviation due to demographic selection. If the actual 
value of  A greatly exceeds this E(A), then the insurer might wonder if the individuals knew 
more about their health status and used this knowledge to antiselect. We can approximate the 
probability that a value of A was realized randomly by using E(A) and Var(A) with the normal 
approximation. 

IV. PRIOR YEAR'S CHARGES 

Let us assume that each individual has a, possible unknown, parameter for the 
distribution of his covered charges. We will call this parameter y = {y(i) I 1 < i < m }  where y(i) 
pertains to individual i. Note that the y(i)'s could themselves be treated as realizations of 
random variables Y(i)'s and may be multidimensional. In any case, if we knew the values of 
the y(i) 's  we could calculate E[AJy]. Since there is generally a correlation between successive 
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years' charges, we could take a set of y(i)'s to be each individual's prior year's charges. 4 

Example 4.]  
Table 6 expands table 4. The values that were previously called X i are now taken to 

represent last year's claims and arc identified as y(i). Table 6 also shows a value of 
E ~ l Y , = y ( i ) ] .  Here we have set E[Xi[y(i)] = .75E[XJ + .25y(i). Table 7 shows the 
E['[,(i) I y], (I _<j _< 5), Var[,I,(j) I y], E[R/m I Y], Var[R/m I y], E[A/m [ y[ and Var[A/rn I Y]. These 
arc computed using thc two assumptions of example 3.3. We have assumed that the X~ always 
have the same distributions except for a scale change. 

Example 4.2 
Very often the paramelcr y would be unknown. If we assume that it is equal to the prior 

year's charges we could assume that each y(i) has the distribution of X,. If  we set E[X[ Yi =y(i)] 
= .75E[XJ + 25y(i), then, we can calculate E[R] = E[E(RIY)] and Var['R] = Var[E(RIY)] 
+ E[Var(R I Y)]. The calculations involved are long and tedious so no example values have been 
calculated. A Monte Carlo simulation technique could be used instead. 

V. PREDICTING CHOICE 

In order to predict employee choice we assume that each of the individuals, i (l _<i _< m) 
has a utility function u~(w) for wealth w_>0. s Now wc assume that each individual will select 
the reimbursement that maximizes his expected utility. That is, if each individual's initial wealth 
is w(i) and there exists a l<k<n such that: 

E (u~ [w(0-x~ ÷r(k,x~)- eXk)]) ~ ~ (,,, [w(0-Xi ~r0,X,)-e~)]) 
for every j ,  1 _<j<n, then x(i)=k. Trivially, if there are two (or more) reimbursements for 
which the extracted utility is equal and greater than all of the other reimbursements we will 
assume an arbitrary selection. 

For simplicity wc want to use the same form of a utility function for each individual. 
In order to model the actual situation we will need that each individual has a different aversion 
to risk. In order to do this we will select a utility function that is decreasingly risk averse. That 
is, the larger the individual's initial wealth the less risk averse hc is. Common measures of risk 
aversion arc the Arrow-Pratt ([21 and [21]) measures of absolute risk aversion and relative risk 
aversion: p,(w) = -u'(w)/u'(w) and 6,(w) = w p,(w), respectively. 6 

4Fuhrer 112, p.403], found a correlation of 24.35 percent and Cookson 18, p. 1602], reported seeing estimates of 15 

to 25 percent. 

sS¢¢ [6], Chapter I, for an introduction to risk averse utility functions. A good reference on utility functions is [16], 

particularly Chapter 4, which has an excellent section on various types of utility functions. 

~dLmball [17, p.21 suggests "st~n,'lsrd risk aversion" as another alternative. It is characteris~fic of utility functions 
asf, ociated with constant rela~ve risk aversion. 
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Example 5.1 
We can use the assumptions of example 3.3 with the choice depending on the utility 

function: %(w) = ln(w+a(i)) for a positive constant a(i). This utility function is convenient 
because the property that almost any level of risk advecseness can be selected based on the size 
of the parameter a(i). ~ Table 6 shows some sample values of a(i) for our sample group and the 
resulting choice in column (1) using the discrete distribution to calculate expectations. Note that 
we have slightly changed the reimbursements to not have a maximum M. The end of Table 6 
summarizes the choices and Table 8 shows the calculated values. We have assumed that P(j) 
= ~ = - ( ' I ' ( i ) ] .  
Example 5.2 

For this example, use the assumptions of example 4. I, with a fixed known parameter set 
y(i), with the utility based choice of example 5.1. The calculated values are also shown in table 
8. 
Example 5.3 

This is example 5. I, except we use the parameter adjusted discrete distribution of example 
4.1 to calculate the expected utilities and determine the choices. The Table 6 shows the choices 
in column (2) and Table 8 shows the calculated values using the parameter adjusted distributions 
as in example 5.2. Note that the choices (2) has a larger E[A] then choices (1). 

Example 5.4 
Here we combine example 4.4 with the utility function of example 5.1. Now that the 

choice is random, we could calculate, for each i and j,  Pr{x(i)ffij}. We define NO) as the 
number of individuals for whom x(i)--j .  We could also calculate E[N(j)], 1 < j  <4.  
Example 5.5 

Let S(j) = {i:x(i)=j}. Then let 
I PO') = --.,, ~.~,~.~- r(y(i)) 

in example 5.2. That is, we set the premiums for a reimbursement equal to the experience those 
that selected it (using the sample selection). The resulting choice (Table 6, column (3)) is much 
more heavily weighted towards the cheaper plans. This illustrates the selection spiral that can 
occur if  premium rates are based only on the experience of those that choose a particular 
reimbursement plan. 

VL CONCLUSION AND AREAS FOR FURTHER RF~EARCH 
The framework of this paper allows us to predict employee choice and cost deviations 

due to selection given any arbitrary combination of individual charge distributions, a set of 
reimbursement plans and their premiums, and a set of utility functions. Using this method 
various combinations of plans and premiums can be explored until the plan administrator can 
pick the combination that best fits the group's needs. 

The calculations of examples 4.2 and 5.4 could be completed. A few more distributions 

~For u(w) =In(w). the absolute risk aversion is o.(w) = l/w, which is a decreasing function of w, and the relative 
risk aversion is ~.(w) = I. 
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could be used to calculate the values. A term could be added to each reimbursement's wealth 
to model affinities that individuals may have for a particular plan. This might be used in the 
HMO choice, as individuals might prefer the traditional plan over the HMO so that they could 
continue with their current physicians. 

The parameters of the utility function could be estimated from some actual choice data. 
These could then be used to predict actual past choices and then see how accurate the predictions 
W~'¢ .  
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Table 1 Some Sample Reimbursements Functions 

Reimbursement #: 1 2 3 4 
d (Deductible): $iO0 $500 $I,OOO 
c (Coinsurance): 80~ 80~ 75~ 0% 
L (coinsurance max): $400 $1,000 $3,000 
H (Maximum): 1 ,000 ,000  1,000,000 500,000 

5 
0 

I00~ 

None 

Table 2 

s = l :  

k 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Sample Discrete Distribution 

Mean = 1 .433 ,  V a r i a n c e  = 28.175, 

p (k )  k p ( k )  k p ( k )  
0.600839 43 0.000139 85 0.000023 
0.212998 44 0.000126 86 0.000019 
0.057230 45 0.000097 87 0.000023 
0.033316 46 0.000082 88 0.000015 
0.022218 47 0.000136 89 0.000005 
0.015504 48 0.000107 90 0.000011 
0.011159 49 0.000095 91 0.000017 
0 . 0 0 8 1 7 9  50 0 . 0 0 0 0 4 8  92 0 . 0 0 0 0 1 8  
0 .006329  51 0 . 0 0 0 0 6 0  93 0 . 0 0 0 0 0 9  
0 .004906  52 0 . 0 0 0 0 7 7  94 0 . 0 0 0 0 0 4  
0 .003751  53 0 . 0 0 0 0 9 8  95 0 . 0 0 0 0 0 6  
0 .002734  54 0 . 0 0 0 0 7 7  96 0 . 0 0 0 0 1 5  
0 .002257  55 0 . 0 0 0 0 4 4  97 0 . 0 0 0 0 0 7  
0 .001984  56 0 . 0 0 0 0 5 0  98 0 . 0 0 0 0 2 1  
0 .001629  57 0 . 0 0 0 0 6 7  99 0 . 0 0 0 0 1 4  
0 .001230  58 0 . 0 0 0 0 9 2  100 0 . 0 0 0 0 0 5  
0 . 0 0 1 1 7 9  59 0 . 0 0 0 0 6 6  101 0 . 0 0 0 0 1 3  
0 .001041  60 0 . 0 0 0 0 5 5  102 0 . 0 0 0 0 1 5  
0 .000854  61 0 .000024  103 0 . 0 0 0 0 1 5  
0 .000741  62 0 . 0 0 0 0 3 3  104 0 . 0 0 0 0 1 2  
0 .000633  63 0 . 0 0 0 0 2 7  105 0 . 0 0 0 0 1 1  
0 .000554  64 0 .000031  106 0 . 0 0 0 0 0 3  
0 . 0 0 0 5 2 9  65 0 . 0 0 0 0 4 1  107 0 . 0 0 0 0 0 4  
0 .000528  66 0 . 0 0 0 0 3 6  108 0 . 0 0 0 0 0 7  
0 .000485  67 0 . 0 0 0 0 4 3  111 0 . 0 0 0 0 0 2  
0 .000397  68 0 . 0 0 0 0 4 1  112 0 . 0 0 0 0 0 7  
0 .000387  69 0 . 0 0 0 0 4 6  113 0 . 0 0 0 0 0 5  
0 .000352  70 0 . 0 0 0 0 3 8  114 0 . 0 0 0 0 0 7  
0 .000403  71 0 . 0 0 0 0 1 0  115 0 . 0 0 0 0 0 6  
0 .000333  72 0 . 0 0 0 0 1 7  116 0 .000001  
0 .000306  73 0 . 0 0 0 0 2 9  117 0 . 0 0 0 0 0 9  
0 .000253  74 0 . 0 0 0 0 3 3  118 0 . 0 0 0 0 0 2  
0 .000258  75 0 . 0 0 0 0 1 2  119 0 . 0 0 0 0 0 5  
0 .000245  76 0 . 0 0 0 0 1 1  120 0 . 0 0 0 0 0 4  
0 .000228  77 0 . 0 0 0 0 1 4  121 0 . 0 0 0 0 0 5  
0 .000204  78 0 . 0 0 0 0 1 2  122 0 . 0 0 0 0 1 0  
0 .000231  79 0 . 0 0 0 0 1 6  123 0 . 0 0 0 0 0 4  
0 .000193  80 0 . 0 0 0 0 0 7  125 0 . 0 0 0 0 0 2  
0 .000172  81 0 . 0 0 0 0 1 1  126 0 . 0 0 0 0 0 3  
0 .000177  82 0 . 0 0 0 0 0 2  127 0 . 0 0 0 0 0 5  
0 .000133  83 0 .000021  128 0 . 0 0 0 0 1 3  
0 .000121  84 0 . 0 0 0 0 2 0  130 0 . 0 0 0 0 0 5  
0 .000136  

Standard Deviation = 5.308 

k p ( k )  
131 0.000005 
132 0.000004 
133 0.000005 
134 0 . 0 0 0 0 0 3  
135 0 . 0 0 0 0 0 3  
136 0 . 0 0 0 0 0 8  
137 0 . 0 0 0 0 0 9  
138 0 . 0 0 0 0 0 9  
139 0 . 0 0 0 0 0 3  
140 0 . 0 0 0 0 0 2  
142 0 . 0 0 0 0 0 5  
145 0 .000001  
146 0 .000005  
147 0 . 0 0 0 0 0 6  
148 0 . 0 0 0 0 0 5  
150 0 . 0 0 0 0 0 4  
151 0 . 0 0 0 0 0 5  
152 0 . 0 0 0 0 0 4  
153 0 . 0 0 0 0 0 3  
158 0 . 0 0 0 0 0 1  
159 0 . 0 0 0 0 1 6  
160 0 . 0 0 0 0 0 6  
169 0 .000001  
170 0 . 0 0 0 0 0 4  
172 0 . 0 0 0 0 0 4  
173 0 . 0 0 0 0 0 7  
185 0 . 0 0 0 0 0 3  
186 0 . 0 0 0 0 0 2  
197 0 . 0 0 0 0 0 6  
202 O.000003  
203 0 . 0 0 0 0 0 3  
204 0.000004 
205 0.000001 
206 0 . 0 0 0 0 0 5  
245 0 . 0 0 0 0 0 5  
263 0 . 0 0 0 0 0 6  
285 0 .000005  
292 0 . 0 0 0 0 0 5  
323 0 . 0 0 0 0 0 2  
324 0 . 0 0 0 0 0 3  
519 0 . 0 0 0 0 0 3  
520 0.000002 

2 0 8  



Table 3 Calculation of Values for the Reimbursements 

Reimbursement #: 1 2 3 
Discrete Distribution s=$1,000: 

Mean $1,282.10 $1,091.57 $846.98 
Variance 27,313,585 25,789,764 22,912,997 
Standard Deviation $5,226.24 $5,078.36 $4,786.75 

Pareto Distribution 
Mean $2,865.45 $2,436.31 $1,955.29 
Variance 67,725,832 65,540,408 52,346,277 
Standard Deviation $8,229.57 $8,095.70 $7,235.07 

4 5 

$0.00 $1,433.67 
0 28,175,197 

$0.00 $5,308°03 

$0.00 $3,207.80 
0 141,052,606 

$0.00 $11,876.56 
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TABLE 4 SAMPLE GROUP 

i E[xi ]  C h i ( i )  x i  
1 $286.73 1 $5 
2 286.73 1 3,358 
3 286.73 1 4,090 
4 286.73 2 0 
5 286.73 2 0 
6 286.73 2 0 
7 286.73 3 478 
8 286.73 3 0 
9 286.73 3 0 

I0 286.73 4 0 
II 286.73 4 0 
12 286.73 4 0 
13 286.73 4 0 
14 645.15 3 1,000 
15 645.15 3 1,522 
16 645.15 3 0 
17 645.15 3 0 
18 645.15 3 0 
19 645.15 3 1,211 
20 645.15 3 707 
21 645.15 4 102 
22 1,146.94 3 512 
23 1,146.94 3 0 
24 1~146.94 3 0 
25 I,146.94 3 0 
26 1,146.94 3 0 
27 1,146.94 3 0 
28 1,146.94 4 551 
29 1,577.04 1 2,115 
30 1,577.04 2 0 
31 1,577.04 2 0 
32 1,577.04 2 0 
33 1,577.04 3 0 
34 1 ,577.04 3 1,798 
35 $1,863.78 I 15,396 
36 1,863.78 2 0 
37 1,863.78 2 0 
38 1,863.78 3 213 
39 1,863.78 3 0 
40 1,863.78 3 295 
41 2,293.88 1 0 
42 2 ,293 .88  1 0 
43 2 ,293 .88  1 0 
44 2 , 2 9 3 . 8 8  2 0 
45 2 , 2 9 3 . 8 8  2 0 
46 2 ,293 .88  3 0 
47 3 ,154 .08  1 5,795 
48 3,154.08 I 6,588 
49 3,154.08 I 15,649 
50 3,154.08 1 39,806 
51 3,154.08 2 0 
52 4,014.29 1 0 
53 4,014.29 I 593 
54 4,014.29 1 4,960 
55 4,014.29 2 0 

r ( l , X i )  
$0 

2 ,858 
3,590 

0 
0 
0 

302 
0 
0 
0 
0 
0 
0 

72O 
1,138 

0 
0 
0 

889 
486 

2 
330 

0 
0 
0 
0 
0 

360 
1,615 

0 
0 
0 
0 

1,359 
14,896 

0 
0 

90 
0 

156 
0 
0 
0 
0 
0 
0 

5,295 
6,088 

15,149 
39,306 

0 
0 

394 
4,460 

0 

r(2,Xi) 
$0 

2,287 
2,872 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

400 
818 

0 
0 
0 

569 
166 

0 
I0 
0 
0 
0 
0 
0 

40 
1,292 

0 
0 
0 
0 

1,039 
13,896 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4,295 
5,088 

14,149 
38,306 

0 
0 

74 
3,568 

0 

r ( 3 , X i )  
$0 

1,769 
2,317 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

392 
0 
0 
0 

158 
0 
0 
0 
0 
0 
0 
0 
0 
0 

836 
0 
0 
0 
0 

599 
11,396 

0 
0 
0 
0 
0 
0 
0 
0 
0 
O 
0 

3,596 
4,191 

11,649 
35,806 

0 
0 
0 

2,970 
0 

r [ c h i ( i  
$0 

2 ,858 
3 ,590 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

392 
0 
0 
0 

158 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1,615 
0 
0 
0 
0 

599 
14,896 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

5,295 
6,088 

15,149 
39,306 

0 
0 

394 
4 ,460 

0 

) ,X i ]  A( i )  
$0 

951 
1,158 

0 
0 
0 

(73) 
0 
0 
0 
o 
0 
0 

(269) 
(226) 

0 
0 
0 

(252) 
(156) 

(0) 
(81) 

0 
0 
0 
0 
0 

(96) 
60O 

0 
0 
0 
0 

(204) 
3,655 

0 
0 

(z2) 
0 

(37) 
0 
0 
0 
0 
o 
0 

1,627 
1,813 
3,691 
7 ,0?3 

0 
0 

282 
1,405 

0 

210 



56 573.47 1 0 0 0 
57 573.47 2 0 0 0 
58 573.47 2 1,084 787 467 
59 573.47 2 0 0 0 
60 573.47 3 794 555 235 
61 573.47 3 1,104 803 483 
62 573.47 3 275 140 0 
63 5 7 3 . 4 7  3 0 0 0 
64 5 7 3 , 4 7  3 0 0 0 
65 5 7 3 . 4 7  3 0 0 0 
66 573 .47  3 0 0 0 
67 573 .47  4 0 0 0 
68 $573 .47  4 0 0 0 
69 5 7 3 . 4 7  4 39 0 0 
70 573.47 4 0 0 0 
71 5 7 3 . 4 7  4 0 0 0 
72 573 .47  4 0 0 0 
73 1 , 0 0 3 . 5 7  1 1 ,891 1 , 4 3 3  1 ,113  
74 1 , 0 0 3 . 5 7  2 1 ,780  1 , 3 4 4  1 ,024  
75 1 , 0 0 3 . 5 7  3 0 0 0 
76 1 , 0 0 3 . 5 7  3 965 692 372 
77 1,003.57 3 2,261 1,761 1,409 
78 1,003.57 3 0 0 0 
79 1,003.57 4 0 0 0 
80 1,003.57 4 0 0 0 
81 1,146.94 1 5,563 5,063 4,063 
82 1 , 1 4 6 . 9 4  2 0 0 0 
83 1 , 1 4 6 . 9 4  2 0 0 0 
84 1 , 1 4 6 . 9 4  3 0 0 0 
85 1 , 1 4 6 . 9 4  3 0 0 0 
86 1 , 1 4 6 . 9 4  3 0 0 0 
87 1 , 1 4 6 . 9 4  3 0 0 0 
88 2,007.14 1 7,311 6,811 5,811 
89 2,007.14 2 997 717 397 
90 2,007.14 2 1,218 895 575 
91 2,007.14 2 4,536 4,036 3,229 
92 2,007.14 2 232 106 0 
93 2,437.25 1 1,883 1,426 1,106 
94 2,437.25 1 3,754 3,254 2,603 
95 2,437.25 2 0 0 0 
96 2 , 4 3 7 . 2 5  3 0 0 0 
97 2,867.35 1 6,751 6,251 5,251 
98 2 , 8 6 7 . 3 5  2 0 0 0 
99 3,297.45 1 2,708 2,208 1,767 

100 3,584.19 1 2,079 1,583 1,263 
Tot  $ 1 4 1 , 3 6 0  $153 ,970  $ 1 3 9 , 3 4 9  $120 ,037  
i E[Xi] Ci Xi rl(Xi) r2(Xi) 

0 0 0 
0 0 0 

63 467 142 
0 0 0 
0 0 (190)  

78 78 (260)  
0 0 (34)  
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

668 1 , 4 3 3  568 
585 1 ,024  233 

0 0 0 
0 0 (256)  

946 946 {174) 
0 0 0 
0 0 0 
0 0 0 

3,422 5,063 1,572 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

4,733 6,811 1,983 
0 397 130 

164 575 160 
2,652 3,229 477 

0 0 (25)  
662 1,426 567 

2,066 3,254 1,063 
0 0 0 
0 0 0 

4,313 6,251 1,851 
0 0 0 

1,281 2,208 767 
809 1,583 593 

$98,122 $129,546 $30,007 
r 3 ( X i )  rci(Xi) Ai 

Number S e l e c t i n g  
j # 
1 24 
2 24 
3 38 
4 14 

Tot 100 

R e i m b u r e s l e n t s  
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Table 5 
EXPECTATION, VARIANCE, & STANDARD DEVIATIONS of Mean Reimbursements, R/m, & A/m 
Sample Selection, Distributions based on Unadjusted Expected Values 
Reimbursement #: 1 
Number Selecting 24 
Discrete Distribution: 

Mean $1,871 
Variance 818,820 
Std Dev $905 

Pareto Distribution 
Mean $2,764 
Variance 
Std Dev 

2 3 4 5 R/m A/m 
24 38 14 0 

$1,668 $1,411 $0 $2,027 $1,564 178.543 
796,109 683,181 0 851,073 774,686 33,655 

$892 $833 $0 $923 $880 $183 

$2,457 $2,083 
1,301,139 1,284,966 1,008,308 

$1,141 $1,134 $1,004 

$0 $3,021 $2,472 427.442 
0 3,407,162 1,272,618 53,851 

$0 $1,846 $1,128 $232 
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TABLE 6 SAMPLE GROUP 

- - - C h i ( i )  . . . .  
i E[Xi] C h i ( i )  Xi=y(i )  E [ X i l y ( i ) ]  (1) (2) (3) 
1 $286.73 1 
2 286.73 1 
3 286.73 1 
4 286.73 2 
5 286.73 2 
6 286.73 2 
7 286.73 3 
8 286.73 3 
9 286.73 3 

10 286.73 4 
11 286.73 4 
12 286.73 4 
13 286.73 4 
14 645.15 3 
15 645.15 3 
16 645.15 3 
17 645.15 3 
18 645.15 3 
19 645.15 3 
20 645.15 3 
21 645.15 4 
22 1,146.94 3 
23 1 , 1 4 6 . 9 4  3 
24 1,146.94 3 
25 1,146.94 3 
26 1,146.94 3 
27 1,146.94 3 
28 1,146.94 4 
29 1,577.04 1 
30 1,577.04 2 
31 1,577.04 2 
32 1,577.04 2 
33 1,577.04 3 
34 1,577.04 3 

$5 $216 3 3 3 
3,358 1,055 3 1 2 
4,090 1,238 2 1 2 

0 215 2 2 2 
0 215 3 3 3 
0 215 3 3 3 

478 335 3 3 3 
0 215 2 2 3 
0 215 2 2 3 
0 215 3 3 3 
0 215 3 3 3 
0 215 2 2 3 
0 215 3 3 3 

1,000 734 3 3 2 
1,522 864 3 3 2 

0 484 3 3 3 
0 484 3 3 3 
0 484 2 2 3 

1,211 787 3 3 2 
707 661 3 3 3 
102 509 1 2 2 
512 988 1 2 2 

0 860 1 3 2 
0 860 1 2 2 
0 860 1 3 2 
0 860 1 3 2 
0 860 1 3 2 

551 998 1 2 2 
2,115 1,712 1 1 2 

0 1,183 1 1 2 
0 1,183 1 1 2 
0 1,183 1 1 2 
0 1,183 1 1 2 

1,798 1,632 1 1 2 
35 $1,863.78 
36 1,863.78 
37 1,863.78 
38 1,863.78 
39 1,863.78 
40 1,863.78 
41 2,293.88 
42 2,293.88 
43 2,293.88 
44 2,293.88 
45 2,293.88 
46 2,293.88 
47 3,154.08 
48 3,154.08 
49 3,154.08 
5O 3,154.08 

1 15,396 $5,247 1 1 2 
2 0 1,398 1 1 2 
2 0 1,398 1 1 2 
3 213 1,451 1 1 2 
3 0 1,398 1 1 2 
3 295 1,472 1 1 2 
1 0 1,720 1 1 2 
1 0 1,720 1 1 2 
1 0 1,720 1 1 2 
2 0 1,720 1 1 2 
2 0 1,720 1 1 2 
3 0 1,720 1 1 2 
1 5,795 3,814 1 1 2 
1 6,588 4,013 1 1 2 
1 15,649 6,278 1 1 2 
1 39,806 12,317 1 1 2 

$6,000 
8,500 
3,600 
3,400 
6,800 
7,600 
7,500 
4,400 
4,900 
7,200 
6,500 
4,100 
8,500 

11,000 
14,500 
9,500 

13,100 
5,400 

12,300 
9,000 
3,800 

19,800 
23,500 

6,500 
19,600 
17,500 
20,900 
14,400 
31,800 
20,100 
30,300 
31,400 
25,200 

7,700 
$11,300 

28,400 
36,000 
26,600 

7,800 
21,700 
35,000 
15,900 
27,600 
20,800 
39,300 
45,200 
17,400 
10,800 
59,900 

8,200 
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51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
9O 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
To t  

3,154.08 
4,014.29 
4,014.29 
4,014.29 
4,014.29 

573.47 
573.47 
573.47 
573.47 
573.47 
573.47 
573.47 
573.47 
573.47 
573.47 
573.47 
573.47 

$573.47 
573.47 
5 7 3 . 4 7  
5 7 3 . 4 7  
5 ? 3 . 4 7  

1 0 0 3 . 5 7  
1 003.57 
1 003.57 
1 0 0 3 . 5 7  
1 0 0 3 . 5 7  
1 0 0 3 . 5 7  
1 0 0 3 . 5 7  
1 , 0 0 3 . 5 7  
1 146 .94  
1 146 .94  
1 146 .94  
1 146.94 
1 146.94 
I 146.94 
1 146.94 
2,007.14 
2,007.14 
2,007.14 
2,007.14 
2,007.14 
2,437.25 
2 , 4 3 7 . 2 5  
2 , 4 3 7 . 2 5  
2 , 4 3 7 . 2 5  
2 , 8 6 7 . 3 5  
2 , 8 6 7 . 3 5  
3 , 2 9 7 . 4 5  
3 , 5 8 4 . 1 9  
$141,360 

2 0 2,366 
1 0 3,011 
1 593 3,159 
1 4,960 4,251 
2 0 3,011 
1 0 430 
2 0 430 
2 1,084 701 
2 0 430 
3 794 629 
3 1 ,104 706 
3 275 499 
3 0 430 
3 0 430 
3 0 430 
3 0 430 
4 0 430 
4 0 $430 
4 39 440 
4 0 430 
4 0 430 
4 0 430 
1 1,891 1,225 
2 1,780 1,198 
3 0 753 
3 965 994 
3 2 , 2 6 1  1,318 
3 0 753 
4 0 753 
4 0 753 
I 5,563 2,251 
2 0 860 
2 0 86O 
3 0 860 
3 0 860 
3 0 860 
3 0 860 
I 7,311 3,333 
2 997 1,755 
2 1 , 2 1 8  1,810 
2 4,536 2,639 
2 232 1,563 
1 1,883 2,299 
1 3 ,754 2,766 
2 0 1 ,828  
3 0 1 ,828  
1 6 ,751 3 , 8 3 8  
2 0 2,151 
1 2,708 3,150 
1 2,079 3,208 

$153,970 $139,349 

2 49,800 
2 6,500 
2 79,900 
2 10,000 
2 40,200 
3 9,500 
3 9,900 
2 8,300 
3 8,300 
3 14,300 
2 7,400 
3 6,900 
3 14,200 
3 6,300 
2 3,800 
3 12 600 
3 9 400 
3 $4 700 
3 13 400 
3 8 500 
3 7 600 
3 5 700 
2 14 700 
2 5 900 
2 8,700 
2 13,900 
2 13,000 
2 8,400 
2 5,000 
2 12,300 
2 12,800 
2 4,700 
2 4 300 
2 16 300 
2 16 700 
2 6 500 
2 23 900 
2 28900 
2 4 200 
2 31600 
2 34200 
2 9 000 
2 24 700 
2 14 600 
2 28 400 
2 18 200 
2 10 400 
2 27 700 
2 47 400 
2 45 100 
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Table 7 
EXPECTATION, VARIANCE, & STANDARD DEVIATIONS of Mean Reimbursements, R/m, & A/m 
Sample Selection, Distributions based on y Conditioned Expected Values 
Reimbursement 1 2 3 4 5 R/m A/m 
No. Selecting: 24 24 38 14 0 
Discrete Distribution: 

Hean $1,919 $1,721 $1,465 $O $2,072 $1,657 226.304 
Variance 1,134,917 1,112,045 902,406 0 1,295,754 1,104,684 48,116 
Std Dev $I,065 $1,055 $950 $0 $1,138 $1,051 $219 

Pareto Distribution 
Nean $4,178 $3,892 
Variance 
Std Dev 

$3,366 
5,435,419 5,423,544 3,243,718 

$2,331 $2,329 $1,801 

$0 $4,599 $3,959 742.948 
0 37,442,838 5,421,039 359,771 

$0 $6,119 $2,328 $600 

Table 8 
VALUES FOR R/m & A/m 

Discrete Distribution 
Mean Var Std Dev 

5.1 Rim $1,779 812,894 $902 
A/a 63 2,011 45 

5.2 R/B 1,831 1,129,125 1,063 
A/= 65 4,412 66 

5.3 R/B 1,795 1,126,295 1,061 
A/B 74 7,302 85 

5.5 Rim 1,697 1,110,082 1,054 
A/m 48 3,605 60 

Pareto Distribution 
Mean Var Std Dev 
$2,715 1,300,147 $1,140 

182 5,907 77 
4,129 5,434,103 2,331 

218 58,528 242 
4,104 5,433,383 2,331 

272 100,422 317 
3,887 5,423,368 2,329 

142 54,459 233 
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