
ACTUARIAL RESEARCH CLEARING HOUSE 
1 9 9 3  VOL. 3 

A CHANCE CONSTRAINED PROGRAMMING APPROACH 

TO PENSION PLAN MANAGEMENT 

by 

Patrick L. Brockett 

Abraham Charnes 

Li Sun 

323 



A CHANCE CONSTRAINED PROGRAMMING APPROACH 

TO PENSION PLAN MANAGEMENT 

1. lntrQduction 

The objective of providing retirement income is becoming increasingly important for both 

workers and employers. One reason for this is the fact that most people can anticipate living 

long enough to enjoy their retirement life. Indeed, life tables for the United States show that 

the life expectancy at all ages exceeds the typical retirement age, and often the probability of 

survival to age 65 considerably exceeds the probability of death. The development of a good 

retirement plan is also important to employers because a good pension plan can be useful in 

attracting and keeping excellent employees. 

Recently, providing retirement income for employees through the employee benefit 

mechanism has become a very common practice with more and more companies providing a 

pension plan. There are, of course, several employee benefit plans available to choose among 

in order to provide retirement income. These include pension plans, profit-sharing plans, thrift 

or saving plans, employee stock ownership plans, plans for the self-employed, group individuM 

retirement account plans, simplified employee pension plans, tax-deferred annuities and others. 

For the purpose of this paper, and in order to show how one can define a model to trade off the 

various investment goals, tax considerations and contribution factors involved, we will restrict 

ourselves to the analysis of defined benefit plans. 

Every employee wants more retirement income, and most employers would like to use 

as little money as possible in order to provide the best possible pension plan. The employer's 
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goal involves many uncertain factors, such as the life expectancy of employees for ages after 

retirement; the pension funds; returns on investments which will accrue to money markets, 

stocks or bonds and the rates of the changes in cost of living, salaries and inflation. How to 

optimally decide on contribution levels necessary in order to satisfy the employer's conflicting 

goals is a complicated problem and is the subject of this article. 

The existence of uncertainty (randomness) causes further complications in the analysis. 

The usual method for handling uncertainty in actuarial analysis is to take expected values and 

proceed as if the process were deterministic. If the probability distribution under investigation 

is symmetric, there is a 50% chance of falling below or above this expected value, and for 

pension plans this can necessitate remedial funding actions at the end of the year in order to 

preserve qualification. In this article, we introduce a new policy-making model for pension plan 

funding which openly represents the uncertainty. The word "policy" is used here to indicate a 

strategy which is intended to be followed most (but not necessarily all) of the time. In unusual 

circumstances, the policy will have to be modified at the end of the year to retain qualification; 

however, the frequency with which this remedial action is needed is controllable by the actuary 

(unlike the method of using expected values). The simple substitution of expected values of 

random quantities produces an unknown frequency of last minute remedial actions at possibly 

disastrous investment costs to the pension plan. However, with our techniques, once the actuary 

acknowledges the uncertainty associated with the various aspects of the pension plan, he/she can 

explicitly trade off the costs associated with remedial actions, tax penalties, etc. with the 

investment returns in order to meet the pension plan goals. 

The method that this paper introduces is a new Chance-Constrained Programming 
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approach to selecting annual contribution levels and asset allocation (holding other factors fixed) 

that we believe will better fit the employer's goals while recognizing the many risks and 

constraints associated with defined benefit plans. The chance-constrained programming approach 

can require less funding from the employer while giving more benefits to employees, can 

provide a better guarantee that most employees will have the expected retirement income at their 

normal retirement dates, and can offer greater reduced benefits for those electing early 

retirement. While the model presented in the paper does not incorporate all the intricacies of 

pension funding, like any good model, it suggests actions or policies and simultaneously points 

the way towards more innovative and new approaches to previously investigated problems. 

Further "bells and whistles" extensions can be provided in a sequel paper. The purpose of this 

paper is to concisely present this entirely new approach and examine its ramifications. 

2. Some C0ncept~ for the Defined Benefit Plan 

A defined benefit plan is one that provides participants with a specified defined benefit 

at retirement [7]. The essence of this type of plan is that the retirement benefit is a stated or 

fixed factor, while the contributions to the plan necessary to produce this defined benefit are the 

variable factors. With such a plan, employers can utilize pension plan benefit formulas to 

achieve specific retirement income benefit targets in a relatively accurate fashion. Such plans 

also may be easier for employers to administer because contributions and investment income do 

not have to be allocated to individual employee participants. 

As mentioned above, the retirement benefit is the fixed factor, and benefit formulas are 
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used to calculate it. For the defined benefit pension plan, the basic formulas usually correspond 

to some combination of benefits of a fiat amount, a flat percentage of final average earnings, a 

fiat amount per year of service or a fiat percentage of earnings per year of service. 

This paper will consider retirement benefits that correspond to "the fixed percentage of 

earnings per year of service" integrated with Social Security rules and participation. The 

generalization to other, more complicated plans can be addressed by techniques similar to those 

discussed herein. 

Under "the fixed percentage of earnings per year of service," the monthly retirement 

benefit equals a fixed percentage times the number of years of credited service. For example, 

i fa  plan provides for a 1%% benefit for an employee who has 25 years of credited service and 

average earnings of $2,000 per month, the monthly retirement benefit would be $750 (1.5 % x 

$2,000 x 25). 

Combining Social Security with the benefit formula could help redress the current biasing 

of Social Security benefits in favor of the lower paid workers. Through integration with social 

security benefits, a more reasonable, relatively larger benefit can be paid to certain higher paid 

employees. 

There are three basic methods used to integrate pension plans with Social Security: (1) 

the offset method, (2) the excess method and (3) the step-rate excess method. Most private plans 

use the offset method together with the fixed percentage of earnings per year of service. For 

instance, a private plan might provide a monthly benefit (formula) of: (1) 1'/2 % of the Average 

Monthly Compensation, multiplied by the number of years of vested service, minus (2) 50% of 

the Primary Social Security benefit. 
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For tax purposes, employer contributions to a pension fund are viewed as a necessary 

and reasonable business expense; therefore, the employer contributions are tax-deductible, 

provided that the contributions meet certain IRS guidelines. In such situations, the plan is called 

a qualified pension plan. To be a qualified defined benefit plan, the plan must provide enough 

money for the pension fund to be able to operate; i .e. ,  it must provide a minimum fund. In 

order to discourage the employer from using the pension fund as a tax shdter for company 

profits, the IRS also has a regulation which sets an upper limit on contributions. If an employer 

contributes more to a defined benefit plan and exceeds the limits specified by the IRS, then this 

excess contribution must be carried over and deducted in later years. As a practical consequence 

of  this rule, employers usually do not want to contribute more than the tax deductible amount 

in a given year. In addition, a qualified pension plan cannot discriminate in favor of officers, 

stockholders or highly compensated employees in terms of contributions or benefits. Such a 

qualified plan should meet either of two requirements--the "70-percent rule" or the"discretionary 

rule." All of these requirements are represented in our model's constraints. 

For the numerical illustrations in this paper, we shall use the 1983 Group Annuity 

Mortality Table with separate rates for males and females in order to model the probability 

structure of mortality. Clearly, other lifetables could be used in conjunction with our technique 

if deemed more appropriate for a particular employee benefit application. 

A final concept we shall consider in our analysis is the method of investment used for 

the contributions to the plan. For simplicity, we shall consider only three investment vehicles: 

a stock or equity fund, a diversified bond fund and a money market fund for short-term 

investments. To simplify the model, we shall assume that we do not transfer money between 
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funds after the initial allocation of the employer's contributions each year. 

3. Structure of Chance-Con,trained Pen~i0n Funding Model 

In this section, we shall show how to use a multivariate objective function with chance- 

constraints to produce a model for determining funding and investment strategy for an n-year 

defined benefit pension plan. 

.The Objective Function 

For defined benefit plans, the employer desires to use as little money as possible while 

providing a qualified pension plan to the employees. Clearly, minimizing the cost of the plan 

is one of the components in the employer's objective function. These employer contributions 

are also subject to several internally and externally imposed constraints including those resulting 

from IRS regulations (such as those of the Employee Retirement Income Security Act (ERISA) 

of 1974). Actually, because lhe corporate decision to commit funds to the defined benefit plan 

is an investment decision, the money commitment must be made wisely and in consistency with 

other internal corporate objectives. It is not always true that the smaller the contribution the 

better. 

In a wise design of pension plan contributions, the employer would want to take 

advantage of tax deductibility and perhaps also accumulate assets in the fund for future costs. 

Moreover, because the assets of a qualified plan can grow tax-free, some motivation exists for 

the employer to overfund in order to shelter current income. Overfunding, however, can lead 
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to undesirable social consequences such as plan terminations with the employer reclaiming the 

excess funds in a later, perhaps lower tax year period. These large build-ups of overfunded 

plans can also lead to termination by a hostile corporate raider who can then use the excess 

pension funds to capitalize the take-over. It has been estimated that there are over $600 billion 

in overfunded pension funds in the U.S. [2] ~. 

For the preceeding reasons, there is a limit to the tax-deductibility of contributions. No 

deduction for tax purposes is permitted for contributions that exceed certain specified limits. 

Thus, a first part of the employer's objective might be to maximize the expected plan assets 

(ending balance), subject to constraints on the tax-deductible pension contributions. On the other 

hand, as mentioned previously, the employer would want to minimize the expected cost. 

Considering the limits on the tax-deductible pension contributions, the expected cost would be 

the total contributions in n years plus the product of the tax rate with the contributions that 

exceed the tax-deduction limit. Thus, an employer's second objective may be to minimize the 

sum of the contributions plus the expected tax paid on the amount exceeding the maximum 

funding requirement. 

Because the development of an appropriate objective for the pension plan is intrinsically 

t It was pointed out to one of the authors (Patrick L. 
Brockett) in a personal communication by Dr. James Hickman 
[Obberwolfach Germany Risk Theory Seminar, (1990)] that nominal 
overfunding in pension plans occurs when there are higher real 
interest rates and relatively lower salary rate changes (such as 
occurred in the 1980s). This is because of the formulas relating 
salary to promised future benefits. Similarly, when interest rates 
are low and salary rate changes appear relatively higher, pension 
fund liabilities will appear larger than the accumulated value of 
current assets plus premiums; i.e., pension funds will appear to be 
"underfunded" as in the late 1970s. In any case (whether real or 
perceived) the under- or over-funding of pension plans can create 
adverse incentives and should be controlled. 
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multidimensional, the modd we use involves a vector or multi-objective optimization. The 

ordering relation on the plane R 2 corresponding to the vector extremization process is that of 

Pareto optimality; i.e., no improvement is possible in one dimension without causing a sacrifice 

in another dimension. 

Put mathematically, the multi-objective may be written as: 

Determine the valtle of contributions each year, W =  (W~, ...,W~), so as to achieve the 

vector maximum (V-Max) of: 

(1) V-MAX ~(W), - f2(W)). 

Here the first component in the maximization, f,(W), corresponds to the ending balance 

in the pension fund: 

(2) f ,  OD = E(~) ,  

where E denotes the mathematical expectation operator and Y. denotes the ending balance of 

the pension plan in the nth year; i.e., the nth year's plan assets. This ending balance depends, 

of course, on the amounts of contributions, the experienced investment returns and the normal 

cost of the plan. 

In order to delineate this relationship further, let Y0 be the initial funding (a known 

constant), and let Y~ denote the ith year's ending balance. These balances may be further broken 

down into the amount of funds invested in each of the three investment vehicles described 

earlier. Thus, we set: 
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3 

(3) r0 = E 
j - I  

where the subscript j indicates the jth investment ( j = 1, 2, 3). Thus: 

3 

(4) Y~ = ~ Yo' i = 1,2 .... .  n. 
j - I  

Further, the financial dynamics between year i and i-1 give the balance sheet identity: 

(5) Y,j = (~ - 'a  + Wv)x(1  + ro) - 1 / 3x (~ ,  + m, + c ) ,  

where r~l = the rate o f  return on stocks at the ith year, 

rt2 = the rate of return on bonds at the ith year, 

ro = the rate of return on money market at the ith year, 

~, = the actual cost of the plan at the ith year, 

m~ = the minimum amortization charges of the ith year, 

c~ = the annual expense assumption of the ith year, such as trustee fees, 

recordkeeping fees and legal fees. 

W~j is the amount of  the employer's contribution which is invested in the jth type 

investment fund in the ith year, so that: 

3 

= ] g  % i = 1 , 2  ..... . 
j - I  

and r~, r~, ra and ~i are random variables. The expected value of ~ is the normal cost of the 

plan (of., [5] pg. 266), which represents the allocation of costs to year i if  all the actuarial 

assumptions hold exactly. The variables c~ and m~ are constant (i = 1, 2 . . . . .  n), and the final 
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term (involving the factor of 1/3 for each fund) is the cost of paying benefits and expenses, 

which we assume to be paid equally from each of the three funds. 

The value of the first component of the objective function may be increased by 

increasing the contribution levels (W,,W2, ...,W,); however, this action increases costs and 

risks potential non-deductibility of the contributions. This leads to the trade-off encountered 

in the second component of the objective function. 

The second component of the objective function (1) provides for minimizing plan costs 

and is expressed via the cost function: 

(6) f2(W) = ~ W~ * Expected cost o f  exceeding tax deduction limit. 
I=l 

The second part of (6) can be expressed further as: 

(7) ~ t, max  {W~ - E(~,) - c, - ~ + E(B,), 0}, 
i ' I  

where ~ is the tax rate during the ith year, c~ is the expense assumption for year i, B~ is the 

balance in the funding standard account for Ihe ith year (to be discussed subsequently), E ( ~  

is the normal cost for current service and Mi is the maximum allowable amortization charge 

for year i. Clearly, the recursion relations: 

B~ = B0, B o is a known constant, 

3 

Bi = Bi-, - f;,-1 - m,-i - ci-, + ~_, Wi-Lj (1 + r,._l.~), 
j=l 

hold where m~ is the minimum amortization charge for year i. Equation (7) can be interpreted 

to mean that when contributions are less than the maximum funding requirement, there is no 
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tax paid on the contribution. Tax need only be paid on the amount that exceeds the maximum 

funding requirement, and this maximum funding standard depends upon the contribution in 

relation to the normal cost, the maximum allowable contribution and the funding standard 

account. 

For the purpose of using mathematical programming to obtain optimal funding 

amounts, it is useful to rewrite the expected plan cost equation for year i: 

m a x  { w ,  - E ( ~ , )  - c ,  - ~ + e(n,), o} 

as  

= t { I W  - E(~ , )  - c,  - M + E ( B , )  I + W - E ( ~ . )  - c ,  - M ,  + E ( B , ) } .  

Accordingly, the second objective can be rewritten as: 

n I n 

w~ + .~y~ t,{l W~-E(~)-c,-M, +E(B,) l + W~ - e(~,)  - c, - M i + E(B)}. 
i o l  *" i l l  

In our chance-constrained programming formulation, the stochastic decision rules 

provide for the determination of the W~ i. These rules need to be "informationally feasible" in 

the sense that they are functions of the previous observations and the decision rules used in 

the previous periods. In a sense of Bayesian updating of the basic equation if another 

possibility which is "informationally feasible." Our chance-constrained method does not 

require the assessment of subjective "prior" distributions, and more importantly, is directed 

towards optimal behavior in most (but not all) situations. The Bayesian methods use means 

of posterior distributions in an "average" technique which might require last minute remedial 

funding action at the end of the year in order to preserve qualification of the plan, and this 
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can occur an undetermined proportion of the time in the Bayesian setting. The "learning" 

aspects of Bayesian updating can be incorporated into our model by using higher order 

decision rules and conditional probability distributions. Note that once the W~is are 

determined, the employer contribution level W~ = I; W~i and the asset allocation levels I; Wii 

are determined. The second component of the objective function is a convex function of the 

Wii, so that minimizing this objective results in a convex programming problem. 

Further Constraints 

a. Minimum Funding Requirement 

One of the significant regulatory requirements imposed by ERISA is the minimum 

funding requirement. Under this requirement, the minimum annual amount that the employer 

may contribute to a qualified plan equals the sum of the annual normal cost for current 

service, the annual amortization payment of initial unfunded past service liability (cost relating 

to participants' service before establishment of the plan) amortized over 30 years, the annual 

amortization payment of increases or decreases in past service liability due to plan 

amendments amortized over 30 years, the annual amortization of gain and/or loss experience 

amortized over 15 years, the annual amortization of gains and/or losses resulting from 

changes in actuarial assumptions amortized over 30 years, the annual amortization of any 

waived contributions amortized over 15 year, and the annual amortization of certain other 

amounts. In this model, we shall consolidate all of these amortization costs together into a 

single item we shall call the amortization charge. Although the actual implementation of this 

procedure could easily treat these components individually, we treat them collectively here 

for simplicity of presentation. 
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If  all variables involved in the analysis were deterministic, the minimum funding 

requirement would be: 

W i > ~ + m~ + c~ - B~. However, because ~i is a random variable, instead of 

specifying that W i must exceed the actual cost and minimum amortization charges under all 

conceivable situations in our formulation, we require instead that W~ > ~, + m~ + c, - B~ 

at least some prespecified proportion of the time (say 95%). Thus, in place of a deterministic 

minimum funding constraint, we should have a chance constraint of the form: 

(8) P{Wi > ~i + mi + ci-  B,} _> ati, i = 1, 2 . . . . .  n, 

where ai is some preassigned probability, 0 < c~ < 1. The parameter at is essentially an 

index of reliability of the funding policy determined using our method. This is the notion of 

chance-constrained programming invented by Charnes and Cooper (cf., [3]). This notion has 

also been used by McCabe and Witt [4]. When the precise unveiling of the random variables 

occurs, it is possible that the constraint (8) will not be satisfied (in fact, this is expected to 

occur or% of the time). In these situations, remedial action outside the model is necessitated. 

This same situation occurs in traditional actuarial techniques; however, the important 

difference here is that the funding and investment policy is constructed such that this does not 

occur too often. In fact, if one required equation (8) to hold all the time (with probability 1) 

and if ~ was an unbounded random variable, then the funding level Wi would also need to 

be unbounded. In essence, the tail of ~, no matter how unlikely, would be the determining 

factor for W~. By introducing the probability constraint instead of  a deterministic constraint, 

we keep "the tail from wagging the dog." 

b. Limits on Employer Tax Deductions 
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The IRS imposes limits on the amount of tax-deductible annual employer contributions 

to defined benefit plans. The tax deduction is limited to the normal cost for the year plus the 

maximum amortization charges. The employer will pay tax on contributed amounts which 

exceed this maximum funding requirement. The second term in the vector optimization 

formulation of the chance-constrained programming model for pension funding (1) 

incorporates this tax-induced charge. 

Summarizing, the mathematical model with funding level decision variables 0N~j) is 

to determine the vector maximum of the function: 

n 1 n 
V - M A X  ( E ( Y ) ,  - (~-'~.1 W~ + - ~ . ~  t , { l W  - E(~,) - c~ - M~ + E(B,)I + W,. 

- E ( ~ , )  - c ,  - M ,  + E(B,)})), 

subject to the delineated constraints: 

P{Wi -> ~i + mi + c i -  Bi} :> oti, 

3 

(9) W~ -- ~ W~, 
1=1 

3 

ro -- E 
j=l 

3 

1=1 

Yij = (Y~-l.i + W,.j)(I + r#) - 1/3(~, + m i + c~), 
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J 

B,  = 8,_, - 6,_, - m,_, - c , ,  * ~ w , _ , j  (1 * Z - , j ) ,  
./=1 

W~j > O, Yc~ --> 0 , 0  < oq < 1. 

Within this formulation, the variables r~j and ~j~ are allowed to be random ( i=  1, 2, ..., 

n and j = 1, 2, 3. This specifies the chance-constrained hi-objective n:stage investment model 

we shall use for pension funding and investment vehicle levels. We shall explicitly investigate 

the case of zero order stochastic decision rules for Wij , whose selection does not depend on 

unknown variables; however, generalization to linear decision rules is also possible. We shall 

discuss the mathematical treatment in the next section. 

Mathematical Treatment 

In this section, we transform the previously described stochastic model into an 

equivalent deterministic form which lends itself to simple numerical solutions. We use the 

Charnes-Cooper test [3] for vector extremality to convert the bi-objective problem to a set of 

equivalent single dimensional objective problems. 

The chance-constraints in model (9) may be converted into deterministic equivalents. 

This can be done regardless of  the precise probability distributions involved, as long as the 

distribution functions are known. In this paper, for illustrative purposes, we assume that ~i 

and r~j are mutually independent random variables with known normal distributions, and we 

take the W~i as zero order stochastic decision rules. To see how this conversion to 

deterministic equivalent constraints is accomplished, we first convert the constraints (8) to 

their deterministic equivalents. The first component of  the objective function E(Y,) can be 
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expressed in a similar fashion. 

By the equation: 

B 1 = Bo, 

we  can reduce this system to: 

3 

B ,  = Bi_  I - ~ t - i  - m i - ,  - ci_, + ~ W i _ , j  (1 + r ~ . j j ) ,  
.,.1 

Bj  = Bo~ 

3 

B2 = B o - / j ,  - m ,  - c ,  + ~ W u (1 + r , / ) ,  
j - l  

B3 

3 3 

= B  o - /~, - m,  - c, + ~ W l / ( l  + r,/) - ~2 - m2 - c2 ÷ ~ W 2 /  (1 + r2/) 
j - I  j~l 

2 2 2 2 3 

It-I k=l k ' l  k ' l  j ' l  

l - ]  i - I  i - I  i - I  3 

B, ° ~o - E ~ .  - E r a .  - E c .  + E E w ~  o + ~ 
k-I k=l k-I / - I j = l  

i-I  i-I  i-I  i-l  3 i -I  3 

= B o - ~  , -Em,-Ec ,  + E ] ~ _ , W ~  + ~ _ , E W ~ %  • 
k ' l  k=l k=l k = | j - I  k - l j = l  

Let us define: 

i l-I  3 

x(o o Z;  ~. - ] E Z %  r~, 
k=l k-I j ' l  
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i 

re(i) = ~ ,  m,, 
k*l  

i 

c(O = q. 
k*l  

The constraints  become: 

w<i) = E E  % = w,, 
k - I  j - I  k - I  

P { W  > ~, + m + c - n o + r e ( i - l )  + c ( i -1 )  + x(i) - ~, - W(i - I )}  > ~,, 

o r :  

O F :  

P {X(i) < W, + W(i -1)  - m(i) - c(i) + Bo} >__ c% 

(10) P { x ( i ) <  W(i) - m(i) - c(i) + B0} _>%. 

Since ~ ,  Wur~i are mutually independent  random variables having,  

W~ a~), the respectively, the normal distributions N~¢,  at2), N(W##,, 2 2 

i i - I  3 

random variable ×(i) = ~ ~, - ~ ~ Wo ro. is normally distributed with 
k=l k=l j= l  

2 2 2 mean ix,, - ~ We Ixr~ and variance o,, + E E W~ar~, so 
k ' l  k*l j * l  1=1 k*l j * l  

that x(i) is N ( ~  #~, - ~ ,  W# Ix,, a~, + W;~o,,). 
k. I  k ' l  j ' l  It-I k ' l  j ' l  
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After standard normalization, (10) may be rewritten as: 

P{Z <_ 
W ( i )  - re( i )  - c ( i )  + B o - E(×,)} ___ oq, 

o× (0 

w h e r e  Z = x ( i )  - E ( x ( i ) )  is  a s t a n d a r d  n o r m a l  r a n d o m  v a r i a b l e ;  i . e . ,  

°x(o 

?p{ W ( O  - m ( O  - c ( i )  + B o - E(Xi)} _> %, 

%0 
where ¢b denotes the N(0,1), the standard Normal N(0,1) distribution function, 

o r  W ( O  - m ( O  - c ( i )  ÷ B o - E(X,) _> '~-~(ai) 

O'x( 0 

Therefore, the chance-constraint (10) is equivalent to the deterministic constraint: 

(11) w ( o  - m(O - c(O ÷ Bo - ~ ( x , )  >- %0~-'(~,). 

(Note that this process would have worked for any two parameter 1ocation-s~le family 

of distributions, not just the normal distribution. Morn general distributions are also possible 

as well.) 

Although (! |) could be used directly, we have found that the computation involved 

in using standard nonlinear optimization computer codes can be further simplified by 

introducing the so called "spacer" variable v~ to separate inequality (11) into two inequalities: 

W ( i )  - m ( i )  - c ( i )  + B o - E(X~) >- v ,  ~ o~0~,t(ai). 

The v~ variable separates the double inequality into a linear inequality plus a non-linear 
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inequality; i.e., 

W ( i )  - r e ( i )  - c ( i )  + B o - E(X,) ---- 

~ o f l ~ - J ( c ~ i )  <_ v, .  

If ~ is sufficiently large so that ,~"(a~) > 0, then vi > 0, and, since vi -> 0, the constraint 

~t(a~)ax(o < vi can be rewritten as:  

o ~0214-~(~,)]2_ v2 _< 0. 

This quadratic constraint in the W~j with v~ _>_ 0 defines a convex set in these variables. 

Also, the function E(Y~) is linear in the W~i , thereby achieving a bi-objective convex 

programming problem. 

Using the Charnes-Cooper test [3] and the Ben-lsrael, Ben-Tal and Charnes theory [1], 

the vector maximization of the bi-objective function (f~fW), -f2(W)) is equivalent to the 

univariate extremization (h~f~CW) - h2f2(W)), where h~ __. 0, h~ + ),2 = 1 in the sense that 

each of the extremum (under Pareto optimality of the bi-objective function) corresponds to 

the univariate extremum for some choice of h. Depending upon the relative priority given 

to the two objectives in the vector objective function, different sets of ~ may reveal different 

vector extremal decision rules. From these, we can choose the decision rule which best fits 

the employer 's goals to contribute to the pension fund in a manner which maximizes the 

security of achieving the highest possible asset value and which minimizes the costs associated 

with the plan. 

Using our previously developed formulas for fj and f2 in the univariate equivalent 

maximization problem results in the objective: 
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n 1 n 

- c ,  - M ,  + E ( B i ) } )  , 

which is a concave function of W~j. Maximizing this concave function subject to the convex 

constraints gives us a convex programming problem. 

This problem may be further simplified by replacement of Bi by: 

W~ - E(} 9 - c, - M~ + E(B,) 

= W . + W ( i - 1 ) - M ( i ) - c ( i ) - B o - E ( x ( O ) = W ( i ) - M ( i  ) - c ( i ) - B o - g ( x ( i ) ) ,  

i 

where M(i) = ~ ,  M r 
k c l  

Let us now find an appropriate reformulation for Y~. From: 

3 

Y/ = ~ Y 0  and 
j~l  

Yo = (Y~-,J + W#)(l + r,~) - 1/3($, + rn, * c,), 

we have: 

Y,/ = (Yo. + Wu) ( l  + r , / )  - 1 / 3 i f ,  + m ,  + c,) 

= Y~ x ( 1  + rl j  ) + W i j × ( l  + r,/) - 1 / 3 × ( ~ ,  + m, + Q ) ,  

Y2j=[ r~(1 +r,/)+Wlj(1 +r,j) -1/3 (~ +mr +c,)](1 +%) +W2j(1 +%) -1/3 (~2 +m2+c2) 

3 4 3  



=Y* (1 +rS(l +r& + W,,(l +r,,)(l +rzi) + W2, (1 +r& 

-1/3([, -m, -c,)(l +rIj) - l/3(5, +m2 +cJ, 

h=k+l h-k*, k’l h-k+, 

Let us define: 

i (1 +r,$ = R,(~J), ifk>i, R,(i~)=l, 
h’k 

2 W,R,(iJ] = RW(iJ], 
*-I 

2 CA,,(iJl = RC(iJl. 
k=I 

Therefore. 

Y” = e Y”,, 1’1 
and hence, 
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3 

E ( Y  ) = ~_, [Y~E(R,(nj) )  ÷ E (RW(n j ) )  - l l 3 E ( R ( ( n j ) )  
. i -I  

- l l3E(Rm(nd~ ) - 1/3E(Rc(nd')] ' 

Thus, the deterministic equivalent of the model (9) with zero order decision rules is: 

3 

MAX(k~ { ~  [Y~E(R,(nj) ) + E( R W (n j )  ) - ll3 E( R ~ (nd'))-  l l3 E ( Rm(nj ')  ) 
J-I  

n 1 n 

- 1/3E(Rc(nj3)]} -h2{~_ . W t + -4~-, t , { lW( i )  -E(x  ( i ))  - c ( i ) - M ( i )  +Bo[ + 
i~l  ~' ~ 1  

+w(i)  - e ( x ( i ) )  - c ( i )  - M ( i )  +B 0 } }), 

subject to: 

- W ( i )  + re(i) + c(i) - B o + E(X~) + v < O, 

2 - I  2 _  a~o[4' (~i)] vi ~ < 0 

3 

w, -- E 
j - I  

where: 

Wlj > 0, v~ > 0. 

3 

(12) Yo = ~ Yo~, 
j - I  
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i i - I  3 

E(x(i)) = F,  e(~)  - ~ ~ w,, e(r,j), 
k*l  k " l  j ' l  

i 

m(i) = ~ m k, 
k . I  

c(i) = ~ ck, 
k ' l  

i 

k*l 

k° l  j . I  k - I  

i 

E(R~(i,j)) = E(I- I (l +rh:)), 
h=k 

E(RW(id)) = ~ W~E(Rk(ij')) , 
k*l  

i 

E(R~(i,j)) = ~ E(~k)E(R~.~(i,I)) 
k'l 

E(Rm(id)) = ~ mkE(R,. ~(id) ) 
k ' l  

E(nc(id)) = ~ qE(R,., (ij)). 

Where Yoi, Bo are given non-negative constants, and ~,, r~j are mutually independent 

random variables with known distributions, 0 -< a, -< 1, j = 1, 2, 3 and i = 1, 2, . . . ,  n. 
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Theoretically, we can use the following Kuhn-Tucker conditions [8] to find global 

optimal solutions. The Kuhn Tucker Theorem is as follows: consider the primal non-linear 

programming problem: 

Max f(x) ,  
gl(x) < O, 

(P) g,(x)  <_ O, 

x>_O. 

Then x" is a global optimal solution of (P) if here exist h" _~ 0, ~' such that (x',X',/~ ") satisfy 

the conditions: 

vf(x) -)~rvg I (x) - ttrv gu (x) -< O, 

[ vf(x) - hrvgl(x) - prvgn(x ) < O]x --0, 
)~rvgl(x ) =0, 

where Vf(x) is the gradient of f, f(x) is a concave function, g~(x) is a vector convex function 

for which some x ° satisfies g~(x °) < 0 ,and g~(x) is a vector linear function. 

Because the objective function of our model is a concave function, and the constraints 

are convex (or linear) functions of W~ i, the Kuhn-Tucker Theorem implies that when these 

Kuhn-Tucker conditions are met, the local optimal found is indeed a globally optimal solution 

of the mathematical programming problem. It should also be noted that higher order decision 

rules and/or conditional probability functionals (instead of the unconditional probabilities used 

here) can be used to incorporate learning and past experience into the chance-constrained 

programming models of this paper. 

~,. Illustrative Examole and Discussion 

The previous section developed a bi-objective expectational model of n-stage 
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investment under chance-constraints for the purpose of making decisions on how much money 

to contribute into the pension fund and how to allocate these contributions for investment 

purposes. In this section, starting with the deterministic equivalent form of the mathematical 

programming formulation as developed in the last section, we solve this problem explicitly 

for a prototypical situation. 

Consider the following scenario: ABC Oil & Gas Company has a defined benefit plan 

and would like to make investment decisions for the next two years, with respect to how 

much money they need to contribute to the fund each year and how to invest it. The company 

provides the following information concerning the plan: 

(i) Initial funding Y0 ( i.e., last year's ending balance of the plan) 

Y01 = $406,854, Yo2 = $1,232,374, Y03 = $1,150,110; 

(ii) Initial balance in the funding standard account: B0 = $27,434; 

(iii) Plan expenses: Cl = c2 = $22,500; 

(iv) Tax rate: t, = 0.28, t 2 = 0.33; 

(v) Maximum amortization: M1 = $157,308, M2 = $159,405; 

(vi) Minimum amortization: m t = $89,546, m2 = $92,645; 

(vii) Actuarial assumptions (see Appendix A); 

(viii) The number of employees and their age, compensation (see Appendix B & C); 

(ix) Benefit formula: monthly benefit = (35% × the Average Monthly Compensation 

(up to 5 years) - 70% × Primary Social Security benefit) x number of years of 

Vested Service + number of years from the Date of Hire to the Normal 

Retirement Date. 
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From (vii) - (ix), we can calculate the expected annual normal cost E~i from the 

following formula (of., [9]): 

(13) E(~i) = ~ ( ~  ~5-,P~ n v65-x/~65)~, 
j - I  

where Bx = benefit accrued up to age x, calculated by using the benefit formula given 

in (ix), 

65_,.px m = probability of surviving in service from age x to age 65 (This depends upon 

the mortality rate, the turnover rate, the disability rate and the retirement rate. See 

Appendix A), 

v ~5"x = interest discount from x to age 65 (from Appendix A, we assume v = 7.5% 

in this problem), 

~5 = life annuity valued at age 65, 

i = the ith year of the plan, 

m = the number of employees participating in the plan, 

j = the jth employee in the plan. 

By using the information in Appendices A, B and C, the benefit formula in (ix), the 

formula in (12) and the actuarial code LYNCHVAL (,produced by Lynchval Systems Inc.), 

we obtain E(~l) = $66,720, E(~2) = $184,084. 

For convenience, we list all random variables with their distribution functions and 

parameters in Table I. Also, for convenience, these distributions are assumed normal in this 

illustrative example. However, other distributions (even the empirical distributions) could be 

used. Likewise, the independence assumption can be relaxed using results from joint chance- 
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constrained programming. 

Table I 

Random Variable Distribution Function Parameters 

~i Actual Annual cost N(~j,al) /~l =$166,720,  ol =$1,000 
first year 

~z Actual Annual cost N(/ .z2,a2)  /~2--=$184,084, o2=$1,000 
second year 

rt~ Return rate on N~3,03) #3 = 0.20, a3 = 0.20 
Stocks in period 1 

r2~ Return rate on N(#4,0.,~) ~4 = 0.15, 0 4 = 0.20 
Stocks in period 2 

r~2 Return rate on NO~s,crs) /z s = 0.15, o5 = 0.10 
Bonds in period 1 

r22 Return rate on N~6,o~) /~6 = 0.12, o6 = 0.10 
Bonds in period 2 

r~3 Return rate on N(p-7,0.7) #7 = 0.085, 0 7 = 0.005 
Money Market in 
period 1 

r~ Return rate on N(/~g,as) #g = 0.09, 0"g = 0.005 
Money Market in 
period 2 

Substituting all these numbers in the formulas for M~, m~, Y~, Bo, E(/j~), E(r~j), and t~ of 

model (13), and letting cq = ~2 = 0.95, we have the following model: 

Max { ~,1 [1.356WI1 + 1.288Wi2 + 1.18265W~3 + 1.13W21 + 1.12W22 + 1.09W~ + 

2 ,889 ,580] -  k2[0.141W . + W~2 + W,3- 319,0941 + 0.16511.2WH + 1.15W~2 + 

1.085W~3 + W2~ + W22 + W23 - 685,0831 + 1.338W n + 1.32975W12 + 1.319025W13 

+ 1.165W2~ + 1.165W2~ + 1.165W23- 157,711]}, 
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(14) s.t. 

-Wtt - Wlz - WI3 + vl < -251,332, 

-1.2Wll " 1.15Wl~ - 1.085W,3 - W21 - W22 - Wz3 + v2 < -550,561, 

-Vl z < -2,705,531, 

-0.04WH 2 - 0.001Wj~ z - 0.000025Wj32 - 0.36961v22 < -2,000,000, 

Wij > 0, 

vi>_ 0, i =  1,2,  j = 1 , 2 , 3 .  

By varying the parameters )~ and h2 = (1 - h~), the bi-objective function of maximizing 

benefits while minimizing costs can be reduced to the univariate extremization involving 

an unknown trade-off )~, between costs and benefits. For various choices of k~ and hz, we 

obtain the results presented in Table II: 

oq = c~2 = 0.95 

Variable Xi = 0 
h2 = 1 

Wll $17,485 

Wl2 $121,000 

WI3 $114,490 

W21 $0 

W22 $0 

W23 $176,620 

v t $1,644 

v2 $0 

Wj $252,975 

W~ $176,620 

k, = 0.2 
h2 = 0.8 

$138 305 

$105166 

$76433 

$61643 

$60801 

$58276 

$37 389 

$0 

$319,904 

$180,720 

Table II 

~ = 0.3 
h~ = 0.7 

$143 554 

$103 979 

$72 371 

$62 551 

$61 059 

$56 584 

$37 389 

$0 

$319,904 

$180,194 

h~ = 0.4 
h2 = 0.6 

$150 453 

$102 533 

$66 928 

$63 862 

$61 444 

$54 191 

$37 389 

$0 

$319,904 

$179,497 

h~ = 0.5 
h2 = 0.5 

$157,823 

$142,683 

$131,204 

$64,314 

$63,577 

$61,366 

$42,827 

$0 

$431,710 

$189,257 
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Objective $-186,857 $300,255 $701,199 $1,102,228 $2,945,900 

With ~ = oL 2 = 0.95 fixed, varying the parameters )̀ ~ and )'2 means we vary the priorities 

of the first objective (of maximizing return) versus the second objective (of minimizing costs). 

From Table II we see that if we are only concerned with minimizing cost (hi = 0), we should 

invest more money in the stock market and not pay more than the minimum funding 

requirement. Moreover, since cost is the determinant attribute and these costs increase with 

ove-r or under-funding in the second year, all contributions go into the safer investment 

(Money Markets). The effect on return of this conservative strategy is not put into the 

objective function when )`t = 0. When kt increases so that return becomes more important, 

we can see from the row of W~, that we would increase the employer's contributions. When 

~.2 = 0.8, 0.7 or 0.6, we would pay only the IRS tax limit (319,904); however, when )̀ 2 = 

0.5, we would pay an amount which exceeds the IRS tax limit in order to increase the funding 

balance and hence, increase return and security. 

It is natural, when you are concerned most about accumulating your assets, that you make 

contributions to the fund in excess of the IRS limits. On the other hand, if you are more 

concerned about reducing the cost, you might pay only the lower limit permissible for tax- 

deductibility (or even less). In the real business world, the following are some factors that 

may affect an employer's decision: 

1) Cash Flow Considerations. Employers may want to maintain reasonable stability in 

the cash flow required to fund their pension plans. This factor depends, in part, on 

the financial strength and stability of  the employer. 

2) Nature of the Industry and Competitive Conditions. An employer 's  funding policy 
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will naturally be influenced by the competitive conditions under which he/she must 

operate. For example, if profit margins in a particular industry are quite narrow, it 

may be important for an employer to keep pension costs as low as possible. The 

reverse may be true in more affluent industries when tax and/or deferral 

considerations might prevail. 

3) The Employer's Internal Rate of Return. If the after-tax rate of return the employer 

can earn on funds within his/her o w n  business is relatively high compared to the tax- 

free return from qualified pension fund investments, the employer may be inclined 

toward funding his/her pension obligations around the minimum permitted level. 

4) Matching Contribution to Accrued Benefits. Employers may establish certain goals 

for funding plans, such as an providing funding of an amount at least equal to the 

total present value of accrued benefits, or of accrued vested benefits. 

Since our model solves for a bi-objective strategy which can be altered by adjusting 

the h values to emphasize one versus the other objective, it provides flexibility to better meet 

various employers' desires. 

Additionally, the analysis can be sharpened by adding a constraint on investment in 

stock. From the results presented in Table II, Wi~ is higher than the return rate in bonds and 

the money market. Usually the trustees who manage a pension fund do not invest a high 

percentage of assets of the fund in stocks because of the high risk of stock (and some pension 

funds prohibit extensive investment in certain stocks). In order to incorporate such desires 

or contractual obligations, the actuary need only add a constraint which limits the percentage 

of contributions that can be invested in stocks, to say 40%; i.e., add constraints W,  -< 0.4 
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W~. The results of the computations exemplified in the previous illustration in light of this 

new constraint are presented below. They are compared with the optimal allocation which 

results in the absence of this constraint. 

~, = 0.4, ul = c~2 = 0.95 

Table III 

Variable Stock Unconstrained Stock Constrained 

Wll $150,453 $127,961 

WI2 $102,523 $191,942 

Wi3 $66,928 $0 

W21 $63,862 $60,509 

W2~ $61,444 $115,763 

W23 $54,191 $0 

v I $37,389 $1,644 

v2 $0 $0 

W~ $319,904 $319,633 

W2 $179,497 $176,272 

Objective $1,102,228 $1,005,604 

Table III shows the effects of constraining the percentage of contributions that can be 

invested in stocks. W,  drops from $150,452 to $127,961, and the optimal objective function 

value drops from $1,102,228 to $1,005,604. In this situation, investors of pension assets need 

to invest capital in bonds instead of in the money market in order to make a higher return. 

If regulators put a constraint on the percentage that can be invested in "junk bonds" (as there 

is some talk of doing), then this can easily be handled within this framework by designating 
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a fourth investment vehicle type and including a constraint on the amount which can be 

invested therein. 

5. Conclusion 

The chance-constrained model (9) appears to give realistic and sensible results as well 

as offer flexibility for optimally determining funding levels in a defined benefit plan within 

the constraints imposed by regulators, the IRS and corporate objective goals. The chance- 

constrained methods also allow the plan administrator to meet the basic requirements of 

design of the defined benefit plan. For a large class of additional special cases, we could add 

new constraints to meet the additional special needs; i.e., gt(x) _> 0 while having g~(x) a 

vector convex function. Our procedure of finding a global optimal solution to a non-linear 

programming problem by employing the Kuhn-Tucker optimality conditions to a convex 

programming problem is also valid in the larger context of the employee benefit plans. 
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Appendix A 

STATEMENT OF ACTUARIAL METHODS AND ASSUMPTIONS 

Valuation Method 

Entry Age Normal Method -- In general, this method assumes that level annual funding 
payments (as a percentage of compensation) are made to the Plan for each member during his 
entire period of employment. These assumed payments are called "Normal Costs." 

Asset Valuation Method 

The actuarial value of Plan assets is set equal to the fair market value of Plan assets 
determined as of the valuation date. 

Actuarial Assumption~ 

Rate of Return: 
Salary Scale: 

7V2% per annum, compounded annually 
51/2 % per annum, compounded annually 

Assumed Retirement Age: 
Mortality Rates for 
Active, Disabled and 
Retired Members: 

65. 

Rates are those of the 1983 Group Annuity Mortality 
Table. There are separate tables for males and 
females. Sample mortality rates are: 

Mortality Rate 
A~e Male Female 
25 0.05 % 0.03 % 
30 0.06 0.03 
35 0.09 0.05 
40 0.12 0.07 
45 0.22 0.10 
50 0.39 0.16 
55 0.61 0.25 
60 0.92 0.42 

Rates of Incidence 
of Disability: 

A scale of disability rates consistent with insured long- 
term disability rates developed by the Society of 
Actuaries from 1972 to 1976 experience. Sample rates 
a r e -  
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Turnover Rates: 

Expenses: 

Social Security Benefits: 

Disability Rates 
Age Male Female 
25 0.083% .106% 
30 0.083 .106 
35 0.083 .106 
40 0.176 .303 
45 0.341 .407 
50 0.638 .597 
55 1.119 .921 
60 1.541 1.093 

A scale of termination rates consistent with the 
following sample rates: 

Ace Mal~ and Female 

25 9.75 % 
30 9.40 
35 8.84 
40 7.95 
45 6.71 
50 4.87 
55 2.59 
60 1.70 

$22,500 per year 

The law as amended through January 1, 1989 with 
assumed: 

a. Cost-of-living 3% per annum, 
increases: compounded annually 

b. Wage base and 
national average 
earnings increases: 

5 % per annum, 
compounded annually 

c. Salary increases prior 5.5 % per annum, 
to the valuation date: compounded annually 
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Maximum Retirement 
Benefit: 

Marital Status: 

Eligible Earnings: 

$98,064 annually, payable as a straight life annuity 
at the participant's Social Security retirement age 
(per Section 415 of the Internal Revenue Code) 

a. Percentage Married: 100% 

b. Age Difference: Males are assumed to 
be three years older 
than their spouses. 

1988 W-2 earnings were adjusted by the salary 
scale, as applicable, in determining all costs and 
actuarial liabilities under the Plan for the Plan Year 
beginning January 1, 1989. However, actual salary 
histories were used to determine a participant's 
accrued benefits as of January 1, 1989. 

359 



AG£ 

CROUP 

O-~9 

20-24 

25"29 

30-24 

35"39 

40-44 

45"49 

50"~4 

SS-S9 

60"64 

65-69 

70"74 

7~-79 

8U'84 

85 ° 

TOT^L 

AGE, SERVICE AND CC#J°ENSATI(~IOISTRIRUTION 

AS OF" I,(~I, JARY I ,  1990 

ANH~IAL EARtIING5 BY AG[ GROL~S 

M A L E  T E M A L E  At.. I_ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NU~0E R T01AL AVE L~.GE 141J6[8E R TOTAL AVERAGE taJ~BER TOTAL AVE RACE 

0$ ANh~AL ANNUAL OF ANHUAL ANNUAL OF AHh~UAI ANh~AL 

PEChOL E E A R N I N G S  EARNIHGS PEOPLE EARNINGS EARNINGS PEOPLE EARN I H~S EARNINGS 

0 $ 0 $ 0 0 $ 0 $ 0 0 S 0 S 0 

~5 20).81~ 13.588 13 169.579 14.132 27 373,396 13,829 

36 712.758 19.799 23 367.107 15.961 59 1.079,866 18.303 

46 1,177.820 25.605 21 445.188 21,199 67 1.623,O08 24.224 

49 1,500.534 30.623 9 188,313 20,924 58 1.688,846 29,118 

35 1,502.156 42.919 19 409,04S 21.529 54 1.911,203 35.393 

25 898,159 3S,926 6 IO9,470 18,24S 31 1,007,629 32,504 

22 635.340 28.679 7 133.011 19.002 29 768.3SI 26,495 

20 1,015.912 50.796 6 122,265 20*376 26 1.138.177 43.776 

6 242,233 40,372 6 111,284 18.547 12 3S3,517 29,460 

3 253.583 84,528 1 21,501 21,501 4 27S,004 66,771 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

757 $ 8.142.312 S 31.682 110 $2,076.765 $ 18.880 367 $10,219.076 S 21.845 
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Appendix C 

RECONCILIATION OF PLAN PARTICIPANTS 
AS O F  JANUARY 1, 1990 

Number of Plan 
Participants on 
April  1, 1988 

Data Adjustments 

New Participants 

Participants 
Terminated 

Terminated Retired or 
Active Vested Beneficiaries 

390 23 21 

0 -1 0 

2 0 0 

* Vested -9 9 0 
* Non-Vested -74 0 0 

Participants Retired -12 -1 13 

Participants Who 
Received Lump Sum 
Distributions from 
the Plan 

Number of Plan 
Participants on 
January 1, 1989 

0 -6 0 

367 24 34 

361 




