
ACTUARIAL RESEARCH CLEARING HOUSE 
1993  VOL. 3 

N O N P A R A M E T R I C  E S T I M A T O R S  O F  A D I S T R I B U T I O N  F U N C T I O N  

B A S E D  ON M I X T U R E S  O F  G A M M A  D I S T R I B U T I O N S  

Jacques  Carr ie re  

The University of Manitoba 

Dept. of Actuarial and Management Sciences 

Winnipeg, Manitoba, Canada P~3T 2N2 

Key words and phrases: distribution functions, kernel-type estimator, 

estimator, moment matrices, asymptotic consistency. 

moment-type 

ABSTRACT 

Suppose we have a random sample from a continuous distribution function with 

support on the positive reals. This paper will investigate nonparametric estimators of the 

distribution function that are based on mixtures of gamma  distributions. First we give 

several asymptotic results for a kernel-type estimator including order results and a central 

limit theorem. Next, we consider a moment-type estimator that is constructed by using 

empirical moment matrices. This estimator will have the property that many of its' 

moments are equal to the moments of the empirical distribution function. 

1. INTRODUCTION 

Suppose we observe X i for i=1 ..... n where n is the number of observations and 

X1,X2,... ate independent and identically distributed random variables with a common 

distribution function F(z). We will assume throughout the discussion that Ffx) is 

continuous with F(0)=0 and that F(x) is uniquely determined by its moments mk=E(X~) 

for k=-l,2 .... This paper investigates a kernel-type and a moment-type estimator of F(x) 



t h a t  is based on the random sample X1,...,X n. These nonparametric estimators are based 

on mixtures of gamma distributions and they will have the form 

where 

p 

F(x) = E ~rl G(z/~i) (1.1) 
i = l  

t 

a ( t )  = f y° - ' exp( -y l / r ( a )  dy. (1.21 
0 

In section 2 we will show how the parameters p, a, ,'r I ..... 7rp and 81 ... . .  tip are calculated 

for the kernel-type estimator while in section 3 we will show how of these parameters are 

calculated for the moment-type estimator. We will also investigate the order of 

convergence of the kernel-type estimator and we will give a central l imi t  theorem for this 

es t imator  along with other asymptotic results. We will also demonstrate  that  the 

moment - type  estimator converges uniformly to the true distribution. This  moment-type 

es t imator  will be constructed by using empirical moment matrices and it will have the 

proper ty  that  its first 2p-1  moments  are equal to the empirical moments  

where 

I?, mk = d~'(x), k-=l ..... 2p-1 (1.3) 

P(~) = n -1 ~ I(x~ < ~) (1.4) 
i = 1  

is the  empirical distribution function. 

2. A K E R N E L - T Y P E  ESTIMATOR 

Nadaraya (1964), Azzalini (1981), Reiss (1981), Swanepoel (1988) and Jones (1990) 
presented theory for kernel-type estimators of F(r) that  have the form 

n -1 ~ K((z-Xi)/h ) (2.1) 
I = l  

where K(t) is a distribution function and h is a smoothing parameter.  Swanepoel (1988) 

and  Jones (1990) showed that tile uniform kernel minimizes the int, egrated mean-squared 

error (IMSE) and so it is an optimal kernel for estimating a distr ibution function. 

However, Jones (1990) demonstrated that the effect on the IMSE is negligible when other 

kernels are used. Reiss (1981) proved that  the relative deficiency of the empirical 



estimator relative to a kernel-type estimator tends to infinity. Nadaraya (1964) proved 

that (2.1) was asymptotically unbiased and consistent and Azzalini (1981) showed that 

an optimal smoothing parameter h should be proportional to n -1/3. Nobody has 

investigated kernel-type estimators where the kernel has the form G(ax/Xi ) .  Our 

estimator is 

~ z )  = n -1 ~ G(o~z/Xi) (2.2) 
i = l  

where a > 0 is a smoothing parameter. Note that this estimator is equal to (1.1) with 

p=n, rri=n -1 and fli=Xi/a. For the immediate discussion we will assume that a is a 

function of n and that a.J. as n---~co. ~ o o  Later we will discuss how a should be 

constructed. We will now give some asymptotic results for our estimator F(x). 

f 
oo 

Theorem 1. a) Let rhk= zkd~'(z) for k'=l,2 ..... 
0 

then rhk=( l+l /a) . . . ( l+(k-1) /a )rh  k and ~k*-:~" m k as n-*co. 

b) Let 9(x) be a bounded and continuous function for all x > 0, 

fo, then (x) dF(x) a..~. (z) dF(x) as n--oo. 

c) If n~co,  then sup I $'(~)-F(*) I ~"  0. 
x > 0  

d) Let r > 0, then El b '(x)-F(z)I r~0  and E(F(z))r~(F(z))r  as n--co. 

Proof: a) Using our definitions we find that 

r~k= n-I  zkda(a x/Xi)= n -1 ~ (Xi/a) k xkda(2:)= 
i = l  0 0 i----1 

mk x a-k x ~(a-l-l)...(a-l-k-l)=(l+l/(~)...(l-l-(k-l)la) mk 

and so by Kolmogorov's strong law of large numbers r5 k a..~. mk as n--,co. 

b) This result follows immediately after applying a theorem by Frechet and Shohat 

that is given in Serfling (1980), p. 17. 

c) This result follows after appl.ving Polya's theorem in Settling (1980). p. IS. 

d) This result follows from standard theorems in Serfling (1980), pp. 11-15. • 



Suppose  n is fixed, then we will show tha t  a is a smoothing parameter.  Firs t ,  note  

that  the m o m e n t s  of G(az/Xi) are equal to (l+l/a)...(l+(k-1)/a)X~ for /~-1,2 . . . .  and 

so these m o m e n t s  converge to X~ as a ~ o o .  Next, applying a theorem by Frechet  and 

Shohat  t h a t  is given in Serfling (1980), p. 17 we find that  if a---~oo then 

G(az/xi)dI(xi ~ z) where d denotes convergence in distribution. This means t h a t  the  

es t imator  if(z) looks more  and more like a s tep function when a increases and  so 

decreasing a yields smoother  estimates. We summarize  the result as follows. 

Lemma 2. Suppose  n is fixed, then F(z) ~ F(x) as ~--o0. 

0 
0 

0 

oO 
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A plot of a kernel-type est imator  and the true underlying distr ibution.  

Note t h a t  E ( rh l )=m 1 and E(Ihk)=(l+l/oO...(l+(k-1)/o)mk>m k for ~---2,3 . . . .  

Therefore, if o is too small  then the moments  lh~ of the dislribution function ,~(~') will be 

too large and  so we must  find a balance between fit and smoothness. An upper 

100(1-7)% confidence interval for the second moment  has an upper bound 
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rh2+z. ~ (rh4_rh])/n 1/2 where z3, is a 1-~" quantile of a standard normal distribution. We 

suggest that a reasonable value for a is that value that makes r5 2 equal to this upper 

bound. This yields the formula 

(2.3) 

Figure 1 gives an example of a kernel-type estimator with cr calculated according to 

(2.3) with z.~=l. This estimate is based on a sample of size, n=500, from a gamma 

distribution with a mean of 25/3 and a variance of 625/27. Note the closeness of this 

estimate to the true distribution and also note the smoothness of this estimate. This 

graph and all the necessary calculations were made with the statistical computing 

language called GAUSS. 

In the ensuing discussion we will present order results and a central limit theorem 

under the assumption that F(z) satisfies a Lipschitz condition. That is, we assume that 

there exists B > 0 such that for any z,y 

IF (z ) -  F(y)I < B I z - Y l .  (2.4) 

Note that this Lipschitz condition will hold whenever F(z) has a bounded density. The 

following result characterizes the expected mean-squared error and bias associated with 

our kernel-type estimator. This result will be useful in the proof of the central limit 

theorem presented later. 

Lemma 3. Suppose F(r) satisfies a Lipschitz condition and r > 0, then 

a) < F ( , ) )  = F (z )+  0 ( ,  -1/2) and 

b) <if ' ( , )  - F(x)? = O(n-1) + O(cl-1). 

proof: 

Bx(ci2(cl-i)-l(ci-2)-t-2el(cl-l)-t+l)t/2-_B~(cl+2)(ct-l)-l(ci-2)-i)l/2 < 8Bze<-l/2 

. - ,  



The following is a central limit theorem for our kernel-type estimator. 

Theorem 4. Suppose 0 < F(z) < 1 satisfies a Lipschitz condition. If n---*oo, 

b) if ct----O(n 1+-) a.e. and6 > 0, then nl/2(/~(:t)-F(z)) ~ A~0, F(z)(1-F(z))). 

Dominated Convergence Theorem we find that  if n---*oo then pn'-,F(z) and 

~2.--.F(~)(1-F(z)) because C(~,4XI:f~'I(Xl < ~). Note that Z.= 

([~(z)-E(F(z)))l(var(P(z)))l l2-=nll~(F(z)-I~,)la,. Using Taylor's theorem on the 

cumulant  generating function hn(t)=log,(E(exp(tZn))) we find that  An(t)= 

.s × (tl~.)2 × ̂ .,{~(0,t~;lu-~/2)) where ~(0,t~;~n-~l 2) is between 0 and t~.-'/2. If 

,---.co then  h . ( , ) - - /~ /2  because hnt~¢<O,la'~'n-'/2))la~--,. Therefore the moment 

generating function of Z n converges to exp(P/2) and Zu~N(O,I ). Part b) is true because 
2 is asymptotically equivalent to F(z)(1-F(z)) and nll2(E(~'(z))-F(z))=O(n-t/2) O" n 

converges to O. • 

3. A MOMENT-TYPE ESTIMATOR 

In this  section we will investigate a moment-type estimator .~(z) with the property that  

its momen t s  r~ k for k--=l,...,2p-1 will be equal to the empirical moments  d~ k. This 

est imator will have the form given in (1.1) and the parameters a,  ~1 ..... ~p and ¢rl,...,;rp 

will bc calculated with a method that  is similar to one presented in Titterington, Smith 

and Makov (1985). The moment estimates of the parameters fli and 7r i tha t  are given in 

Tit tcr ingtou.  Smith and Makov (1985) do not necessarily satisf.v parameter  constraints 

such as ~i  > 0, ,'r i > 0 and ,-rl+-.-+,'rpml. We will show how to est imate these parameters 

so that  all parameter constraints hold. Afterwards, we will show that  the moment-type 

estimator converges uniformly to the true distribution. 

Let, us suppose that we want to construct a moment-type est imator  tha t  reproduces the 
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first 2p -1  empirical moments. As we will see later we must have p < n. Define 

rk---- mk / (a(a+ I). - .(c,+k-- I)) (3.1) 

for /r=l,2 .... Next, define R0={1}, R~={rl} and for k=l,2 .... define a moment matrix as 

R k -- 

and a shifted moment matrix as 

l r I , .  • r k 

r I r 2 . . .  rk+ 1 

: : 

rk rk+l ... r2k 

(3.2) 

I 7,1 r 2 . . .  rk+ 1 

RI = r2 ra " ' "  rk+~ 
: : 

r k + l  rk+2 - . .  r 2 k + l  

(a.3) 

Using R k and R~ for k=0,1 .... we define ¢(a) as follows 

¢(a) = 1 + sup{k: det(Rj) > 0 and det(R~) ~> 0 Vj=0 ..... k}. 

We can now define a > 0 as any value that satisfies the inequality 

(3.4) 

¢(~) > p .  (3.5) 

Let us calculate the parameters ~=(131 .... ,~p)T. Consider the polynomial 

I 1 r~ ... rp_ 1 1 l 
r l r.~ • • • Fp l 

P(0 = det - 

r 9 r p + l  . . .  1"2#_1 I p 

(3.6) 



Then the parameters  flj > 0 for j = l  . . . . .  p are equal to the distinct real roots of P(t). 

Finally, let us calculate the parameters _~=(Tr I . . . . .  ~rp) T. Let r=-(1,r 1 . . . . .  rp_l)T. Then 

r = T - l _ r  where 

T = 

1 1 . . -  1 

B1 f12 "'" tip 
: : 

flf-I ~-1 . . .  ~ - ~  

(3.7) 

Let us show tha t  an est imator  with the parameters  constructed in th is  manne r  has the 

properties claimed earlier. The following l e m m a  states  a necessary cond i t ion  for what  

follows. 

[ , emma 5. There exists % > 0 such that  ¢ (a )  > p for all a >_ %.  

_ k 

Proof: Consider the momen t  matrices ~/0=.~/o= { 1 } and Mk={Tni+j}i,j= 0 , 
. r "~ k 

Mk=~fni+j~i,j= 0 for t:=1,2,...  Also consider the shifted moment  ma t r i ces  

8 k 
and 

k 

and r k is defined in (3.1). According to Shohat  and Tamarkin  (1943), det(,~/k) > 0 and 

det(,Q~) > 0 Vk=0 , . . . , p -1 .  Note that  ink'--* d~k as a---*oo. Therefore the re  exists a 0 such 

tha t  de t (~ lk )>  0 and de t (~ /~ )>  0 Vk=0, . . . ,p -1  for all a :> %.  This also means  that  if 

a > a o then det(Rk) > 0 and det(R~) > 0 Vk=0 . . . .  , p - 1  and ¢ (a )  >_ p. Th i s  last s t a t emen t  

is true because according to Lindsay (1989) there exists a discrete d i s t r ibu t ion  with p 

dis t inct  a toms of  mass  Xi at a i > 0 for i = l , . . . , p  whose moments  are equal  to ~k  for 

k-=l . . . . .  2 p - 1 .  Now, consider the discrete dis t r ibut ion with p a toms of m a s s  Xi at ai/a for 

i=l . . . .  ,p. The m om e n t s  of this discrete dis t r ibut ion are equal to r k. Accord ing  to Shohat  

and Tamarkin  (1943), this means that Vk"~O . . . . .  p - 1  det(Rk) > 0 and det(R~.) > 0. • 

Using our notation we will restate some rcsnlt~ given in Lindsay (1989) . .Note  that a 

version of the first result in tile following l e m m a  was used to prove the above  lemma. For 

tile ensuing discussio,  we will assunw that ~ ~ % .  

8 



Lemma 6. a) If det(Rk) > 0 and det(R~) > O Vk-=-0 ..... p - l ,  then there exists a 

distribution with p distinct atoms of mass ~r i > 0 at 31 > 0 for i=l,... ,p whose moments  

are equal to r k for k=--l,...,2p-1. 

b) Let P(t) be equal to the polynomial given in (3.6), then P(fli)=O for i=l ..... p. 

c) Let T be equal to the matrix given in (3.7) and let r=(1,r  1 ..... rp_l)Tand 

~=(r¢ 1 ..... 7rp) T, then ~=T -1 .I". • 

For the ensuing discussion we will assume that p < n is a function of n and that p-*oo as 

n-,oo. We will now give some asymptotic results for the moment-type estimator _P(z). 

This result states tha t  the asymptotic consistency results given in Theorem 1 also hold for 

the moment-type estimator. 

oo 
Theorem 7. Let r h k :  I zkd,~(x) for t"=--1,2 ..... then rhk=rh k for k-=l ..... 2p-1 

0 

and for any k=l ,2 , . . ,  we must have ~n k a.~. mk as n~oo. Moreover, the asymptotic 

results in Theorem 1 b), c), and d) are true for the moment-type estimator. 

o 

• kda(~/~S~)= . ~  ~*~C(~)= Proof: Let k-=l , . . . ,2p-1.  Then rhk= it i 
p 0 0 

, , ~ ( o + l ) . . - ( ~ + k - 1 ) = r ~ ( ~ + l ) . . . ( ~ + k - 1 )  ='~k. Since p-~oo as .--.oo 
i----1 
we find that for any k=l,2, . . ,  there exists n k such that for all n > n k thk=~fi k. 

Therefore, by Kolmogorov's strong law of large numbers n5 k a.~. rnk as n--*oo. The 

consistency of the moments implies that Theorem 1 b), ¢), and d) holds for the moment-  

type estimator. • 

Figure 2 gives an example of a moment-type estimator with p=5 and a=25. This 

estimate is based on a sample of size, n=500, from a gamma distribution with a mean of 

25/3 and a variance of 625/27. Note that this estimate is not as smooth as the one in 

Figure 1 but the first 9 moments coincide with the empirical distribution. 
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Figure 2: A plot of a moment-type estimator and the true underlying distribution. 
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