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ABSTRACT 

Given the three moments of the claim amount, we find the diatomic and the 

diexponentia/ distributions that fits the given three moments. We use the well known 

ruin probability formulas when the claim amount is discete or is a combination of 

exponentials to compute ruin probabilities based on the claim amount distribution being 

the diatomic and the diexponential which match the first three moments of the original 

claim amount distribution. We then compare the approximations with the exact values 

of ¢(u) for three examples drawn from fire (large spread), individual life (medium 

spread) and group life (small spread) insurance data. 
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1. INTRODUCTION 

Parametric representation of claim data and exact calculation of ruin probabilities has a 

long history. In the classical work of Cram6r (1955, p.43), we find that the following 

claim amount distribution was used to represent data from Swedish non-industry fire 

insurance covering the years 1948-1951: 

p(x) = 4.897954e-5"514588x + 4 . 5 0 3 ( z + 6 ) - 2 7 5 ,  0 < z < 5 0 0 .  (1) 

and that exact ruin probabilities were computed by numerically solving 

u o o  

,~/n/:  ~ -/I1 ,<'/,,~J ,~/,, ,,~ d,, + ~ / I1-,'/y~l ~,,  /~/ 
0 u 

which was a nontrivial numerical task at that time (Cram~r 1955, p.45). A modem 

reference for the above integral equation is Exercise 12.11 in Bowers et a/ii (1986). 
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A much easier numerical  task even now is to approximate (1) by a distribution 

for which there is a readily executable formula for its ruin probability. In this paper, we 

choose our approximants form special types of claim amount  distributions on which 

there is recent renewed interest: For combination of exponential distributions, there is 

the T~cklind (1942) type formulas. See Shiu (1984) Dufresne and Gerber (1988) (1989) 

(1991) and Cha~ (1990). For discrete distributions (mixtxLre of atomic distirbutions), 

there is the Tak£cs (1967) type formulas. See Beekman(1968), Shiu (1989) and Kass 

(1991). In particular, we consider the special cases of mixture  of two atoms (diatomic) 

and of combination of two exponentials (diexponential). 

2. THREE MOMENT FIT OF DIATOMIC AND DIEXPONENTIAL DISTRIBUTIONS 

A moment 's  reflection would tell us that for a given set of mean, variance, and third 

central moment,  written as p, 0.2 and r3, there fits a unique diatomic distribution. A 

little algebra leads to the following proposition for which the straightforward verification 

would not be reproduced here. 

PROPOSITION 1:  

Given mean, variance, and third central moment written as /~, 0.2, and ~¢3 there is a 

unique diatomic distribution fitting these moments, the locations of the two atoms are: 

~J~6 + 4o.6 _ ~3 ~ 6  + 40.6 + ~3 . 

# - 20.2 # + 20.2 , (3) 

and the probabilities are: 

0.2 20. 2 ~3)2 

2e 2 2or 2 

In addition, if # > 0 and non-negative atoms are desired, then one must have 

~3 > ~2( c'2 -/~2) 
- # 

(4) 

For mixture (with positive coefficients A and 1 - A )  or combination (the 

coefficients allowed to be one positive and one negative or both positive) of two 

exponentials, the resulting distribution is a three parameter family: 

p(z) = A ~8 e -X~ z+ ( l - A )  7 e - ~ z  for z _ > O w h e r e 0 < 3 < ' ~ .  
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That  is, we label the coefficient going with the smaller exponential parameter  A. 

Although one of A or 1 - A  can be negative, A must  be positive otherwise p(z) would 

be negative for large z. When A > 1 and 1 - A is negative, we must  have 

since ~A1fl < At would lead to negative p(z) for small  z. We thus describe this three 

parameter  family as: 

p(z) = A f l e  - f l  z-l- ( 1 - A )  7 e - T z  for z > O  w h e r e O < f l < % O < A < l ;  
or 0 < f l < 7 < ~ _ l f l ,  1 < A. 

(s) 

We would call a distr ibution described by (5) a die~onen~ial distrib~ion. Note that  

when fl="t it degenerates to a single exponential. When 3,=~_/fl we have p(0) = 0 and it 

becomes a two parameter  family: 

Aft 
p(z)= Af le - f l z - - -Af le  A-I  z for x>O, whereO<fl, l<A.  (6) 

This distribution is usually known as the Erlang distr ibution,  which is the independent 

sum of two exponentials of parameters  fl and 7 and usually parametrized as: 

p(z)= "7 B3'-----~ ( e - / 3 z _  e-~t z )  for z > 0  

_ "r e - f l  z _  ~ - 3 '  z " / - B  fl 3 ' - f l  3"e for z___O (7) 

where 0 < / 3 < %  

How big is the family of diexponential distributions? Can a diexponential be 

found to fit up to the third moment? This translates to the solution of the following 

system of equations 
A I~A E(X) 

A I - A _ E ( ~  a 2-1~ 2 
a e + 7 - = T (8) 

E(X S) x3+3a2/ j+#3 ,4 I -A=  
fls + ~-~ T = 6 

The answer is different from the case of diatomic distr t ibution where any #,a 2, and t¢ 3 

would find a fit. Again, we omit the computational but  straightforward proof of: 
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P R O P O S I T I O N  2: 

A. Necessary and sufficient conditions for finding a fit: For a fixed ~u > 0, 

p4 + 3a4 
(i.a) if er 2 > #2 and e3 > ~ , then a mixture of exponentials with A < 1 fits. 

/24 + 3a4 
(i.b) if a 2 > g2 and ~3 _< 2-----7' then it is not a diexponential. 

(ii) if cr 2 = #2 then it is one single exponential and ~3 _ p4 + 3a4 - 2g = 2g3 

t~2 #4 + 3or 4 
(iii.a) i f 7  < a2 </22 and @ a  2 - 4 / ~  3 + 4 1 8 ( g 2 - c r 2 ) 3  < a 3  < 2 ~ ' t h e n  

a combination of exponentials with A > 1 fits. 

g2 
(iii.b) if -~  < a 2 < g2 and ~3 <_ 6#a2 _ 4#3 + 418 (#2 _ ~2)3 or ~ / J 4  + 3a4 < ~3 

then it is not a diexponential. 

(iv} if a 2 /22 = -~- then it is one single gamma (2,1//2) and we must  have 

(v)  

~3 = 6#a2 _ 4/23 + ,~18 (#2 _ a2)3 = 2/23 

#2 
if a 2 < - ~  then it is not a diexponential. 

B. The fit: When the three moments  p, a2, ~3 satisfies the above conditions to give a 

fitting diexponential,  the appropriate parameters  are: 

1 a3 _ 2/23 + 4~6 _ 4K3/2(3cr2 _ 2/22) + 18a6 _ 18a4/22 + 6a2/24 _ 2/26 
= 6(~2  _ ~2)  

1_= t¢3 - 2/~3 - 4 t~6 - 4~3#(3a2 - 2#2) + 18a6 - 18cr4~2 + 6cr21~4 - 296 

6 ( ° 2  _ ~2)  

A = Z ( ~  - 1)  
7 - / 3  

2 2 6  



3. RUIN PROBABILITIES FOR DIATOMIC AND DIE, XPONENTIAL DISTRIBUTIONS 

The ruin probabities for a discrete claim amount distribution has been given by 

Schmitter(1990). See Kass (1991, p.136). For similar formulas see Shiu (1989). For the 

diatomic case, 

0 ~ ( - z )  k l + k 2  e z plklp2k2 (9) 

¢ (u)=  1 1 + 8  k l ,  k 2 k l ! k  21 ' 

where z = (u - k l X  1 - k2x2) + 
(1 + e),  

Proof for the atomic case and a reference to Feller (1971) is found in Shiu (1987). 

The theory of ruin probability for mixture and combination of exponentials is 

well known. See Shiu(1984), Dufresne and Gerber (1988) (1989) (1991), and Chan 

(1990). In the c~se when there are only two exponentials, the adjustment coefficient 

equation 

M x ( r  ) - I (1+8) p - 
/- 

is quadratic and has solutions: 

a~d 

- i - - ~ }  ' (1o) 

~b(u) = Cle - R u  + C2 e - r2u (11) 

where C1,C 2 are found by the T~cklind formula (r 1 = R): 

#I~ ri f i  $i-rk k = 1,2. 

i=1 

(12)  
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4. DIATOMIC AND DIEXPONENTIAL AS APPROXIMANTS 

In this section, we study three claim amount distirbutions and compute ruin 

probabilities of approximating diatomic and diexponential with matching first three 

moments and compare the approximations with the exact values of ~(u). In the first 

example (Cram~r's fire) the claim amount distribution has a large spread, none of the 

approximations is very close to the exact value, and there we point out the run-off error 

problem encountered in the Takhcs type formulas. In the second example (Reckin, 

Schwaxk, and Snyder's individual life) the claim amount distribution has a medium 

spread, both  of the diatomic and diaexponential give good approximations. In the third 

example (Mereu's group life) the claim amount distribution has a small spread, the 

diatomic gives am excellent approximation, and the spread is so small that there is no 

diexponential fit. 

Example 1: We consider Cram&'s fire insurance data, the one mentioned in the 

introduction. In the following table, the exact values of ~b(u) for 0 = 0.3, and the values 

for the Cram6r-Lundberg approximation is from Cram& (1955, p.45). The values for the 

Beckman-Bowers approximation is from Beckman (1969, p.279). The ruin probability 

for diatomic claims, (9), encounters convergence problems when u is large; it is 

indicated in the table below by **. Our experience echoes with that  reported in Seah 

(1990, ~4). For values of u close to and above 30 times/z,  run-off error takes over and we 

obtain probabilities less than zero or greater than one, 

TABLE 1 Cram&'s  Fire Inswance 

/~ = 1, o2[/J 2 = 42.20323069, x3/o-3 = 27.69286626 

u ¢(u)  CL BB diatom diexp CL/¢(u) B B / ~ ( u ) d i a / , ( u )  die/~(u) 

20 .5039 .4524 .5140 .4133 .4666 0.898 1.020 0.820 0.926 

40 .3985 .3904 .4079 ** .4010 0.980 1.028 ** 1.006 

60 .3280 .3370 .3369 ** .3447 1.027 1.027 ** 1.051 

80 .2757 .2909 .2812 ** .2962 1.055 1.020 ** 1.074 

100 .2346 .2511 .2369 ** .2546 1.070 1.010 ** 1.085 
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Example  2: In  th is  example ,  we consider t he  ind iv idua l  life insurance da t e  f r o m  Reckin,  

Schwark,  and  Snyde r  (1984). This is also the  c la im dis t r ibut ion  in E x a m p l e  3 of Seah 

(1990). The  c la im a m oun t  X is discrete wi th  suppo r t  {1,2,3,4,5,7,8,10,12,13,15,16} and  

probabi l i t ies  ( in order)  {.5141, .3099, .0639, .0220, .0194, .0096, .0276, .0036, .0041, 

.0019, .0013, .0226}. Since the  claim a m o u n t  d i s t r ibu t ion  is more  sp read  out ,  (i.a) of 

Proposi t ion  2 is sat isf ied and  we have a d iexponen t i a l  fit. 

T A B L E  2.1 ~b(u) by  Seala for R S S ' s  Ind iv idua l  Life Inmlrance D a t a  

= 2.2896, a 2 / p  2 = 1.43257300, ~3/a3 = 3.60560786 

0 = .1 0 = .2 0 = .3 0 = .4 0 = .5 

u = 0 .909091 .833333 .769231 .714286 .666667 

u = I0 .644361 .450722 .334890 .260412 .209732 

u = 20 .469129 .254324 .152965 .099371 .068466 

u = 30 .341528 .143813 .070341 .038430 .022840 

u = 40 .248408 .081101 .032173 .014735 .007526 

u = 50 .180700 .045752 .014725 .005654 .002482 

T A B L E  2.2 d ia tomic  a p p r o x l m a n t / ¢ ( u )  for RSS's  D a t a  

0 = .1 0 = .2 0 = .3 O = .4 6 = .5 

u = 0  1 1 1 1 1 

u = 10 1.013 1.029 1.045 1.060 1.073 

u = 20 1.003 1.007 1.012 1.015 1.018 

u = 30 1.001 1.000 0.996 0.990 0.981 

u = 40 1.001 0.999 0.992 0.982 0.968 

u = 50 1.001 0.997 0.988 0.974 0.957 

T A B L E  2.3 d iexponent ia l  approximazat/~b{u) for RSS's  D a t a  

0 = .1 0 = .2 0 = .3 0 = .4 0 = .5 

u = 0  1 1 1 1 1 

u = 10 0.997 0.984 0.966 0.947 0.928 

u = 20 0.994 0.985 0.979 0.978 0.984 

u = 30 0.995 0.991 0.997 1.016 1.047 

u = 40 0.996 1.000 1.022 1.066 1.132 

u = 50 0.998 1.009 1.048 1.119 1.224 
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Example 3: In this example, we consider the group insurance data from Mereu (1972). 

This is also the claim distribution in Example 2 of Seah (1990). The claim amount  X is 

discrete with support  {4,6,8,10,12,14,16,20,25} azad  probabilities (in order) 

{.15304533960, .07882237436, .11199119040, .10432698260, .09432769021, .10925807990, 

.09727308107, .18073466720, .07022059474}. 

TABLE 3.1 tb(u) by Seah :[or Mea'eu's Croup Life II~urance Data 

/~ = 12.61243786, a2//J 2 = 0.25079144, s3 / a3  = 0.30556145 

8 = .25 O = .5 8 = .75 # = 1 

u = 0 .8 .666667 .571429 .5 

u = 25 .433995 .232316 .141606 ,094198 

u = 50 .222739 .072766 .030113 .014607 

u = 75 .114114 .022685 .006349 .002236 

u = i00 .058463 .007072 .001339 .000342 

TABLE 3.2 di&tomic approximant/~b(u) for Mereu's Group Life Insurance Data  

0 = .25 ~ -- .5 O = .75 O = 1 

u = 0  1 1 1 1 

u = 25 0.9995 0.9992 0.9986 0.9977 

u = 50 1.0003 1.0004 0.9988 0.9962 

u = 75 1.0000 0.9978 0.9929 0.9857 

u = 100 0.9997 0.9962 0.9888 0.9795 

The diatomic approximant is producing excellent values! Since the variance is 

quite small, there is no diexponential fit as indicated by our Proposition 9 (v). 
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5. THE SCHMITTER PROBLEM 

The Schmitter problem asks: Given 0, u, /~, cr 2, and the range [O,b], is there a" 

distribution with support on [0,hi which would maximize the ruin probability @(u) ? Sec 
Brockctt, Goovaerts, and Taylor (1991) and Kass (1991). Schmitter's conjecture of 

diatomic being the ones giving the extremal ruin probability inspires us to use diatomic 

as approximants. The conjecture, however, has been disproved by Kass (1991). 

The general question is the stability of ~b(u) when p(z) is under pertubation. 

Schmitter specialized to the question of extreme value of ~b(u) for fixed 0, u,/~, ~r 2, and 

range [0,b]. We would ask another specialized question: Find the extreme value of ~b(u) 

for fixed 0, u, #, a 2, and x3 Like the Schmitter problem, our question may not have a 

complete solution. Our question is related to the practical problem: When the true 

claim amount distribution is estimated by the sample, a discrete distribution, or a 

pararnetrized estimation based on the sample, for example, a mixture of exponentials, 

how robust is the ruin probability? In this paper we have found computational tools to 

address the stability of ~b(u) while p(x) is diatomic or diexponential and with fixed given 

first three moments. 
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