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ABSTRACT 

Consider a portfolio of insurance policies where the mean frequency of claims for each policy may 

vary. This heterogeneity of risk in the portfolio may be modeled a.s a distribution function F(A) on the 

mean frequency A. Let N be the frequency of claims for a policy. We know that  if the conditional 

distr ibution of N given X is Poisson and F(A) is g a m m a  then N has a negative binomial  distr ibution.  

Let N, for i :  1, . . . , T be the observed frequencies from a portfolio with T policies. Based on this da ta  

we may want to test  the hypothesis that  F(,~) is gamma .  We present a test for this and other 

hypotheses that  is based on nonparametric estimates of certain stat is t ical  parameters of ~A) .  

lfeyword~. Risk heterogeneity,  Nonparametric est imation,  Tests of hypothesis. 
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1. Introduction 

Consider a portfolio of insurance policies where the mean frquency of claims for each policy may 

vary. This  heterogeneity of risk may be modeled a* a cumula t ive  distr ibution function (cdf) F(A) on 

the mean frequency ,X. A reasonable and usual assumption is t h a t  the number of claims ?,' for a policy 

is a Poisson random variable with a mean ~. We will show how to test this hypothesis when we 

observe the frequencies N i for t =  1 ..... T from T policies. When  the conditional distribution of N given 

A is Poisson and F(A) is g a m m a  then the unconditional d is t r ibut ion  of N is a negative binomial.  We 

will present some nonparametric tests for this  and other hypothesis  about  the risk distr ibution function. 

The discussion starts by showing tha t  knowing the probabi l i ty  density function (pdf') of N is 

equivalent to knowing the risk dis tr ibut ion fu0ction F(A). Next we show how to est imate s tat is t ical  

parameters of F(A) and we give some asymptot ic  properties of these estimates. Using this theory we 

show how to test the Poisson hypothesis and we apply the tes t  to some motor vehicle da ta  given in 

Johnson and Hey (1971). Next we give a chi-squared test for the hypothesis that  F(A) is in some 

parametr ic  class of distributions. Using the Johnson and Hey da ta  we find that  we can reject the 

hypothesis tha t  the risk distribution is gamma.  

2. An Equivalence Result 

In this section we will derive some relationships between the risk distribution and the c la im 

frequency distribution. Suppose tha t  the number of claims N for a policy can be modeled with the 

Poisson pdf 

p ( n l A ) =  e -~ ~"  (1) 
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where 4>0 is the mean frequency and n=0,1,2 .... In a heterogeneous collection of policies the 

frequency A may have a cdf F(A) for the whole population of risks. This means that the unconditional 

pdf of N is equal to the Lebesque integral 

f 
p(n) = / p(nlA ) dr(A). 

(0,co) 

(2) 

We will demonstrate that knowing p(n) is equivalent to knowing F(A) by showing that the moment 

generating function (rag 0 of A can be derived from the mgf of N and vice versa. See Bhat (1981) for a 

proof that knowing a cdf is equivalent to knowing an mgf whenever it exists. Let t ~  and let MN(t ) be 

the mgf of N and let M~(t) be the mgf of A, then 

M~(t)  = M~(e' - 1) (3) 

To get M;~ in terms of M N we let t=ln( l+s)  and find that 

M~(s) = M~v(ln(1 +s)). (4) 

We have just proved that knowing p(n) "ts equivalent to knowing F(A), at least in theory. Although 

actually calculating the risk cdf from p(n) is not a trivial matter when F(A) is not absolutely 

continuous. Using (4) we can immediately deduce that if N is a negative binomial random varaible 

then A must have a gamma cdf. Moreover, if N is Poisson then the measure amociated with the cdf of 

A must put all of its mass at a single point. If MA exists then the moment 
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exists for k =  1,2 . . . .  Define 

+,k = ~ . ~ )  is) 

N(~) = N(N--I ) . . . ( N - k +  ]) (6) 

for k = l , 2  . . . .  Then  

This  re la t ion  will prove useful later. Let ~(A)=) ,  t and  N(~)=h(N),  then we c a n  write 

We will prove t ha t  the identi ty in (7) holds whenever 9(A) is integrable a n d  

exists for  k = O , l , 2  . . . .  ~.nd V ~ .  Moreover we will show tha t  

(8) 

N 

k=O 

TO prove  this  result  we will use Fubini ' s  theorem ~ given in Royden (1968). The  expecta t ion Lr~h(3r)) 

can be wr i t t en  as 

~ n 

E E (;) ¢"(°),(,/. 
n = 0  k = 0  

By i n t e r c h a n g i n g  the  summat ions  we get 

~/k)(0) ~ n!p(n). (11) 
k=0 ~. .=k (n-t ) !  
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Using equation (2) and interchanging the integral with the sums we get 

(o,~) " = o  . n = *  ( a - - k ) !  

(12) 

Using the definition in (1) we find that 

Noting that 

oo 
(13) 

oo 
g(X)=~ A~ g~)(0) (14) 

k=O ~.  

we find that 

(o,oo) 

and so the identity in (7) is true whenever 9(A) is integrable and h(N) is defined as (9) and the 

condition in (8) holds. From this result we find that if g(A)=p(nJA) then h(N)=l(N=n). Also if 

g(A)=c t~ then h(A~=(l-t-t) N and if ~ A ) = A  ~ then A(N)=N(k ). 
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3. Est imat ion of S ta t i s t i ca ]  Parameters  

In this section we will present a nonparametr ic  es t imate  of a p-dimensional vector  of s tat is t ical  

pa ramete rs  and  we will describe the asymptot ic  behavior  of  this es t imate .  These resul ts  will also be 

useful later for cons t ruc t i ng  tests of hypothesis. Suppose we wan t  to est imate _8=(01 . . . . .  9p) t where 

0 c ~  p and  

0~ = [ gt(;~) d~X) (]6) 
(0,oo) 

for k=l,..,p. We will call 0 ,  a stat ist ical  parameter  because it will be estimable when we observe the 

frequencies N i for i : 1  . . . . .  T from T policies in some insurance portfolio. Assume N 1, N 2 . . . .  are 

independent  and  ident ica l ly  dis t r ibuted random variables with a common  pdf p(n). An unbiased and  

s t rongly consistent e s t i m a t e  of p(n) is 

T 
fJ(n) = 1 ~ I(N~=n). (17) 

Replacing p(n) with /~(n) in (10) yields an empirical es t imate  of  0 ,  equal to 

where 

oo 

n=o 

n 

Using the definition in (17) we can also write (18) as 
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T 

Note that 0t is an unbiased and strongly consistent estimate of 0t. Let _0=(01, . . ,0r)  t. Using a 

multivariate central limit theorem as given in Lehmann (1983) we find that if T ~ o o  then 

~( _o-_o ) ± Np( O, ~. ) (21) 

where d_. means convergence in distribution and Nv( 0, E ) is a p-dimensional normal random variable 

with a mean of 0 and a variance-covariance matrix E = { a t l  } whose coordinates are equal to 

~,, =_ E(h,( ,v , )  ,,I::,)) - o, o, (22) 

whenever MI expectations exist. Consider a transformation 

:(.o/-- (i:~ol . . . . .  ~,(o)), (23) 

where ]" is continuously differentiable in an open ball centered at O. Let 

D(0) = { a 0 ~h{-) } (24) 

be a pxq  matr ix  of the partial derivatives of f .  Suppose D is non.singular, then by a theorem given in 

Lehmann (1983) we find that if T ~  then 

~(_:(_~)-:(_o)) ~ #,( _o,, ) (25) 

where 
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• = g ~ D .  (26) 

Now let ~.={bt~} with 

T 

and let 

= b t £ b  (~s) 

where D : D ( ~ ) .  If T--+~ then by a strong law of large numbers given in Bhat (1981) and a Mann- 

Wald theorem given in Serfiing (1980) we must have I ~ - * 1  °'~'" 0 wh~ .  I{~,,}l=M~x,o~,l is a 

matrix norm. Moreover if ~ and q are positive definite and T~cx~ then by using theorems in 

Billingsley (1968) we must  have 

(29) 

where I is s qxq identity matrix. Also if T ~  then by using a M~an-Wald theorem given in Scrfling 

(1980) we must have 

(3o) 

where ~ )  is a chi-squared random vaTiable with q degrees of freedom. The approximations suggested 

by (30), (29), (25) and (21) will be useful for constructing tests of hypothesis. 
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4. A Test of the Poisson Assumption 

In this section we will tes t  the null hypothesis H 0 that  the conditional distr ibution of N given ,~ is 

Poisson. That  is we will test  

H0 : p[nl~)= ~-~ ~n. (31) 
a! 

Let pk=E(N(k)) .  If /zk</~ ~ for any k=2 ,3  .... and F(,~) is a cdf then (31) must  be false otherwise 

p~_>/z~ Vk. We can use this  fact to construct a test of H 0 that  has a level of significance of a t  most  a .  

Let 9k(A)=,~ k and let 0 k = p k  in equation (16). Also let 

hl,(n)=n(k)=n{n-1) ( n - - / ~ + l )  

° 

and ]eL 9 k = ~  in (18). By (21) we know that  if T - -oo  then 

4?((~,,~d-O,,,#,)') £ ~,( (o,o)', r ,  ) (32) 

whe [ ' e  

I E(N2)-P~ E(NN(k])-PlP~ 1 Ek = . (~) 
2 2 E(NN(k))-Pz#~ E(N{k))-P~ 

Lct~p],~,)=p~-#,.If T ~ o o t h e n b y ( 2 5 )  wehave  

(34) 
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k-1 where @k=Dj/EkDk and  Dk=(k# ] , _ | ) r  Let ~k be an  es t imate  of ~k as suggested in (28). Then 

{29) says t ha t  if T- - .oc  then 

(35) 

Let :alp be a value such tha t  @ ( : o / p ) =  ] - a / p  where 

Suppose we reject  H o when 

~,(z) = f/" e - J / 2  It. (36) 

Mp = MAX "~"T(,d~-Iik) > zo,/p" (37) ~_<~_<p+l ~1/~ 
~k 

Then this  is a test  with a level of significance of  a t  most  a .  Th i s  is true because a sympto t i ca l ly  

Pr(Mp> %/~) < c~ (38) 

when H 0 is t rue.  The  type of test given in (37) is sometimes called a Donferroni mul t ip le  compar ison 

test because  a Bonferroni  inequali ty is used to show that  the level of the test is a t  most  c). '~Ve wilt now 

give an  explici t  expression for (37) when p =  1. Fi rs t  we find t h a t  the statist ic Pk is equal to 

oc 

~k ---- ~ rick ) PC n) (39) 
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for k = l , 2 , . . .  Using (33) we find tha t  

I P~+P~--P~ Ps+2p2--PzP~ 1 
p3-t-2p~--plp2 P4+4Ps+2p2--p~ (40) 

and tha t  

• ~= 4 ( 1 - - / ~ z ) ( p ~ - - 2 P 2 P ] + P s ) + p 4 + 2 p 2 - P  ~. (41) 

Let ~2  be an est imate of q~2 based on the est imators  Pi ,  ti2, P3, /i4- Then we would reject H 0 if 

Mt = ~ ( ~ - ~ 2 )  > ~o. 

2 

(42) 

Let us t ry  this test on some data  given in Johnson and Hey (1971). With T=421,240 and 

we find that  

~(0)  = .879337 ~(1) = .110495 

~(2)  = .009341 ~(3)  : .000753 

~ ( 4 )  = . oooo6~  ~ ( s )  = .000007 

Pl = .131735 ~ = .024132 

~3 = .006522 ~4 = .002424 

7s = .000840 ~e = .000000. 

(43) 

(44) 
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Therefore we can calculate  ~ / ~ = . 2 4 2 1  and Ml--- -18.17.  This  means that  we cannot reject H 0 at  

most  levels of significance. Note tha t  this test relies on the asymptot ic  properties of the test statistic.  

With  T=421,240 it is reasonable to assume tha t  M 1 is appproximate ly  a standard normal random 

variable. 

5. "I-ests of Heterogeneity 

In this section we will test hypothesis about the risk d is t r ibut ion function F(A). First, let us test the 

hypothesis 

11o : F =  Fo (45) 

where F 0 is a completely specified cdf. Let p(k)=fp(k[A)dF and let po(~)----fp(MA)dFo. If p(a)~p0(k) 

for any k = l , 2  .... then (45) must  be false. We can use this  fact to construct a test of H 0 tha t  has a 

level of significance of ~. Let 9~(A)=e-:~A~/Id. and 0~=p(k)  in equation (16). Also let h~(n):I(n=k) 

and ~i~=~(~) in (18). Let _p=(p(0),e(1) ..... p(r -1)) '  and b=(i~(0),~(1) ..... l~(r-1)) I. Also let E={crkt } 

where ott=p(k-1)(l-p(k-l))  when k=l and o k ~ = - p ( k - - l ) p ( / - 1 )  when k~l and k,l----1 Using 

(21) and a Mann-Wald theorem we find that  if T ~  then 

T( ~ - p  )l~-,(  p_p  ) d 2 (45) 

Let Po. and ~o be equal to p. and :~ when E o is true. Let X(c,,~)2 be a value such that  G(x~a,r))---I - (~ 

where 
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/z2-,/2 ~,(.-2)/2 e-y/2  (4z) 

Suppose we reject H a when 

2 (48) 

Then this is a test with a level of significance equal to approximately  a. Note that  another  test statist ic 

for (45) is one where p and .P0 in (48) are replaced with ~ and ~0 respectively. In this case the 

coordinate Pt0 of .~0 is equal to fAtdF0 and the coordinate ~i k of fi is equal to (39). Let us try the chi- 

squared test in (48) on the .lohnson and Hey data  presented in (43). Suppose F 0 is an exponential  calf 

with a mean equal to .15, then under this hypothesis we would find that  

p0(l') = .15~ / I .15  TM. 

It seems reasonable to assume that  the chi-squared approximat ion  holds when r = 5 .  In this case we 

find that the s ta t is t ic  in (48) is equal to 1295. Compar ing  this with X~.0os,5)=16.75 we find tha t  we 

would reject the null hypothesis at  a= .005 .  

Now suppose we wanted to test that  F(~) is a g a m m a  distr ibution or that  it is a Pare to  distribution. 

Let ~ be a parametr ic  class of cdfs  such a.s the g a m m a  class. Our objective is to test the hypoyhesis 

H 0 : Fc¢5. (49) 

The test t ha t  we present will reduce the degrees of freedom r, of a fully specified hypothesis,  by the 

number of parameters  tha t  index members in the class ~.  Suppose each element in ~ is equal to Fr/ for 
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some  ~ c ~ " .  Then  we can usually reparamet r ize  the elements in ~ with 

= (#~ . . . . .  ~ . ) r  (50) 

where  #~-----E(~k). For  example,  if ~ is a g a m m a  class then ~ = ( a , 8 ) l ~ ( 0 , o c } 2 C ~  2 and  under the usual 

pa r ame t r i z a t i on  of the g a m m a  class we find t ha t  

o - ~'~ /~ - ~ .  (51) 

So we can reparamet r ize  the g a m m a  class with 0-~(px,p2)  1. Under th is  m o m e n t  paramet r iza t ion  we 

fmd  tha t  there exists a function m k such t ha t  

~k = md.°). ( 5 2 )  

T h a t  is all m o m e n t s  are functions of  the first n moments .  If (52) is false for any  k = n + l , n + 2  .. . .  then 

(49) mus t  be false. We can use this fact  to cons t ruc t  a test of R 0 t h a t  has a level of significance of a .  

Let gk(A)=A ~ a n d  8k=•k  in equa t ion  (16). Also let h~(n)=n(k ) a n d  0 k = / i t  in {18). Let # =  

(Pl . . . . .  p,) t  and  ~ =  (/~x ..... / i t)  t . Let  r>n and  define q = r - n .  Next consider  the t ransformat ion  

f , (P)  = Pr+i  - -  mr*i(-  O) ( 53 )  

for ~=1 .. . . .  q. Assume  tha t  f = ( f l , . . . J v )  I is cont inuously  differentiable in a n  open ball centered at  #. 

Fo r  the  g a m m a  class this assumpt ion  holds because  

l~k = 9 c ~ + l  . . .  e + k - 1  (54) 

2 4 6  



where a and ~ are given in (51). Using all  the results in section 3 we can argue tha t  rejecting H 0 when 

2 (55) v/(p)',+-'/(+~) > x(+,,) 

is a test with a level of significance of approximately o. Note tha t  this test has q = r - n  degrees of 

freedom. So the degrees of freedom for a fully specified hypothesis F =  F0 was reduced by the number of 

est imated parameters. We will now show how to calculate the stat ist ic  in (55) when q= 1 and G5 is a 

gamma class. Using our definit ions we find that  

and that  ~ = b ' ~ b  where 

f (~ )  = ~ s - ~ / ~ + P ~ 2  (ss) 

b = 

P2+2(P2/~L) 2 

1 

(57) 

and where ~ = {dk~ } wi th  

a~, = P2+P~-P~ 

esa = / J 6 + 9 / J s + l S / J 4 + 6 P 3 - / ~  ~ 

d12 = /~s+2P~-P]~2 

a2s = #s+6P~+6f, s- I~fJs.  

(58) 
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Let us try this  chi-squaced test on the Johnson and Hey da ta  presented in (44). We  will test tha t  F is 

in a gamma class and use formulas (55) to (58). The stat is t ic  in (55) is equal to 6.01. Comparing this 

with X~.0~s,l) :5.024 and with X~.0t,~)=6.635 we find tha t  we would accept H0 at  a = . 0 l  but we 

would reject i t  a t  a----.025. In other words the P-value is between .025 and .01. 

6. Summary 

This paper presents test statist ics that  are asymptot ica l ly  normal or chi-squared. The  construction of 

these tests relies on an equivalence relation between the observed claim frequency of an insurance 

portfolio and the risk distr ibution.  We present a test for the assumption that the number  of claims for 

each policy is Poisson. Using da ta  from Johnson and Hey we find that  we cannot reject this hypothesis. 

We also present a test for identifying risk dis t r ibut ions when they are completely specified, But more 

important ly  we present a test for identifying tha t  the risk distribution is in some parametr ic  class like 

the gamma class. We also show tha t  the degrees of freedom for this chi-squared test are reduced by the 

number of es t imated  parameters.  Using this  test on the Johnson and Hey da ta  we find tha t  we can 

reject the hypothesis  tha t  the risk distribution is g a m m a  at  a ]evel of significance equal  to 2.5%. 
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