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ABSTRACT

Consider a portfolio of insurance policies where the mean frequency of claims for each policy may
vary. This heterogeneity of risk in the portfolio may be modeled as a distribution function F(A) on the
mean frequency A. Let N be the frequency of claims for a policy. We know that if the conditional
distribution of N given X is Poisson and F()) is gamma then N has a negative binomial distribution.
Let N; for 1=1, .. ., T be the observed frequencies from a portfolio with T policies. Based on this data
we may want to test the hypothesis that F{1) is gammma. We present a test for this and other

hypotheses that is based on nonparametric estimates of certain statistical parameters of F{2).

Keywords: Risk heterogeneity, Nonparametric estimation, Tests of hypothesis.

233



1. Introduction

Consider a portfolio of insurance policies where the mean frquency of claims for each policy may
vary. This heterogeneity of risk may be modeled as a cumulative distribution function (cdf) F(A) on
the mean frequency ). A reasonable and usual assumption is that the number of claims N for a policy
is a Poisson random variable with a mean A. We will show how to test this hypothesis when we
observe the frequencies N, for 1=1,...,T from T policies. When the conditional distribution of N given
A is Poisson and F(A) is gamma then the unconditional distribution of N is a negative binomial. We
will present some nonparametric tests for this and other hypothesis about the risk distribution function.

The discussion starts by showing that knowing the probability density function (pdf) of N is
equivalent to knowing the risk distribution function F(A). Next we show how to estimate statistical
parameters of F(A) and we give some asymptotic properties of these estimates. Using this theory we
show how to test the Poisson hypothesis and we apply the test to some motor vehicle data given in
Johnson and Hey (1971). Next we give a chi-squared test for the hypothesis that F(A) is in some
parametric class of distributions. Using the Johmson and Hey data we find that we can reject the

hypothesis that the risk distribution is gamma.

2. Ao Equivalence Result

In this section we will derive some relationships between the risk distribution and the claim
frequency distribution. Suppose that the number of claims N for a policy can be modeled with the
Poisson pdf

pald) = 2 a0 (1

n.
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where A>0 is the mean frequency and n=0,1,2,... In a heterogeneous collection of policies the
frequency A may have a cdf F()) for the whole population of risks. This means that the unconditional

pdf of X is equal to the Lebesque integral

pin= [ a(nid) dEON). (@)

(0,00)
We will demonstrate that knowing p(r) is equivalent to knowing F(A) by showing that the moment
generating function (mgf) of A can be derived from the mgf of N and vice versa. See Bhat (1981) for a
proof that knowing a cdf is equivalent to knowing an mgf whenever it exists. Let 1¢R and let My (1) be

the mgf of N and let M, (t) be the mgf of A, then
M, ()= My('—1) (3)

because E‘(c'N]zE(E(c‘NlA)) = E(ezp(z\(c'—l))). The expression in (3) gives My in terms of M,.

To get M, in terms of M), we let t=In(1+5) and find that
My(s)= My (In(1+s5)). (4)

We have just proved that knowing p(n) is equivalent to knowing F{A), at least in theory. Although
actually calculating the risk cdf from p(n) is not a trivial matter when F(1) is not absolutely
continuous. Using (4) we can immediately deduce that if N is a negative binomial random varaible
then A must have a gamma cdf. Moreover, if N is Poisson then the measure associated with the cdf of

A must put all of its mass at a single point. If M, exists then the moment
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By = B(AY) (5
exists for k=1,2,... Define

Nuy=NN=1) - (N=k+1) (6)

for k=1,2,... Then

Ny = BBV, 0) = BA®).

This relation will prove useful later. Let g{A}=A* and Nyy= A(N), then we can write

E(h(M) = E(o(1))- ()

We will prove that the identity in (7) holds whenever g{)} is integrable and

w,,, _ &
g (A) = i 9(}) (8)

exists for £==0,1,2,... and ¥ AecR. Moreover we will show that

= $5 ()0 g

To prove this result we will use Fubini's theorem as given in Royden (1968). The expectation E{A(N))

can be written as

0 n
Y3 (3) Y0 sm. (10)
n=0 k=0

By interchanging the summations we get
x oo
2 90 ) nlpn). (1)
k=0 7] n=t [n—f)
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Using equation (2) and interchanging the integral with the sums we get

j i ) f n! p(n[A) dF(A).

n=k  (n—k)!

Using the definition in (1) we find that

o
A= E n! p(n)d).
n=k  (n—k)!

Noting that

= ®)
9N = Z g
k=0

we find that

B(um)= [ on) err)

(0,00)

(12)

(13)

(15)

and so the identity in (7) is true whenever g{A) is integrable and A(N) is defined as (9) and the

condition in (8) holds. From this result we find that if g{A)=p(n]A) then h(N)=

#(A)=¢" then AN =(1+1)" and if g(A)=A* then A(N)=N,,,.
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3. Estimation of Statistical Parameters

In this section we will present a nonparametric estimate of a p-dimensional vector of statistical
parameters and we will describe the asymptotic behavior of this estimate. These results will also be
useful later for cobstructing tests of hypothesis. Suppose we want to estimate §=(6,,....8,)" where
§eR” and

0k=/ 9:(A) dF(X) (16)

(0,00)
for k=1,...,p. We will call 6, a statistical parameter because it will be estimable when we observe the
frequencies N, for i=1,...,T from T policies in some insurance portfolio. Assume N,, N,, ... are
independent and identically distributed random variables with a common pdf p(r}. An unbiased and

strongly consistent estimate of p{n) is
T
B(m) =1 Y AN =n). (17)

Replacing p(n) with p(n) in (10) yields an empirical estimate of 6 equal to

R oC
b, =Y hy(n) p(n) (18)
n=0
where
n
h(m) = (1) 0t (0). (19)
{=0

Using the definition in (17) we can also write (18} as
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T
b, = } PIRNEA) (20)

Note that 9-,‘ is an unbiased and strongly consistent estimate of §,. Let é:(é,,...,ﬁ,)’. Using a
multivariate central limit theorem as given in Lehmann (1983) we find that if T— oo then
T(6-8) % Np(0,T) (21)

where % means convergence in distribution and Np( 0, £ ) is a p-dimensional normal random variable

with a mean of 0 and a variance-covariance matrix T={o,,} whose coordinates are equal to

Oy = E(hh(Nl) hl(Nl)) - 8,9 (22)

whenever all expectations exist. Consider a transformation

16) = (h@), ... fi®)) (23)

where f is continuously differentiable in an open ball centered at §. Let

o0 = { 7210 } (24)

be a px ¢ matrix of the partial derivatives of f. Suppose D is nonsingular, then by a theorem given in

Lehmann (1983) we find that if T— oo then
VT(£(6)~1(8)) % Ny(0, ¥ ) (25)

where
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¥ = Dz (26)

Now let ¥={z,,} with

T .
Su =14 3T ORAN) RN = 6 6, (2m
=1
and let
¥ = b'thH (28)

where D=D(§). If T—oc then by a strong law of large numbers given in Bhat (1981) and a Mann-
Wald theorem given in Serfling (1980) we must have 1o -] %% 0 where I{“kI”:MﬂX'“Hl is a
matrix norm. Moreover if ¥ and ¥ are positive definite and 7T—oc then by using theorems in

Billingsley (1968) we must have

T (50)-1(0)) £ No(0, 1) (29)
where Iis a ¢xg identity matrix. Also if T—oc then by using a Mann-Wald theorem given in Serfling

(1980) we must have
(161 @) (1@)-1(8)) * x{,, (30)

where x(zv) is a chi-squared random vatiable with ¢ degrees of freedom. The approximations suggested

by (30), (29), (25) and (21) will be useful for constructing tests of hypothesis.
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4. A Test of the Poisson Assumption

In this section we will test the null hypothesis H, that the conditional distribution of N given X is
Poisson. That is we will test

Hy: p(n]d) = e-A',\". (31)
n

Let pp=ENy,y) I uk<yf for any £=2,3,.. and F(A) is a cdf then (31) must be false otherwise
D u¥ Yk We can use this fact to construct a test of H, that has a level of significance of at most «.
Let g,(A)=2* and let 8, =4, in equation (16). Also let

h(m)=ny =n(n-1) (n—k+1)

and let 8, =i, in (18). By (21) we know that if 7— oo then

TGy = ())& Mol (00), 5, ) (32

where

E(Nz)_l‘f HNN(H)_I‘II‘&

BN N} — by E(N(’g))—#i

Let f{puy,py)=pf —py. If T— 0o then by (25) we have

VTt =)= (s =) £ M0, %) (34)
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where ¥, =D,’S, D, and D,=(kp*"!, —1)'. Let ¥, be an estimate of ¥, as suggested in (28). Then

{29) says that if T—oc then
9= ) (et =) = M0, 1), (35)

Let z,,, be a value such that ®(z,,,)=1~a/p where

L)
(2) = / ¢ dt. (36)
S ar
Suppose we reject H; when
= g
My = MAX ﬁu_‘:”m > 244y, (37)
¥,

Then this is a test with a level of significance of at most a. This is true because asymptotically

P(Mp>:,,.) € a (38)

a/p
when H; is true. The type of test given in (37) is sometimes called a Bonferroni multiple comparison
test because a Bonferroni inequality is used to show that the level of the test is at most a. We will now

give an explicit expression for (37) when p=1. First we find that the statistic j, is equal to

;F‘
]
g

ny B(n) (39)

3
n
o
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for k=1,2,... Using (33) we find that

patm—pi B3+2py— sy iy
(40)

Ez -
Bat 20— By Bytdpa+ 28— 4]

and that

o= 401~ )(p] = 2papsy + B2+ pa + 20, - 3. (41)
Let \flz be an estimate of ¥, based on the estimators g, fi,, ji;, fiy. Then we would reject Hg if
M, = T(3j~j;) > 2. (42)
=177
¥,
Let us try this test on some data given in Johnson and Hey (1971). With 7=421,240 and
p(0) = .B79337 p(1) = .110495
#(2) = 009341 p(3) = .000753 (43)
p(4) = 000066 #(5) = .000007
we find that
7y, = 131735 i, = 024132
A3 = .006522 he = 002424 (44)
jis = .000840 jis = .000000.
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Therefore we can calculate @;/2

=.242] and M, =-18.17. This means that we cannot reject H, at
most levels of significance. Note that this test relies on the asymptotic properties of the test statistic.

With T=421,240 it is reasonable to assume that M, is appproximately a standard normal random

variable.

5. Tests of Heterogeneity

In this section we will test hypothesis about the risk distribution function F(A). First, let us test the

hypothesis

Hy: F=F, (45)

where F, is a completely specified cdf. Let p(k)=[p(k|A)dF and let py(k)= fp(k|X)dF,. If p(k)# py(k)
for any k=12, .. then (45) must be false. We can use this fact to construct a test of H; that has a
level of significance of a. Let g,(A)=¢ *A¥ /K and 8, =p(k) in equation (16). Also let hy(n)=Kn=£k)
and 6, =(k) in (18). Let p=(p(0),p(1),....p(r—1))" and p=(3(0),5(1),....p(r~1))’. Also let T={o,,}
where a,,,:p(k—l)(1~p(k-1)) when k=1!and o, =—p(k—1)p(!I—1) when k#1and kl=1,...,r. Using

(21) and a Mann-Wald theorem we find that if T— oo then

p—p ) L X2, (46)

=
(a=)
1
o
%)
L
-

Let p, and I, be equal to p and L when Hj is true. Let x(20,r) be a value such that G(x(’alr))=1—a

where
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£
~r/3 (r=~2}/2 -y/2
(z) = 27173y e dy. (47)
) T

Suppose we reject H; when

T 5—p0 V'E5'($—P0 ) > Xfayr) (48)

Then this is a test with a level of significance equal to approximately a. Note that another test statistic
for (45) is ome where § and po in (48) are replaced with j and g, respectively. In this case the
coordinate ugqy of pg is equal to f/\deo and the coordinate &, of £ is equal to (39). Let us try the chi-
squared test in (48) on the Johnson and Hey data presented in (43). Suppose Fj is an exponential cdf

with a mean equal to .15, then under this hypothesis we would find that

Polk) = .15%/1.15%*".
It seems reasonable to assume that the chi-squared approximation holds when r=>5. In this case we
find that the statistic in (48) is equal to 1295. Comparing this with x?_a05’5)=16.75 we find that we
would reject the null hypothesis at or=.005.

Now suppose we wanted Lo test that F(X) is a gamma distribution or that it is a Pareto distribution.

Let & be a parametric class of ¢df’s such as the gamma class. Qur objective is to test the hypoyhesis

Hy: Fe%. (49)

The test that we present will reduce the degrees of freedom r, of a fully specified hypothesis, by the

number of parameters that index members in the class F. Suppose each element in ¥ is equal to Fy, for

245



some neR". Then we can usually reparametrize the elements in F with

8= (... 04 (50)

where u,:E(/\"). For example, if ¥ is a gamma class then g:(a,ﬁ)'c(ﬂ‘m)zcyz and under the usual

parametrization of the gamma class we find that

2
a = # 5 g = _F‘l— (51)
H2— i, Ha— 41

So we can reparametrize the gamma class with §=(u,.u,)". Under this moment parametrization we
find that there exists a function m, such that

e = my(0). (52)

That is all moments are functions of the first n moments. If (52) is false for any k=n+1n+2, .. then
(49) must be false. We can use this fact to construct a test of H, that has a level of significance of a.
Let g,(A)=A" and f;=p, in equation (16). Also let hy(n)=n , and f,=4, in (18). Let p=

(#15- - o) and fi= (i, ,jir)' . Let r>n and define g=r—n. Next consider the transformation

fc(f‘) = gy — Mpyif) (53)

for 1=1, ..,¢. Assume that !’:(fl,...,fq)’ is continuously differentiable in an open ball centered at u.

For the gamma class this assumption holds because

at+l ... o+k-] (54)

#t:%T =
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where a and J are given in (51). Using all the results in section 3 we can argue that rejecting H, when

TfE () > X, (55)

is a test with a level of significance of approximately o. Note that this test has g=r—n degrees of
freedom. So the degrees of freedom for a fully specified hypothesis F=F, was reduced by the number of
estimated parameters. We will now show how to calculate the statistic in (55) when ¢=1 and ¥ is a

gamma class. Using our definitions we find that

[(8) = B3~243/fiy+ firfia (56)
and that ¥ = D'ED where
fia+2(d2/ j)?
b= Ay—4hy/ iy (87)
1
and where £ = {4,,} with
Gy = Pyt A] G12 = Ps+2h—fy iy
Gap = fig+4is+24iy— i} Gig = Pi+3hs—pyfa (58)
G33 = fs+9hs+ 18 +6i3— 4 a3 = fig+6y+6jig—fiphis.
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Let us try this chi-squared test on the Johnson and Hey data presented in (44). We will test that Fis
in a gamma class and use formulas (55) to (58). The statistic in (55) is equal 1o 6.01. Comparing this
with X(z.ozs,x):s-()?“ and with x?_01‘1)=6.635 we find that we would accept H, at o=.01 but we

would reject it at a=.025. In other words the P-value is between .025 and .01.

6. Summary

This paper presents test statistics that are asymptotically normal or chi-squared. The construction of
these tests relies on an equivalence relation between the observed claim frequency of an insurance
portfolio and the risk distribution. We present a test for the assumption that the number of claims for
each policy is Poisson. Using data from Johnson and Hey we find that we cannot reject this hypothesis.
We also present a test for identifying risk distributions when they are completely specified. But more
importantly we present a test for identifying that the risk distribution is in some parametric class like
the gamma class. We also show that the degrees of freedom for this chi-squared test are reduced by the
number of estimated parameters. Using this test on the Johnson and Hey data we find that we can

reject the hypothesis that the risk distribution is gamma at a level of significance equal to 2.5%.
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