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BSTINATION OF LONG TAILED UNPAID LOSHB8 FROM P A I D  LOB8 
DRVELOPNBI~ USING TRENDED GENERALIZED BONDY DEVELOPMENT 

X. G e n e r a l i z e d  B o n f l y  D e v e l o p m e n t  

I n  h i s  p a p e r ,  " G e n e r a l i z e d  Bondy D e v e l o p m e n t " ,  Mr. A l f r e d  O. W e l l e r  

describes a development pattern, for a fixed experience period, 

which all development ratios of length h years will satisfy 

(i) d(t+h) 
h 

B 

; for all t >= c 

where 0 < B < 1 and 

d(x) 
h 

Losses Paid Through x + h Years 
= 

Losses Paid Through x Years 

and t is time in years since the beginning of 

the accident period under investigation. 

Losses Paid Through t Years 
Let G(t) = . A continuous 

Ultimate Incurred Losses 

solution to (i) is given by (2) below: 

(2) G(t) = EXP(u(t)), where EXP is the exponential 

function and 

in(A) 
u(t) 

1 - B 

E J 
t - e 

h 

.B 

It may be noted that 

G(C + h) 
(3) d(c) 

h G(c) 
EXP(u(c+h)-u(c)) = EXP(In(A)) = A. 

434 



The value G(t) is often referred to as the "completion 

factor" at age t. Many actuaries prefer to use the reciprocal 

of G(t), which is usually called the "tail factor" at age t. 

Clearly, the choice between the two is a matter of taste; 

both will produce identical results. 

The completion factor concept is useful, however, in seeing 

that this model can only be descriptive of the TAIL of the 

ratio of paid to ultimate losses, because any global model 

would require that G(0) = 0. Now, G(t) may be thought of as a 

cumulative probability distribution. Therefore, its first 

derivative must be nonnegative. Moreover, during the accident 

period we would expect the second derivative of G to be 

positive because loss development should be increasing at an 

increasing rate while claims are still arising. The first 

derivative of G(t), 

DG(t) = S(t)'Du(t) = S(t) 

derivative of G(t) is 

D G(t) z G(t)-u(t)- 

in(s) 
--u(t) > 0, and the second 

in(B) 
---3 |2.( 1 + u(t)), which can 

h 

take on a POSITIVE value if, and only if, 1 + u(t) < 0. 

If such a t exists, t >= c, then 1 + u(c) < 0 also, because 

u(t) is monotonically increasing. Thus, the second derivative 

In(A) 
of G is ALWAYS NEGATIVE unless 1 < O, or 

1 - B 

in(A) > 1 - B. 

435 



Therefore, if c is to be within the accident period, the 

value of d(c) = A > EXP(I - B) will need to be quite large 
h 

unless B is close to unity. As a practical matter, then, 

this model will normally be used to describe development 

somewhat beyond the end of the accident period. 

IX. Trended Generalized Bondy Development 

It sometimes happens that one model does not fit the loss 

development of all accident periods being examined. This 

situation may occur when varying trends or other influences 

cause paid loss development patterns to vary over time. 

One solution is to develop different parametric values for 

different accident periods. Such a model does not, however, 

provide much insight into how variation is occurring. A 

better approach would seem to be to allow one or both of A 

and B to vary over time according to a specified model. 

We have already seen that the parameter A is equal to the 

development ratio d(c) . If we plug t = c + h into (2) and 
h 

solve for B, we get 

I1 ln(S(c+h)) 
(4) s = 

In (G (c)) 

Now if we fix A, small changes in B can cause very dramatic 

changes in values of G(t). Suppose we have two values B1 and 

B2 for the parameter B with A fixed. Now we write G(t;A,B) 

for the function G with parameters A and B. Fix A. 
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If B2 > BI, then if we define r(t) 

r(t) = 

In{G(t;A, B2) 

In(G(t;A,BI) 

r(t) 
Then G(t;B2) = G(t;BI) 

by 
t - c 

1 - B1 . ~ B2 ~ h 

i - B2 B1 

, and r(t) explodes to infinity as 

t tends to infinity no matter how close B1 and B2 are to each 

other. Thus, small changes in B have a marked effect on 

the development and the effects vary in a complex fashion 

over time. 

Now let us fix B and consider A2 > A1 > 1 as A values: 

In(G(t;A2,B) In(A2) 
r(t) = = is a CONSTANT k, 

in (G (t ;AI, B) In (AI) 

so that 

G(t;A2,B) = G(t;AI,B) 
k 

for all t. 

Thus, changes in A produce more stable results than changes 

in B. 

For this reason, the simplest generalization to a model 

which varies the parameters over different accident periods 

will hold B constant and allow A to vary. This is the model 

that this paper will consider. Although models with 

variation in B would no doubt be intriguing, and may 

well yield useful results, we will now consider only models 

for which B is held constant. 
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In particular, we will assume that h = i, accident periods 

are accident YEARS, and that the A parameter, denoted by 

A(y), varies by accident year y geometrically: 

(y-l) 
(5) A(y) = A(1).R ; accident years 1 <= y <= N 

R > 1 

Remembering that the A parameter is the initial development 

ratio d(c), we see that under this model the value of d(c) 

increases geometrically over time. If we now write 

F(t,y) = G(t;A(y),B) with B fixed and A(y) as in (5), we 

have : 

in(F(t,y)) = 

and in(F(t,l)) 

-in(A(y)) t-c 
• B = 

-in(A(1) -(y-l)-in(R) t-c 
.B 

1 - B 1 - B 

-In(A(1) ) 

i - B 

t-c 
B , so we may write 

y - 1 t-c 
(6) in(F(t,y)) = In(F(t,l)) - --'In(R)'B 

1 - B 

for all t >= c and accident years 

1 <= y <= N. 

Thus, given the first accident year development F(t,l) and R, 

(6) then determines F(t,y) for each accident year y. 

In the next section, we will apply this model to some actual 

long-tailed loss development which does have markedly varying 

development ratios by accident year. 
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III. APPLICATION TO ACTUAL LOSS DEVELOPMENT 

The paid development to be studied arises from a medical 

expense incurred insurance contract which provides benefits 

after the satisfaction of a fixed deductible for each 

occurrence (illness/injury). Although there is a maximum 

dollar benefit, there is no limit to the timing of benefit 

payments for a given occurrence as long as the policy remains 

in force. 

Thus, all benefit payments are assigned an incurred date 

equal to the date of illness or injury. As one might expect, 

the loss development pattern is long; what one might NOT be 

prepared to expect is just HOW long the development is. 

Table A below shows the historical run off of losses incurred 

prior to 1982: 

TABLE A: HISTORICAL RUN OFF OF LOSSES INCURRED 
PRIOR TO 1982 THROUGH 12/31/91 

CALENDAR BENEFITS PAID ON 
YEAR LOSSES PRIOR TO 1982 
1982 $10,323,818 
1983 2,006,910 
1984 1,134,964 
1985 759,590 
1986 696,838 
1987 371,022 
1988 220,861 
1989 163,867 
1990 93,867 
1991 86,983 

$15,858,720 

Unfortunately, with loss development that can easily exceed 

15 years, it is very difficult to estimate ultimate losses. 

Traditional methods (and some unorthodox ones, too) applied to 
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YEAR 
BENEFITS 

WERE PAID 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

YEAR 
BENEFITS 

WERE PAID 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

even five years' development may produce inadequate estimated 

ultimate losses when compared with full development. There are 

also significant differences in development by accident year. 

Table B shows the paid loss development through 12/31/91. 

This table starts with the development from 12 months. It is 

clear that development from 12 to 24 months is very large relative 

to later 12 month intervals. This is a major reason why Bondy 

Development will fail if we start at an earlier development age 

than 24 months in this case. 

TABLE B: PAID LOSS DEVELOPMENT AS OF YEAR END 1991 

YEAR LOSSES WERE INCURRED 
1982 1983 1984 1985 1986 

$25,893,182 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
11,061,692 30,714,940 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
1,463,653 11,682,569 34,987,383 XXXXXXXXXXXXXXXXXXXXXXX 

950,355 1,671,802 12,367,435 34,177,430 XXXXXXXXXXX 
667,582 899,834 2,262,510 14,350,459 39,549,678 
344,756 357,440 1,152,199 2,592,063 17,825,496 
411,555 640,625 1,054,086 1,347,414 3,164,217 
228,296 369,787 851,333 917,255 2,214,192 
51,414 299,928 457,786 805,917 1,372,O68 

173,364 247,586 514,679 551,972 926,767 

YEAR LOSSES WERE INCURRED 
1987 1988 1989 1990 1991 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXX×XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
44,024,194 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
20,468,624 45,843,638 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
3,309,287 23,355,464 54,886,102 XXXXXXXXXXXXXXXXXXXXXXX 
2,236,870 4,784,667 26,608,917 58,786,420 XXXXXXXXXXX 
1,468,859 2,100,111 5,254,928 34,079,112 65,350,261 

Accordingly, all further discussion will be limited to development 

beyond 24 months, and we will use c = 2 years. 
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Table C below shows the 24 month development factors, defined 

as the ratio ot cumulative paid losses at 36 months to cumulative 

paid losses at 24 months& for each of the accident years 1982 

through 1989: 

TABLE C: HISTORICAL 12 MONTH DEVELOPMENT FROM AGE 24 MONTHS 

ACCIDENT -BENEFITS PAID AS OF: DEVELOPMENT 
YEAR 24 MONTHS 36 MONTHS RATIO 
1982 $ 36,954,874 $ 38,418,527 1.0396 
1983 42,397,509 44,069,311 1.0394 
1984 47,354,818 49,617,328 1.0478 
1985 48,527,889 51,119,952 1.0534 
1986 57,375,174 60,539,391 1.0551 
1987 64,492,818 67,802,105 1.0513 
1988 69,199,101 73,983,769 1.0691 
1989 81,495,019 86,749,946 1.0645 

$447,797,203 $472,300,330 

A least squares geometric fit to these 

sum of the 36 month benefits is : 

ratios which preserves the 

A(1982) = 1.038781 
R = 1.003744 

y-1982 
d(2,y) = A(1982)'R 

y >= 1982 

TABLE C clearly shows a significant upward trend in development 

by advancing accident year that cannot be ignored. Similar 

analyses at higher ages also show evidence of such a trend. 

chart 1 on the next page shows how the fitted A parameters 

compare with the actual observed values. 
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It NOW remains to estimate the Bondy parameter B. This should 

be done using as much data as possible, because the development 

is VERY long tailed. Once we have a representation for F(t,y), 

we will be able to estimate the ULTIMATE incurred losses for 

each year y having at least 2 years of development : 

II LTy = eary LosestyPal brought Years t = 2 II 

Thus, for each year y, we will have SEVERAL different estimates 

of ultimate losses. We would like to have such estimates differ 

as little as possible. Let DIFF(y) be the excess of the maximum 

over minimum ultimate loss estimate for year y, and let S be the 

sum of the DIFF(y) for y = 1982 to y = 1989. We then seek that 

value of B, 0 < B < i, such that S is minimized. 

The value of B which minimizes S is 

I B = .642834 

ULTIMATE LOSS ESTIMATES PERCENTAGE 
YEAR A MINIMUM MAXIMUM DIFFERENCE 
1982 1.0388 $41,108,909 $41,374,172 0.6% 
1983 1.0427 46,757,339 47,659,400 1.9% 
1984 1.0466 53,515,135 54,132,081 1.2% 
1985 1.0505 55,376,705 55,859,079 0.9% 
1986 1.0544 66,552,479 66,721,764 0.3% 
1987 1.0584 74,589,677 75,595,437 1.3% 
1988 1.0623 81,597,551 82,490,302 1.1% 
1989 1.0663 97,377,068 97,544,613 0.2% 

The small percentage variation in estimates within each 

accident year is, in itself, an indication that this model 

is reasonable. 
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It must be admitted, however, that the model does NOT give us 

ultimate losses for 1991 because as of 12/31/91, t = 1 < c. 

We get around this constraint simply by looking at the ratio 

of losses paid through 12 months to ultimate losses for each 

of the years y = 1982 to 1990: 

ESTIMATION OF ULTIMATE LOSSES THROUGH 1991 

ESTIMATED PAID AS OF OBSERVED 
YEAR ULTIMATE 12 MONTHS COMPLETION FITTED 
1982 $41,374,172 $25,893,182 0.625830 0.656745 
1983 47,133,983 30,714,940 0.651652 0.640832 
1984 54,132,081 34,987,383 0.646334 0.625304 
1985 55,577,586 34,177,430 0.614950 0.610152 
1986 66,721,759 39,549,678 0.592755 0.595368 
1987 74,589,677 44,024,194 0.590218 0.580942 
1988 81,597,551 45,843,638 0.561826 0.566866 
1989 97,377,068 54,886,102 0.563645 0.553130 
1990 112,323,538 58,786,420 0.523367 0.539727 
1991 124,086,792 65,350,261 0.526650 

The fitted values are a geometric regression on the ratios of 12 

month to ultimate losses. The 12 month paid losses for 1991 

divided by the fitted 1991 ratio gives us the estimated Ultimate 

losses for 1991. 

The model thus gives us the following estimate of Unpaid Losses 

as of 12/31/91 on losses incurred from 1/1/82 to 12/31/91: 

ULTIMATE, 1982-1991 $754,914,207 
PAID TO 12/31/91 654,130,151 

I[. 12/31/91 UNPAID $100,784,057 I 

Now, the goodness of fit of any model to past experience does 

not guarantee that the model is a good predictor of FUTURE 

experience. The only real test lies in comparing predictions 

with what actually subsequently happens. Fortunately, the model 
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may be used not only to predict the unpaid losses, but it also 

predicts how those losses will be paid out in the future. Thus, 

the predicted 1992 payments on losses incurred in year y is 

given by: 

I PAYMENT(y'I992) = ULT(y)" (F(1993-y'Y) - F(1992-y'Y))' I 1 1 9 8 2  <= y <= 1991 .... 

These predictions are THEN compared to what actually happened 

in calendar year 1992: 

1992 PAYMENTS BY ACCIDENT YEAR 
YEAR PREDICTED ACTUAL ERROR 
1982 $ 45,787 $ 212,900 (167,113) 
1983 88,951 212,654 (123,702) 
1984 172,608 415,437 (242,829) 
1985 296,810 679,320 (382,509) 
1986 591,382 1,042,184 (450,802) 
1987 1,085,831 1,081,057 4,774 
1988 1,925,164 1,788,616 136,548 
1989 3,655,475 2,770,606 884,869 
1990 6,528,946 6,911,345 (382,399) 
1991 36,172,947 35,512,644 660,303 

$50,563,902 $50,626,763 ($62,861) 

The RESULT is, in the aggregate, quite satisfying with 

an error of only -0.12%. This result suggests that the 

model is quite good for loss reserving purposes. 

The reader may well note, however, that the percentage 

error is relatively large for losses incurred prior to 

1987. In this regard, it is interesting to note that if 

we extend TABLE A to include 1992 payments, we see that 

the 1992 payments on losses incurred prior to 1982 is 

abnormally large: 
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TABLE D: HISTORICAL RUN OFF OF LOSSES INCURRED 
PRIOR TO 1982 THROUGH 12/31/92 

CALENDAR BENEFITS PAID ON 
YEAR LOSSES PRIOR TO 1982 
1982 $10,323,818 
1983 2,006,910 
1984 1,134,964 
1985 759,590 
1986 696,838 
1987 371,022 
1988 220,861 
1989 163,867 
1990 93,867 
1991 86,983 
1992 2 6 9 t 7 0 8  

Attempts have been made to "explain" the error variation 

by generalizing the model to variation on B. Such attempts 

have failed. It is probable that, as with almost all 

mathematical representations of the real world, forces 

are operating which are not readily modeled and which require 

separate investigation. 
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A P P E N D I X  : DEVELOPMENT OF THE COMPLETION F U N C T I O N  G(t) 

We s ta r t  with the basic cri terion:  
l 

d ( t ÷  h)h = d ( t )  B for all t >= c 

Then we note that the rat io  of Ultimate to Paid through t ime t 

i s  

Ultimate )[ ] 
PAID(t~----) = d ( t  ~- k-h)h  = d ( t l h  = ( d ( t l h  

k k 

where k ranges from zero to infinity. 

Thus,  we have 

PAID( t )  - ~  
(1) G ( t ) h  = Ultimate - ( d ( t )h  

In  par t icular ,  consider any integer n and note that 

(2) d ( c *  n.h)h = (d (C)h)  (Bn) 

We extend this functional relat ionship to all real z >= 0 by 

(:1] ( " (3) d ( c  - Z)h = d(C)h 

This  extension is NOT unique,  so other formulations a re  possible. 

Subst i tut ion of t = c +(t-c) into (1) yields: 

(4) G ( t ) h  = 
ll--1] 

- ( i  - B )  
d(c  * ( t -  C ) )  h = 

t - c  

Id(C)h) " - "  
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In  t he  paper ,  the fo rmula t ion  of G(t)  is slightly different  f r o m  (4) in 

t h a t  it expresses G(t) as a power  of e : 

-(1-'B) 'In(d(C)h) 
(5) G(t) = e 

I f  we note  tha t  A = d (C)h  , we get the final resul t :  

( 6 )  G ( t )  = e u(t)  

w h e r e  u ( t )  = 

t- C) 
-In(A). B 

(1  - B) 

This  fo rmula t ion  is unique  f i t  = c + n.h, where  n is an  in tege r ,  bu t  

is N O T  unique  for  i n t e rmed ia t e  values of  t. 
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