ESTIMATION OF LONG TAILED UNPAID LOSSES

FROM PAID LOSS DEVELOPMENT USING

TRENDED GENERALIZED BONDY DEVELOPMENT

BY

BRADFORD S. GILE, FSA, MAAA

Submitted to
ACTUARIAL EDUCATION AND RESEARCH FUND AERF PRACTITIONERS' AWARD SEPTEMBER 21, 1993

ESTIMATION OF LONE TAILED URPAID LOESES FROM PAID LOBg

 DEVELORMENT UEING TRENDED GENERALIZED BONDY DEVBLOPMENT
I. Generalized Bondy Development

In his paper, "Generalized Bondy Development", Mr. Alfred O. Weller describes a development pattern, for a fixed experience period, which all development ratios of length h years will satisfy

```
(1) \(d(t+h)_{h}=\left[d(t)_{h}\right]^{B}\) for all \(t>=c\)
    where \(\quad 0<B<1\) and
```

 \(d(x)_{h}=\frac{\text { Losses Paid Through } x+h \text { Years }}{\text { Losses Paid Through } x \text { Years }}\)
 and t is time in years since the beginning of
the accident period under investigation.

Let $G(t)=\frac{\text { Losses Paid Through } t \text { Years }}{\text { Ultimate Incurred Losses }}$. A continuous
solution to (1) is given by (2) below:
(2) $G(t)=\operatorname{EXP}(u(t))$, where EXP is the exponential
function and

It may be noted that
(3) $d(c)_{h}=\frac{G(c+h)}{G(c)}=\operatorname{EXP}(u(c+h)-u(c))=\operatorname{EXP}(\ln (A))=A$.

The value $G(t)$ is often referred to as the "completion
factor" at age t. Many actuaries prefer to use the reciprocal of $G(t)$, which is usually called the "tail factor" at age t. Clearly, the choice between the two is a matter of taste; both will produce identical results.

The completion factor concept is useful, however, in seeing that this model can only be descriptive of the TAIL of the ratio of paid to ultimate losses, because any global model would require that $G(0)=0$. Now, $G(t)$ may be thought of as a cumulative probability distribution. Therefore, its first derivative must be nonnegative. Moreover, during the accident period we would expect the second derivative of G to be positive because loss development should be increasing at an increasing rate while claims are still arising. The first derivative of $G(t)$,
$D G(t)=G(t) \cdot D u(t)=G(t) \cdot \frac{\ln (B)}{h} \cdot u(t)>0$, and the second derivative of $G(t)$ is
$D^{2} G(t)=G(t) \cdot u(t) \cdot\left[\frac{\ln (B)}{n}\right]^{2} \cdot(1+u(t))$, which can take on a POSITIVE value if, and only if, $1+u(t)<0$. If such a t exists, $t>=c$, then $1+u(c)<0$ also, because $u(t)$ is monotonically increasing. Thus, the second derivative of G is ALWAYS NEGATIVE unless $1-\frac{\ln (A)}{1-B}<0$, or $\ln (A)>1-B$.

Therefore, if c is to be within the accident period, the value of $d(c)=A>\operatorname{EXP}(1-B)$ will need to be quite large unless B is close to unity. As a practical matter, then, this model will normally be used to describe development somewhat beyond the end of the accident period.

II. Trended Generalized Bondy Development

It sometimes happens that one model does not fit the loss development of all accident periods being examined. This situation may occur when varying trends or other influences cause paid loss development patterns to vary over time. One solution is to develop different parametric values for different accident periods. Such a model does not, however, provide much insight into how variation is occurring. A better approach would seem to be to allow one or both of A and B to vary over time according to a specified model. We have already seen that the parameter A is equal to the development ratio $d(c)$. If we plug $t=c+h$ into (2) and h
solve for B, we get

$$
\text { (4) } \quad B=\frac{\ln (G(c+h))}{\ln (G(c))}
$$

Now if we fix A, small changes in B can cause very dramatic changes in values of $G(t)$. Suppose we have two values Bl and B2 for the parameter B with A fixed. Now we write G(t;A,B) for the function G with parameters A and $B . F i x A$.

If $B 2>B 1$, then if we define $r(t)$ by

Then $G(t ; B 2)=G(t ; B 1)^{r(t)}$, and $r(t)$ explodes to infinity as t tends to infinity no matter how close B1 and B2 are to each other. Thus, small changes in B have a marked effect on the development and the effects vary in a complex fashion over time.

Now let us $f i x B$ and consider $A 2>A 1>1$ as A values:
$r(t)=\frac{\ln (G(t ; A 2, B)}{\ln (G(t ; A 1, B)}=\frac{\ln (A 2)}{\ln (A 1)}$ is a CONSTANT k, so that

$$
G(t ; A 2, B)=G(t ; A 1, B)^{k} \text { for all } t .
$$

Thus, changes in A produce more stable results than changes in B.

For this reason, the simplest generalization to a model which varies the parameters over different accident periods will hold B constant and allow A to vary. This is the model that this paper will consider. Although models with variation in B would no doubt be intriguing, and may well yield useful results, we will now consider only models for which B is held constant.

In particular, we will assume that $h=1$, accident periods are accident YEARS, and that the A parameter, denoted by $A(y)$, varies by accident year y geometrically:

$$
\text { (5) } A(y)=A(1) \cdot R^{(y-1)} ; \text { accident years } 1<y<=N
$$ $R>1$

Remembering that the A parameter is the initial development ratio $d(c)$, we see that under this model the value of $d(c)$ increases geometrically over time. If we now write $F(t, y)=G(t ; A(Y), B)$ with B fixed and $A(Y)$ as in (5), we have :
$\ln (F(t, Y))=\frac{-\ln (A(Y))}{1-B} \cdot B^{t-c}=\frac{-\ln (A(1)-(Y-1) \cdot \ln (R)}{1-B} \cdot B^{t-c}$
and $\ln (F(t, 1))=\frac{-\ln (A(1))}{1-B} \cdot B^{t-c}$, so we may write

$$
\begin{aligned}
& \text { (6) } \ln (F(t, Y))=\ln (F(t, 1))-\frac{Y-1}{1-B} \cdot \ln (R) \cdot B^{t-c} \\
& \text { for all } t>=c \text { and accident years } \\
& 1<=Y<=N .
\end{aligned}
$$

Thus, given the first accident year development $F(t, 1)$ and R, (6) then determines $F(t, y)$ for each accident year Y. In the next section, we will apply this model to some actual long-tailed loss development which does have markedly varying development ratios by accident year.
III. APPLICATION TO ACTUAL LOBS DEVELORMENT

The paid development to be studied arises from a medical expense incurred insurance contract which provides benefits after the satisfaction of a fixed deductible for each accurrence (illness/injury). Although there is a maximum dollar benefit, there is no limit to the timing of benefit payments for a given occurrence as long as the policy remains in force.

Thus, all benefit payments are assigned an incurred date equal to the date of illness or injury. As one might expect, the loss development pattern is long; what one might NoT be prepared to expect is just HOW long the development is. Table A below shows the historical run off of losses incurred prior to 1982:

TABLE A: HISTORICAL RUN OFF OF LOSSES INCURRED PRIOR TO 1982 THROUGH 12/31/91

CALENDAR BENEFITS PAID ON YEAR LOSSES PRIOR TO 1982 1982 \$10,323,818 $1983 \quad 2,006,910$ $1984 \quad 1,134,964$
$1985 \quad 759,590$
$1986 \quad 696,838$
1987 371,022
1988 220,861
$1989 \quad 163,867$
$1990 \quad 93,867$
1991
86,983
$\$ 15,858,720$

Unfortunately, with loss development that can easily exceed 15 years, it is very difficult to estimate ultimate losses. Traditional methods (and some unorthodox ones, too) applied to
even five years' development may produce inadequate estimated ultimate losses when compared with full development. There are also significant differences in development by accident year. Table B shows the paid loss development through 12/31/91.

This table starts with the development from 12 months. It is clear that development from 12 to 24 months is very large relative to later 12 month intervals. This is a major reason why Bondy Development will fail if we start at an earlier development age than 24 months in this case.

TABLE B: PAID LOSS DEVELOPMENT AS OF YEAR END 1991

YEAR
BENEFITS
WERE PAID
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
 \$25,893,182 XX 11,061,692 $30,714,940$ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX $1,463,653$ 11,682,569 34,987,383 XXXXXXXXXXXXXXXXXXXXXX $950,355 \quad 1,671,802 \quad 12,367,435 \quad 34,177,430 \quad \mathrm{XXXXXXXXXXX}$ $667,582 \quad 899,834 \quad 2,262,510 \quad 14,350,459 \quad 39,549,678$ $344,756 \quad 357,440 \quad 1,152,199 \quad 2,592,063 \quad 17,825,496$ $411,555 \quad 640,625 \quad 1,054,086 \quad 1,347,414 \quad 3,164,217$ 228,296 369,787 851,333 917,255 2,214,192
$51,414 \quad 299,928 \quad 457,786 \quad 805,917 \quad 1,372,068$ $173,364 \quad 247,586 \quad 514,679 \quad 951,972 \quad 926,767$

YEAR
BENEFITS
WERE PAID
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

	YEAR	LOSSES WERE	CURRED	
1982	1983	1984	1985	1986
3,182	XXX			
1,692	30,714,940	XXXXXXXXXXX	SXXXXXXXXXXXX	XXXXXXXXXXX
3,653	11,682,569	34,987,383	XXXXXXXXXXXX	XXXXXXXXXXX
0,355	1,671,802	12,367,435	34,177,430	XXXXXXXXXXX
7,582	899,834	2,262,510	14,350,459	39,549,678
4,756	357,440	1,152,199	2,592,063	17,825,496
1,555	640,625	1,054,086	1,347,414	3,164,217
8,296	369,787	851,333	917,255	2,214,192
1,414	299,928	457,786	805,917	1,372,068
3,364	247,586	514,679	551,972	926,767

YEAR LOSSES WERE INCURRED

$198719881989 \quad 1990 \quad 1991$ XXX XXX KXX XXX XXX 44,024,194 XXX $20,468,624 \quad 45,843,638 \mathrm{XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX}$ 3,309,287 $23,355,464 \quad 54,886,102 \mathrm{XXXXXXXXXXXXXXXXXXXXXXX}$ $2,236,870 \quad 4,784,667 \quad 26,608,917 \quad 58,786,420 \quad$ XXXXXXXXXXX $1,468,859 \quad 2,100,111 \quad 5,254,928 \quad 34,079,112 \quad 65,350,261$

Accordingly, all further discussion will be limited to development beyond 24 months, and we will use $c=2$ years.

Table C below shows the 24 month development factors, defined as the ratio of cumulative paid losses at 36 months to cumulative paid losses at 24 months, for each of the accident years 1982 through 1989:

TABLE C: HISTORICAL 12 MONTH DEVELOPMENT FROM AGE 24 MONTHS

| ACCIDENT | -BENEFITS | PAID AS OF: | DEVELOPMENT |
| :---: | :---: | :---: | :---: | :---: |
| YEAR | 24 MONTHS | 36 MONTHS | RATIO |
| 1982 | $\$ 36,954,874$ | $\$ 38,418,527$ | 1.0396 |
| 1983 | $42,397,509$ | $44,069,311$ | 1.0394 |
| 1984 | $47,354,818$ | $49,617,328$ | 1.0478 |
| 1985 | $48,527,889$ | $51,119,952$ | 1.0534 |
| 1986 | $57,375,174$ | $60,539,391$ | 1.0551 |
| 1987 | $64,492,818$ | $67,802,105$ | 1.0513 |
| 1988 | $69,199,101$ | $73,983,769$ | 1.0691 |
| 1989 | $81,495,019$ | $86,749,946$ | 1.0645 |

A least squares geometric fit to these ratios which preserves the sum of the 36 month benefits is:

$$
\begin{aligned}
& \begin{array}{r}
A(1982)=1.038781 \\
R=1.003744
\end{array} \\
& d(2, Y)=A(1982) \cdot R^{Y-1982} \\
& Y>=1982
\end{aligned}
$$

TABLE C clearly shows a significant upward trend in development by advancing accident year that cannot be ignored. Similar analyses at higher ages also show evidence of such a trend. Chart 1 on the next page shows how the fitted A parameters compare with the actual observed values.

It NOW remains to estimate the Bondy parameter B. This should be done using as much data as possible, because the development is VERY long tailed. Once we have a representation for $F(t, y)$, we will be able to estimate the ULTIMATE incurred losses for each year y having at least 2 years of development :

$$
\operatorname{ULT}(y)=\frac{\text { Year } y \text { Losses Paid Through } t \text { Years }}{F(t, y)} ; t>=2
$$

Thus, for each year y, we will have SEVERAL different estimates of ultimate losses. We would like to have such estimates differ as little as possible. Let $\operatorname{DIFF}(y)$ be the excess of the maximum over minimum ultimate loss estimate for year y, and let S be the sum of the $\operatorname{DIFF}(y)$ for $y=1982$ to $y=1989$. We then seek that value of $B, 0<B<1$, such that S is minimized.

The value of B which minimizes S is

```
B=.642834
```

		ULLIMATE LOSS ESTIMATES	PERCENTAGE	
YEAR	A	MINIMUM	MAXIMUM	DIFFERENCE

The small percentage variation in estimates within each accident year is, in itself, an indication that this model is reasonable.

It must be admitted, however, that the model does NOT give us ultimate losses for 1991 because as of $12 / 31 / 91, t=1<c$. We get around this constraint simply by looking at the ratio of losses paid through 12 months to ultimate losses for each of the years $y=1982$ to 1990:

| ESTIMATION OF ULTIMATE LOSSES THROUGH 1991 | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | ESTIMATED | PAID AS OF | OBSERVED | |
| YEAR | ULTIMATE | 12 MONTHS | COMPLETION | FITTED |
| 1982 | $\$ 41,374,172$ | $\$ 25,893,182$ | 0.625830 | 0.656745 |
| 1983 | $47,133,983$ | $30,714,940$ | 0.651652 | 0.640832 |
| 1984 | $54,132,081$ | $34,987,383$ | 0.646334 | 0.625304 |
| 1985 | $55,577,586$ | $34,177,430$ | 0.614950 | 0.610152 |
| 1986 | $66,721,759$ | $39,549,678$ | 0.592755 | 0.595368 |
| 1987 | $74,589,677$ | $44,024,194$ | 0.590218 | 0.580942 |
| 1988 | $81,597,551$ | $45,843,638$ | 0.561826 | 0.566866 |
| 1989 | $97,377,068$ | $54,886,102$ | 0.563645 | 0.553130 |
| 1990 | $112,323,538$ | $58,786,420$ | 0.523367 | 0.539727 |
| 1991 | $124,086,792$ | $65,350,261$ | | 0.526650 |

The fitted values are a geometric regression on the ratios of 12 month to Ultimate losses. The 12 month paid losses for 1991 divided by the fitted 1991 ratio gives us the estimated ultimate losses for 1991.

The model thus gives us the following estimate of Unpaid Losses as of 12/31/91 on losses incurred from $1 / 1 / 82$ to 12/31/91:

ULTIMATE, $1982-1991$ PAID TO $12 / 31 / 91$	$\$ 754,914,207$ $654,130,151$
$12 / 31 / 91$ UNPAID	$\$ 100,784,057$

Now, the goodness of fit of any model to past experience does not guarantee that the model is a good predictor of FUTURE experience. The only real test lies in comparing predictions with what actually subsequently happens. Fortunately, the model
may be used not only to predict the unpaid losses, but it also predicts how those losses will be paid out in the future. Thus, the predicted 1992 payments on losses incurred in year y is given by:

```
PAYMENT(y,1992) = ULT(y)
    1982 <= Y <= 1991
```

These predictions are THEN compared to what actually happened in calendar year 1992:

YEAR	1992 PAYMENTS PREDICTED			S By ACCIDENT ACTUAL	Year	
				ERROR		
1982	\$	45,787	\$		212,900	$(167,113)$
1983		88,951		212,654	$(123,702)$	
1984		172,608		415,437	$(242,829)$	
1985		296,810		679,320	$(382,509)$	
1986		591,382		1,042,184	$(450,802)$	
1987		1,085,831		1,081,057	4,774	
1988		1,925,164		1,788,616	136,548	
1989		3,655,475		2,770,606	884,869	
1990		6,528,946		6,911,345	$(382,399)$	
1991		36,172,947		5,512,644	660,303	
		50,563,902		0,626,763	$(\$ 62,861)$	

The RESULT is, in the aggregate, quite satisfying with an error of only -0.12\%. This result suggests that the model is quite good for loss reserving purposes. The reader may well note, however, that the percentage error is relatively large for losses incurred prior to 1987. In this regard, it is interesting to note that if we extend TABLE A to include 1992 payments, we see that the 1992 payments on losses incurred prior to 1982 is abnormally large:

TABLE D: HISTORICAL RUN OFF OF LOSSES INCURRED PRIOR TO 1982 THROUGH 12/31/92

CALENDAR	BENEFITS PAID ON
YEAR	LOSSES PRIOR TO 1982
1982	$\$ 10,323,818$
1983	$2,006,910$
1984	$1,134,964$
1985	759,590
1986	696,838
1987	371,022
1988	220,861
1989	163,867
1990	93,867
1991	86,983
1992	269,708

Attempts have been made to "explain" the error variation by generalizing the model to variation on B. Such attempts have failed. It is probable that, as with almost all mathematical representations of the real world, forces are operating which are not readily modeled and which require separate investigation.

APPENDIX : DEVELOPMENT OF THE COMPLETION FUNCTION G(t)

We start with the basic criterion:

$$
d(t+h)_{h}=d(t)^{B} \quad \text { for all } t>=c
$$

Then we note that the ratio of Ultimate to Paid through time t
is
$\frac{\text { Ultimate }}{\operatorname{PAID}(t)}=\prod_{k} d(t+k \cdot h)_{h}=\prod_{k}\left(d(t)_{h}\right)^{\left(B^{k}\right)}=\left(d(t)_{h}\right)^{\left.\frac{1}{(1-B)} \right\rvert\,}$
where k ranges from zero to infinity.

Thus, we have
(1) $G(t)_{h}=\frac{\operatorname{PAID}(t)}{\text { Ultimate }}=\left(\mathbf{d}(t)_{h}\right]^{\left[-\frac{1}{(1-B)}\right]}$

In particular, consider any integer \mathbf{n} and note that
(2) $\mathbf{d}(\mathbf{c}+\mathbf{n} \cdot \mathbf{h})_{h}=\left(\mathbf{d}(\mathbf{c})_{h}\right)^{\left(\mathbf{B}^{\mathbf{n}}\right)}$

We extend this functional relationship to all real $\mathrm{z}>=0 \mathrm{by}$
(3) $d(c+z)_{h}=\left(d(c)_{h}\right)^{\left[B^{\left(\frac{z}{h}\right)}\right]}$

This extension is NOT unique, so other formulations are possible.
Substitution of $t=c+(t-c)$ into (1) yields:
(4) $G(t)_{h}=\left[d(c+(t-c))_{h}\right]^{\left[-\frac{1}{(1-B)}\right]}=\left(d(c)_{h}\right)^{\frac{-B}{(1-B)}}$

In the paper, the formulation of $G(t)$ is slightly different from (4) in that it expresses $\mathbf{G}(\mathbf{t})$ as a power of e :
(5) $\left.\left.G(t)=e^{\left[-\frac{B^{\left(\frac{t-c}{h}\right)}}{(1-B)} \cdot \ln (d(c)\right.} h\right)\right]$

If we note that $\quad A=d(c)_{h}$, we get the final result:
(6) $G(t)=e^{u(t)}$
where $\quad u(t)=\frac{-\ln (A)}{(1-B)} \cdot B^{\left(\frac{t-c}{h}\right)}$

This formulation is unique if $t=c+n \cdot h$, where n is an integer, but is NOT unique for intermediate values of t.

