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ABSTRACT

With the annual number of deaths by age in Canada, published by Statis-

tics Canada, we first construct cohort life tables at ages 80 and over for people

born before 1900, using the method of extinct generations. We fit some statis-

tical models to these data sets, using maximum likelihood theory to estimate

the parameters of the models and obtain estimates of the standard error for

the mortality rates. Goodness-of-fit tests are performed to check model ade-

quacy. We then project the mortality rates for people who will attain age 80

in the future. Finally, the distribution of the maximum age at death that will

be attained by a Canadian is investigated.
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1 DATA SOURCES

Statistics Canada is a governmental organization responsible for making

a detailed analysis of the Canadian population and publishing the data. From

1949 to 1997, we can find the annual number of deaths in Canada by sex and

individual ages from 0 to 99 and grouped over age 100 (denoted 100+). This

information is also available for each province and territory, but we will use

only the total for Canada. Age is defined as the completed age in years.

Vincent (1951) developed the method of extinct generations to construct

life tables from death statistics. Assuming that no migration takes place after

age 80, we can calculate the number of males and females aged x (x ≥ 80),

living on January 1, Y , by summing the number of deaths in future years at

successive ages,

lYx =
∞∑
k=0

dY+k
x+k ,

where lYx is the number of people aged x living on January 1, Y and dYx is

the number of people dying between ages x and x+ 1 in calendar year Y . An

assumption on the fraction of people dying at age x in year Y born in year

Y −x or Y −x− 1 is necessary: it will be assumed that 50% are born in each

year. The number lYx was therefore approximated by

lYx =
1

2

∞∑
k=0

dY+k
x+k +

1

2

∞∑
k=0

dY+k
x+k+1,

and rounded to the nearest upper integer. The other assumption that no

2



emigration or immigration to Canada occurs at those advanced ages is entirely

reasonable.

Depoid (1973) notes that death statistics are much more reliable than cen-

sus data in countries where a birth registration system has been in operation

for a long time.

The empirical mortality rate at age x in calendar year Y can be calculated

as

qYx = 1− lY+1
x+1 /l

Y
x = dYx /l

Y
x ,

An empirical life table at ages 80-99 for calendar year Y is constructed by

using the mortality rates qY80, q
Y
81, . . . , q

Y
99 and an arbitrary number of initial

lives at age 80. On the other hand, a cohort life table at ages 80 − 99 for

somebody born in year Z would use the mortality rates qZ+80
80 , qZ+81

81 , . . . , qZ+99
99

and an arbitrary number l80 or the known number lZ+80
80 . Cohort tables will

be constructed for certain birth periods before 1900.

2 MODELLING HUMAN MORTALITY

2.1 Statistical models for the force of mortality

To define the models which have been used by actuaries and demographers

to describe the force of human mortality at adult or advanced ages, we will

use the parametrization of Horiuchi and Coale (1990).
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Gompertz (1825) assumed that the force of mortality µx at age x was an

exponential function of age,

µx = Beµx.

Makeham (1860) added an extra parameter to this model to take into account

the force of accidental death, assumed to be a constant independent of age,

and obtained the model

µx = A+Beµx.

Marshall and Olkin (1997) mention that the Makeham model can be consid-

ered as a shock model (see Bowers et al. (1997)): if X, the lifetime of a person

is Gompertz distributed, Y , the time to a fatal accident, has an exponential

distribution, and the random variables X and Y are independent, then the

minimum of X and Y has a Makeham distribution.

Gompertz and Makeham models were used for over a century. Depoid

(1973) wrote that ”For a long time, mortality tables stopped at age 85; to go

beyond, insurance companies use Gompertz and Makeham formulas” (trans-

lation).

Another model developed by an actuary, Perks (1932), which has not

received as much attention as the above two models is the logistic model,

where the force of mortality at age x is given by the 4-parameter function

µx =
A+Beµx

1 + Ceµx
.
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By assuming that the parameter A = 0 in the logistic model, Beard (1963)

obtained the 3-parameter model

µx =
Beµx

1 + Ceµx
.

Kannisto (1992), a demographer, used the simple 2-parameter model

µx =
Beµx

1 +Beµx
.

Note that the Gompertz (A = 0, C = 0), Makeham (C = 0), Beard

(A = 0) and Kannisto (A = 0, B = C) models are all special cases of the

logistic model; therefore, after successfully fitting the logistic and another

one of the above models, a likelihood ratio test could be performed to check

whether a model more parsimonious than the logistic one would be appropri-

ate considering its smaller number of parameters.

Beard (1971) showed that the logistic model can arise in a heterogeneous

population where each member has a Makeham force of mortality and where

the parameter B varies among individuals according to a gamma distribution.

This Makeham-gamma model is a frailty model. Thatcher et al. (1998) also

mention two ways in which the logistic model could arise from stochactic

processes. The logistic model can also be considered as a shock model: if

the lifetime X follows a Beard distribution, the time to an accident Y is

exponentially distributed and the random variables X and Y are independent,

then min(X, Y ) follows a Perks distribution
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Using maximum likelihood, Thatcher et al. (1998) fit the Gompertz, logis-

tic, Kannisto, and Weibull models as well as the Heligman & Pollard (1980)

model

qx =
Beµx

1 +Beµx

and the quadratic model

lnµx = a+ bx+ cx2

to mortality data of aged people in 13 industrialized countries for the periods

1960-70, 1970-80, 1980-90 and for the cohort born in 1871-80 using maxi-

mum likelihood theory. The data used were deaths at ages 85 and over for

the quadratic model and ages 80 and over for all the other models. The 13

countries included in the study were Austria, Denmark, England and Wales,

Finland, France, West Germany, Iceland, Italy, Japan, the Netherlands, Nor-

way, Sweden and Switzerland. The best fit was consistently provided by the

Kannisto and logistic models for all countries in each period and for the cohort

data.

All models listed above produce very close values of µx at ages 80 to 95.

After age 95, the Gompertz and Makeham forces of mortality continue to

increase exponentially with age, while for the Kannisto, Beard and logistic

models, µx tends asymptotically to a constant as x increases. This asymptote

is equal to 1 for the Kannisto model and B/C for the Beard and logistic

models.
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Since, for Canada, we only had data at individual ages 80 to 99, and be-

cause Canadian mortality is comparable to that observed in the industrialized

countries mentioned above, we also used the logistic and Kannisto models for

mortality at advanced ages in Canada.

2.2 Estimation of the parameters

Let qx represent the probability that a person aged x dies before attaining

age x+ 1. In terms of µx, qx equals (see Bowers et al. (1997))

qx = 1− exp
(
−
∫ x+1

x
µydy

)
.

The complement of qx, px = 1 − qx represents the probability that a person

aged x survives at least to age x+ 1.

For the logistic model, we find that

qx = 1− exp
(
−
∫ x+1

x

A+Beµy

1 + Ceµy
dy
)

= 1− (e−A)
(

1 + Ceµx

1 + Ceµ(x+1)

)(B−AC)/Cµ

;

for Beard model,

qx = 1−
(

1 + Ceµx

1 + Ceµ(x+1)

)B/Cµ
;

while for Kannisto model,

qx = 1−
(

1 +Beµx

1 +Beµ(x+1)

)1/µ

;
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finally for Makeham model,

qx = 1− exp [−A+ (B/µ)(1− eµ)eµx] .

In the Kannisto model, as x tends to∞, qx tends to 1−e−1 = 0.632, while

it tends to 1− e−B/C in the Beard and logistic models; in the Gompertz and

Makeham models, since µx is unbounded, qx tends to 1.

Demographers often use the approximation

qx ∼= 1− e−µx+1/2 ,

obtained with the use of the midpoint rule, i.e.
∫ x+1
x µydy ∼= µx+1/2. This

approximation is very close to the true value. For Kannisto model, with the

same values of the parameters as the ones obtained by Thatcher et al. (1998),

the relative difference between the exact value of qx and the approximate

one obtained using the midpoint rule is only 0.03% for a male aged 80 and

0.0008% at age 100. The advantage of using the exact formula for qx instead

of the approximate one lies in the fact that an analytical expression can be

found for the probability npx that a person aged x survives to age x+ n,

npx = exp
[
−
∫ x+n

x
µydy

]
= (e−nA)

(
1 + Ceµx

1 + Ceµ(x+n)

)(B−AC)/Cµ

,

for the logistic model, and

npx =
(

1 +Beµx

1 +Beµ(x+n)

)1/µ

,

for Kannisto model.
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The use of the mid-point rule

npx = exp
[
−
∫ x+n

x
µydy

]
∼= exp

[
−µx+n/2

]

would become less accurate as n gets larger, while using the mid-point rule

over successive one-year intervals

npx =
n−1∏
i=0

px+i
∼=

n−1∏
i=0

exp
[
−µx+i+1/2

]

would be more cumbersome.

Let θ be the vector of parameters of dimension p to be estimated, and

qx(θ) the value of qx calculated with a parametric model. For the logistic

model p = 4 and θ = (µ,A,B,C), while for the Kannisto model, p = 2 and

θ = (µ,B). We will use the method of maximum likelihood to estimate the

parameter vector θ. The likelihood function equals

L(θ) =
99∏

x=80

qx(θ)
dxpx(θ)

lx−dx ,

where dx is the number of deaths between ages x and x + 1 and lx is the

number of people living at age x.

The loglikelihood function, denoted l(θ), defined as l(θ) = lnL(θ), equals

l(θ) =
99∑

x=80

dx ln qx(θ) + (lx − dx) ln px(θ).

The maximum likelihood estimator (MLE) of θ, θ̂, will maximize L(θ) or

equivalently, l(θ). We can find the MLE θ̂ numerically, either by maximizing
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directly the loglikelihood function l(θ) or by solving the system of equations

∂l(θ)

∂θj
= 0, j = 1, . . . , p,

where θj is the jth component of θ.

The asymptotic variance-covariance matrix of θ̂, denoted Σ, is equal to

the inverse of the observed information matrix

Σ = I−1

θ̂
, where Iθ̂ =

(
−∂2l(θ)

∂θi∂θj

∣∣∣∣∣
θ=θ̂

)
.

The MLE θ̂ is a consistent estimator of θ and has an aymptotic multivari-

ate normal distribution with mean vector θ and variance-covariance matrix

estimated by I−1

θ̂
, enabling the construction of confidence intervals for the

components of vector θ. The asymptotic variance of q̂x(θ) can then be calcu-

lated using the method of statistical differentials (see Lawless (1982)), and a

confidence interval for qx(θ) can be obtained for x = 80, . . . , 99.

2.3 Goodness-of-fit tests

To test whether the fit of a model is appropriate to the data, the global

χ2 goodness-of-fit test statistic for males and for females can be used and

compared with the critical value of the χ2 distribution with the appropriate

number of degrees of freedom. The χ2 test statistic is defined as

χ2 =
100+∑
x=80

(dobsx − dexpx )2

dexpx
,
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where dobsx is the observed number of deaths at age x, dexpx is the expected

number of deaths at age x according to the parametric model used, and d100+

represents the number of deaths at age 100 and over, which is also equal to

the number of people who survive to age 100.

2.4 Likelihood ratio tests

To select one model among two models which fit the data adequately

according to the χ2 goodness-of-fit test, a likelihood ratio test can be per-

formed. Let l(θ̂H0) be the maximum value of the loglikelihood function under

hypothesis H0. The statistic

λ = 2[l(θ̂H0)− l(θ̂H1)]

has an aymptotic χ2 distribution with ∆ degrees of freedom, where ∆ is the

difference between the number of parameters under H0 and the number of

parameters under H1 and where the model under H1 is a submodel of the

model under H0.

3 RESULTS

3.1 The data

We will illustrate the theory developed in the preceding section with

Canadian mortality data. Table 1 contains the numbers of males living at ages
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80 and over, for the 5 cohorts born in the periods 1869-1872, 1873-77, 1878-

82, 1883-87 and 1888-92, and Table 2 the corresponding numbers for females.

Those numbers were calculated with the method of extinct generations, as

explained in section 1. It is assumed that the people of the first cohort born

in the years 1869-1872 have all died, while all those who died before age 105

have been observed in the last cohort studied (people born in 1888-1892).

The unknown number of people born in the years 1888-1892, still alive on

1/1/1998, who would be at least 105 year old, is not counted with the method

of extinct generations. However, it is believed that this number is small and

that it would not affect the parameter estimates of the mortality curves too

much.

3.2 Estimated parameters

Table 3 contains the values of the parameters estimated with the maxi-

mum likelihood method for the five male cohorts with Kannisto model, as well

as their standard error and the estimated covariance, and Table 4, the values

for the female cohorts. The fit of the Kannisto model, as measured by the χ2

goodness-of-fit test statistic, is not acceptable at the 5% level over the whole

range of ages for all the cohorts. The same situation was observed when we

used the Perks model. A possible reason is the extra variability introduced

by the method of extinct generations, since, to obtain the lx values, we need
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Table 1: Male Cohorts

Age 1869-72 1873-77 1878-82 1883-87 1888-92

80 54812 81903 98229 111511 113437
81 49212 73748 88573 100641 102557
82 44053 65967 79355 90497 92132
83 38847 58179 70181 80253 81763
84 33657 50479 61182 70524 71852
85 28744 43369 52536 60934 62454
86 24463 36886 44870 52290 53809
87 20341 30756 37758 44160 45827
88 16631 25380 31209 36803 38591
89 13456 20524 25575 30261 32230
90 10739 16363 20661 24522 26699
91 8382 12860 16324 19559 21625
92 6473 9912 12734 15598 17294
93 4836 7488 9630 12114 13578
94 3561 5591 7253 9219 10428
95 2578 4010 5254 6927 7816
96 1813 2830 3806 5039 5702
97 1234 1968 2651 3620 4113
98 822 1292 1781 2543 2881
99 523 819 1209 1753 1937

100+ 341 541 794 1145 1311
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Table 2: Female Cohorts

Age 1869-72 1873-77 1878-82 1883-87 1888-92

80 59078 89468 109551 131130 150715
81 54002 82173 101322 121923 141024
82 49292 75426 93320 112879 131291
83 44397 68099 84800 103558 121063
84 39586 60891 76201 94008 110661
85 34953 53749 67914 84727 100310
86 30470 47044 59934 75577 90189
87 26171 40667 52292 66532 80325
88 22198 34686 45160 57917 71039
89 18526 29291 38455 49901 62231
90 15241 24313 32362 42432 53924
91 12400 19908 26892 35618 46027
92 10038 16192 21915 29535 38821
93 7847 12735 17375 24192 32136
94 6016 9835 13563 19492 26187
95 4505 7536 10396 15462 20894
96 3315 5645 7934 12043 16268
97 2384 4084 5943 9170 12411
98 1636 2964 4352 6826 9285
99 1158 2048 3135 4956 6751

100+ 798 1349 2181 3465 4723
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Table 3: Estimated Parameters for Males

Cohort µ (variance) B (variance) Covariance

1869-72 3.186E-5 (1.284E-11) 0.10219 (1.732E-6) -4.711E-9
1873-77 4.885E-5 (1.974E-11) 0.09716 (1.132E-6) -4.725E-9
1878-82 4.362E-5 (1.260E-11) 0.09794 (9.037E-7) -3.371E-9
1883-87 6.184E-5 (2.104E-11) 0.09335 (7.477E-7) -3.961E-9
1888-92 8.482E-5 (3.710E-11) 0.08922 (6.987E-7) -5.085E-9

Table 4: Estimated Parameters for Females

Cohort µ (variance) B (variance) Covariance

1869-72 2.639E-5 (6.722E-12) 0.10178 (1.299E-6) -2.951E-9
1873-77 2.643E-5 (4.298E-12) 0.10125 (8.249E-7) -1.880E-9
1878-82 2.561E-5 (3.122E-12) 0.10078 (6.346E-7) -1.406E-9
1883-87 2.758E-5 (2.821E-12) 0.09879 (4.903E-7) -1.174E-9
1888-92 2.168E-5 (1.449E-12) 0.10053 (4.047E-7) -7.647E-10

to add many random variables of death numbers, increasing the variance.

To illustrate the methods of section 2, we will use the parameter values

for Kannisto model appearing in Tables 3 and 4. The maximum likelihood

estimator of the mortality rates at ages 80 and over is equal to

q̂x = 1−
(

1 + B̂eµ̂x

1 + B̂eµ̂(x+1)

)1/µ̂

,

by the invariance property of the MLE. The first five columns of Table 5

contain the estimated qx values for males for the 5 male cohorts and Table 6,

the values for females.
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Table 5: Estimated and projected qx for Males

Age 1869-72 1873-77 1878-82 1883-87 1888-92 1893-97 1898-1902

80 0.1009 0.1029 0.0986 0.0968 0.0955 0.0932 0.0909
81 0.1100 0.1116 0.1071 0.1047 0.1031 0.1004 0.0978
82 0.1197 0.1209 0.1161 0.1132 0.1111 0.1080 0.1050
83 0.1300 0.1308 0.1258 0.1222 0.1195 0.1160 0.1125
84 0.1410 0.1413 0.1361 0.1318 0.1285 0.1245 0.1206
85 0.1526 0.1523 0.1469 0.1419 0.1380 0.1336 0.1293
86 0.1649 0.1640 0.1584 0.1526 0.1480 0.1430 0.1382
87 0.1778 0.1762 0.1704 0.1638 0.1584 0.1529 0.1475
88 0.1913 0.1890 0.1831 0.1755 0.1694 0.1633 0.1575
89 0.2054 0.2023 0.1962 0.1877 0.1808 0.1742 0.1677
90 0.2201 0.2161 0.2099 0.2005 0.1927 0.1855 0.1785
91 0.2352 0.2303 0.2241 0.2136 0.2051 0.1973 0.1899
92 0.2507 0.2450 0.2387 0.2272 0.2178 0.2094 0.2014
93 0.2666 0.2599 0.2537 0.2412 0.2309 0.2222 0.2139
94 0.2828 0.2752 0.2689 0.2555 0.2444 0.2349 0.2258
95 0.2991 0.2907 0.2844 0.2701 0.2581 0.2481 0.2385
96 0.3155 0.3063 0.3001 0.2849 0.2721 0.2616 0.2515
97 0.3320 0.3219 0.3159 0.2998 0.2862 0.2752 0.2647
98 0.3484 0.3375 0.3316 0.3149 0.3005 0.2891 0.2782
99 0.3646 0.3531 0.3473 0.3299 0.3149 0.3031 0.2918
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Table 6: Estimated and projected qx for Females

Age 1869-72 1873-77 1878-82 1883-87 1888-92 1893-97 1898-1902

80 0.0834 0.0805 0.0757 0.0702 0.0641 0.0594 0.0551
81 0.0911 0.0879 0.0827 0.0766 0.0701 0.0650 0.0603
82 0.0994 0.0959 0.0903 0.0835 0.0767 0.0712 0.0661
83 0.1083 0.1045 0.0984 0.0910 0.0838 0.0779 0.0723
84 0.1178 0.1138 0.1072 0.0990 0.0914 0.0850 0.0790
85 0.1280 0.1236 0.1165 0.1076 0.0996 0.0927 0.0863
86 0.1388 0.1341 0.1265 0.1168 0.1084 0.1010 0.0941
87 0.1503 0.1452 0.1371 0.1266 0.1178 0.1099 0.1025
88 0.1624 0.1570 0.1484 0.1370 0.1279 0.1195 0.1116
89 0.1751 0.1694 0.1603 0.1480 0.1385 0.1292 0.1205
90 0.1885 0.1824 0.1728 0.1596 0.1498 0.1403 0.1314
91 0.2024 0.1960 0.1859 0.1719 0.1618 0.1518 0.1424
92 0.2169 0.2102 0.1996 0.1847 0.1743 0.1638 0.1539
93 0.2319 0.2248 0.2138 0.1980 0.1875 0.1765 0.1662
94 0.2472 0.2399 0.2285 0.2119 0.2012 0.1901 0.1796
95 0.2630 0.2554 0.2437 0.2263 0.2154 0.2035 0.1923
96 0.2790 0.2713 0.2592 0.2410 0.2301 0.2178 0.2058
97 0.2953 0.2873 0.2750 0.2562 0.2453 0.2327 0.2208
98 0.3116 0.3036 0.2910 0.2716 0.2608 0.2479 0.2357
99 0.3280 0.3199 0.3071 0.2873 0.2766 0.2635 0.2511
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3.3 Projected mortality rates

We can estimate the improvement in the mortality rates of persons aged x

born in different calendar periods and project this improvement in the future

to obtain future mortality rates. Using the 4 cohorts 1873-77 to 1888-92, we

calculated the average decrease in qx over 5 years for each age x and projected

this decrease to obtain qx for the cohorts born in 1893-97 and 1898-1902 (last

two columns of Tables 5 and 6).

3.4 Life expectancy at age x

The complete life expectancy at age x, defined as

e̊x =
∫ ∞

0
tpxdt

can be calculated with the exact formula for tpx in section 2.2 and the use of

a symbolic programming language like MATHEMATICA to evaluate numer-

ically the integral. Table 7 contains the values of e̊x for males and females

aged 80 to 99 born in the years 1888 to 1892.

The actuarial present value (a.p.v.) at age x, of a continuous life annuity

of 1 per annum, calculated at a force of interest δ, under the Kannisto model,

āx =
∫ ∞

0
e−δtt pxdt =

∫ ∞
0

e−δt
(

1 +Beµx

1 +Beµ(x+t)

)1/µ

dt

is seen to be exactly equal to the complete life expectancy of a person aged

x, under the Perks model with the four parameters (µ, δ, B(1 + δ), B).
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Table 7: Life expectancy at age x

Age Males Females

80 6.64 8.36
81 6.29 7.90
82 5.95 7.46
83 5.63 7.04
84 5.33 6.64
85 5.04 6.25
86 4.77 5.89
87 4.51 5.54
88 4.27 5.22
89 4.04 4.91
90 3.83 4.62
91 3.63 4.35
92 3.44 4.09
93 3.26 3.85
94 3.09 3.63
95 2.94 3.42
96 2.79 3.22
97 2.65 3.04
98 2.53 2.87
99 2.41 2.72
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Similarly, it can be shown that the a.p.v. of a continuous life annuity

of 1 per annum at age x, under the Perks model, is equal to the complete

life expectancy of a person aged x, under the Perks model with the four

parameters (µ,A+ δ, B + δC,C).

4 MAXIMUM ATTAINED AGE

From Tables 1 and 2, there were 113,437 males and 150,715 females living

aged 80 born in the years 1888-1892. We can study the distribution of the

maximum age-at-death attained by a male or a female. Using extreme value

theory (see Reiss and Thomas (1997) or Thatcher et al. (1998)), the mode

(most likely value) attained by a female would be the solution of the equation

150715 ωp80 = 1, for ω.

Howver, with Kannisto model, we find that ω is too high to accept that model

for female mortality.
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