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ABSTRACT

Traditionally, regression models have been analyzed in terms of models for
the conditional mean. However, it is becoming increasingly clear that estima-
tion of the conditional median and other quantiles provides a more complete
and satisfactory approach to the analysis of regression models. In particular,
estimation of conditional quantiles for nonparametric models should provide
valuable information concerning departures from standard model assumptions
(like non-linearity and heteroscedasticity). Such estimates are also required to
analyze larger or smaller conditional quantiles of particular interest by them-
selves; for example, to model heavy users of some commodity, say, electricity,
or behavior of students who score unusually well on a standardized exam.

For linear models, we review the regression quantile estimators introduced
by Koenker and Bassent, which are especially natural and quickly computable by
linear programming methods. Two approaches to generalizing regression quan-
tile ideas to nonparametric situations are presented. (1) A "spline" approach
may be based on minimizing a linear combination of the regression quantile
loss function and an L,-norm smoothing penalty. This approach generalizes
the work of Schuectte for smoothing actuarial data and provides an rather nice
computational algorithm (based on linear programming) for one-dimensional
data. (2) A "kernel” approach may be based on minimizing a weighted regres-
sion quantile loss function with weights given by a standard kernel. This
approach also permits linear programming to provide efficient computation, and
allows known results for regression quantiles in non-ii.d. cases to give a com-
plete asymptotic theory. ‘
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1. REGRESSION QUANTILES: THE LINEAR CASE

Koenker and Bassett ((1978) and (1982)) developed an elegant approach
10 generalizing the notion of "sample quantile” to the regression model. Fol-
lowing their development, consider the model, Y;=x;/B+ u; for
i=1,...n. Let 0<6< 1, and choose $(8) to minimize

}i poly; — x;'B) . polu) = Bu* + (1-8)u~
i=1

As an example, consider the 1755 Boscovitch Ellipticity Data (see Stigler,
1986). Figure 1 gives the arc length of one degree of latitude at 5 locations on
the surface of the earth. A perfectly spherical earth would lead to a horizontal
linear fit. The apparent positive slope indicates ellipticity (in a north-south
plane). The plot gives the interval of 6-values for which each indicated linear
fit is the regression quantile given by ﬁ(e). The Koenker-Bassett approach
offers several advantages.

o Natural: B(@) estimates B + & where Eg is the 6% gquantile of the error
distribution

¢ Computable using linear programming:

minimize 3 (8v; + (1 - 8)w,)

i=1
subject to vi—- w; =y, - x;B; v;2 0; w; 2 0
As 0 varies, use "parametric programming” to find breakpoints:
0=8y< 8, < -+ < 8;=1, for some J, < (g)

such that B(e) is constant for ej < B< ej+1 , and each B(e) is determined
by p observations y; = x;"B, i = iy, ip ..., ip.
Note: J, = 0,(n log n) (under conditions).

¢ Provides quantile function estimator:

08 = xBo)
where ¥ is the average of the design vectors x; . Furthermore, { can be
inverted to define an estimator of the error distribution:

E, (u) = inf{B: u< TB(0) )
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Some Applications:

e Trimmed LS (Ruppert-Carroll, 1980): Delete observations below the o™ and
above the (1 — 8)™ regression quantile planes and use least squares applied to
the remaining observations. Here, the asymptotic results directly generalize
those for the one-dimensional trimmed mean, whereas trimming based on resi-

duals gives different asymptotics.
1

e General L-estimator (Koenker-Portnoy, 1987): Define B = J w(G)B(G) de,
[

where w(0) is an appropriate score function.

e Qutlier Idcmiﬁ;arion (Portnoy, 1990): The observations fit by the extreme
planes B(0) and (1) can be used to give a high-breakdown method for search-

ing for outliers,

e Tests for non-stationarity: Koenker-Bassett (1982), Portnoy-Welsh (1991),
Efron (1991), Portnoy {1991b).

General Asymptotic Result (Portnoy, 1991): Let u; be non-stationary

- n
(and "nearly" m-dependent). Let F(9) = 1 Y. F;(9) (the average c.d.f. of the
A=

errors) and define
B(®) =B- (F8),0, ---,0) Ri(®=ux{68~1[v,< F()]}
Qo= lim ~ 3 xxf(F'®)  b(®)=n"0¢! T ER(®)
n e i=) i=1

Then, under conditions, for e < 6< 1 -©¢,

n*(B(8)-B(8)) —b(8) = n~ Q¢ 13" (R (8)-ER,(8))

i=1

+ Op(n_'/‘logn)
—)D Np(o’ Q0—1£Q6—1)

where £ = lim COV(n~%3 R,;(8))

i=1
Note: 5(8) may tend to infinity; so this result permits rather general non-
stationarity. It is also possible to apply this result to the nonparametric regres-
sion problem discussed in section 4.
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2. CONDITIONAL QUANTILES

Given data (Y, x;), define the 8" conditional quantile to be a function
go(x;) such that P(Y; S ge(x)) =9, ie, Y;= go(x;) + 4  where
P{y; s 0} = 0. Such conditional quantiles have many applications.

¢ They arc useful for assessing departures from model assumptions, especially
“heteroscedasticity”. If w; are identically distributed, all conditional quantiles
are paralle]l, Otherwise they will be non-parallel, and the extent of lack of
parallelism provides a test for heteroscedasticity (Efron, 1991; Portnoy, 1991).

* In heteroscedastic cases, the model for the mean may be nonlinear, but there
may be some quantile that abeys a linear model. For example, let
Y; = a+ Bx; + e™u; where u; are i.id. with Negative Exponential distribu-
tion. Figure 2 gives several conditional guantile curves. Note that the quaniile
corresponding to @ = 1 — 1/¢ is the only one giving a linear fit.

—
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Figure 2. Selected quantile funciions of the distribution of Y given x.
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e Specific quantiles may be of independent interest. That is, more extreme
individuals may depend rather differently on the independent variables than
those near the median. For example, considering modelling:

Pollution levels in terms of source or geographic characteristics

Students test performance in terms of study (or social) characteristics

Mortality rates for individuals in a specific risk category -- thase at higher
(or lower) risk may have very different mortality curves

As a specific example, consider the data in Hendricks and Koenker, JASA
(forthcoming) concerning electricity demand (by household) over time in terms
of weather characteristics. Here

Y1) =Ta; ¢;(1) + u()
where ¢,(¢) represent various time periodicities (hourly, daily, weekly) and
weather covariates {current temp., max temp. over past 24 hours, etc.)
In figure 3, note the very different response patterns for periods of high
demand. Clearly the low demand quantile curve correspends to background

use, while the high demand curves reflect use during active periods of the day
(particularly, air conditioning).

Figure 3.
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3. SMOOTHING SPLINES

Consider the model,
Model: Y= g(x;) + u;
In the classical approach, we minimize over appropriate functions g(x)
T - 8+ Af (g7(x))?dx .
This approach has extensive development and theory (Wahba, 1990; Silverman,
1985)

virtues: ¢ Elegant theory (Reproducing Kernel Hilbert Space)
e Sparse linear computations
¢ Optimality at Gaussian

problems: e Squared error and L, penalty chosen for math convenience --
hard to interpret and not "natural"
e Not robust (poor if ¥; non-normal)

» Computational problems as A varies (each X gives a separate
problem)

e Hard to include monotonicity or convexity constraints (qua-
dratic programming may be quite difficult)

¢ Need specific distributional assumption to estimate quantiles

We can try replacing squared error with ¥ po(y; — g(x;)), but this still
leads to a difficult quadratic programming problem. Thus, consider minimizing
(over g):

Trelyi — 2(x)) + Af lg=(x) | dx
Result: The optimal g has the form
g(x) = @i(x - x;)?+ Bi(x - x) + ¥,
for x; € x < x5, i=1..,n

(see Koenker and Ng, 1991)
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Thus, the problem yields the Schuette (1978) formulation
min  Fpe(y; — i) + A LA;la;l
subject to continuity constraints; here A; = x;,; - x;.
The solution is again given by parametric programming (in 1):
min X (6u; + (1-0)v;) + AX A;(a; + b))  subject to
U= vi =y — i ;2 0 v220
a; - b; = g az0 b20 ogp=a,=0

AR+ BB+ Y= Yis 208 + B; = Pisy

Advantages: * natural: absolute discrepancies are more intuitive

s robust to outlying errors
e gives quantiles directly
e computationally easy: A small -- g(x) fits all obs., A large --
g(x) = global linear fit

As A decreases, get breakpoints and new solution with one
simplex pivot (so can get solutions for all X) k
* monotonicity and convexity constraints are easy: still get
paramectric linear programming problem!
¢ dimensionality: as A increases, the solution at each new
breakpoint either replaces a quadratic segment by a linear one
or interpolates one new observation; thus permitting a direct
assessment of dimension as the difference between the
number of interpolated observations and the dimension of the
interpolating segments.

Figures 4 and 5 give examples of median smoothing splines for two data

sets. Figure 6 gives the estimated 10th, 50th, and 90th percentile curves
corresponding to a specific value of the smoothing parameter, A.
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4. A KERNEL METHOD: WEIGHTED REGRESSION QUANTILES

Choose B(x; 8) to minimize (over B):
2wilx) pelyi — x;'B)
where for some kernel & and window width h,,

1 X =X
wi(x) = —h—k p

Assume A, - e, k has bounded support, and that I x;w;(x) -3 x (as
n — o). Then

golx) = xB(x; 0

provides a nonparametric estimator of the conditional quantile.

Advantages: s multivariate extension immediate
¢ Theory straightforward: the non-ii.d. theorem applies
directly with bias

b(x) = 0,(h2) .

Theory may extend to splines using asymptotic equivalence of
the methods (Messer, 1991).

Problems: ¢ oversmoothing at local max or min (see following example)

e choice of & and h, (although known approaches should
still work)

e how to predict outside convex hull of observations (e.g.,
future predictions for time series)

e computational: separate linear program for each x (in a
given grid)
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Some examples follow. Figures 7 and 8 give estimated quantile curves for
the Schuette data using a triangular kernel and a logistic kernel respectively.
The lack of smoothness requires some further work: perhaps using locally
weighted quadratic regression quantiles (instead of linear ones) would provide
improvement. Comments based on using a uniform kemel in Chaudhuri
(1991) and by Wang and Scott (1991) suggest this is so. Figures 9, 10, and 11
give estimated quantile curves for the Motorcycle data for different window
widths, k. Adaptive choice of & would probably improve the estimates sub-
stantially; but clearly choosing h large ecnough to smooth out the breaks
results in significant oversmoothing. This method may not be appropriate for
producing smooth curves, but should be useful for prediction at specific x-
values since the asymptotic theory shows that the conditional quantile estima-
tors can be used directly to provide predicition intervals,
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