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ABSTRACT 

Traditionally, regression models have been analyzed in terms of models  for 
the conditional mean. However, it is becoming increasingly clear that estima- 
tion of the conditional median and other quantiles provides a more complete 
and satisfactory approach to the analysis of regression models. In particular, 
estimation of  conditional quantiles for nonparametric models should provide 
valuable information concerning departures from standard model assumptions 
(like non-linearity and heteroscedasticity). Such estimates axe also required to 
analyze larger or  smaller conditional quantiles of  particular interest by them- 
selves; for example,  to model  heavy users of  some commodity,  say, electricity, 
or behavior of  students who score unusually weU on a standardized exam. 

For linear models,  we review the regression quantile estimators introduced 
by Koenker and Bassett, which are especially natural and quickly computable by 
linear programming methods.  Two approaches to generalizing regression quan- 
tile ideas to nonparametr ic  situations are presented. (1) A "spline" approach 
may be based on minimizing a linear combination of the regression quantile 
loss function and an L 1-norm smoothing penalty. This approach generalizes 
the work of Schuette for smoothing actuarial data and provides an rather nice 
computational algorithm (based on linear programming) for one-dimensional  
data. (2) A "kernel" approach may be based on minimizing a weighted regres- 
sion quantile loss function with weights given by a standard kernel. This 
approach also permits  linear programming to provide efficient computation, and 
allows known results for regression quantiles in non-i.i.d, cases to give a com- 
plete asymptotic theory. 
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1. R E G R E S S I O N  Q U A N T I L E S :  T H E  LINEAR CASE 

Koenker  and Bassett ((1978) and (1982)) developed an elegant approach 
to generalizing the notion of  "sample quantile" to the regression model.  Fol- 
lowing their development ,  consider the model,  Yi  = xi '~ '  + ui for 
i = 1 . . . . .  n .  Let 0 <  e_< 1, and choose ~(0) to min imize  

Po(Yi - x i ' ~ )  , PO(u) -= ou+ + ( 1 - e ) u -  
i=1 

As an example,  consider the 1755 Boscovitch Ellipticity Data (see Stigler, 
1986). Figure 1 gives the arc length of one degree of lati tude at 5 locations on 
the surface of  the earth. A perfectly spherical earth would lead to a horizontal 
l inear fit. The apparent positive slope indicates ellipticity (in a north-south 
plane).  The plot gives the in terval  of  e - v a l u e s  for which each indicated linear 
fit is the regression quantile given by ~(0). The Koenker-Basset t  approach 
offers several advantages. 

• Natural:  ~(0) estimates l] + ~o where to is the 0 ~h quanti le  of the error 
distr ibution 

• Computab le  using linear programming:  

miniamize ~ (0v i + (1 - 0)wi) 
i=I 

subject to vi - w i  = Yi - x i ' ~  ; vi >- O ;  w i >_ 0 

As 0 varies, use "parametric programming" to find breakpoints :  

O=O0< O,< " ' "  < e L = l ,  for some J. _< ( ~ )  

such that ~(O) is constant for 0j < O< O)+l,  and each ~ ( O ) i s  determined 
b y p  observat ions  Yi = x i ' ~ ,  i = i l ,  i 2 . . . . .  ip. 

Note:  J .  = O e ( n  log n)  ( u n d e r  conditions).  

• Provides quantile function est imator:  

0 (o) = 

where ~- is the average of the design vectors x i . Fur the rmore ,  
inverted to define an estimator of  the error distribution: 

F . ( u )  = inf{ 0 :  u _< T'[~(0) } 

can be 
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Some Applications: 

• Trimmed LS (Ruppert-Carroll, 1980): Delete observations below the 0 ah and 
above the (1 - 0) :h regression quantile planes and use least squares applied to 
the remaining observations. Here, the asymptotic results directly generalize 
those for the one-dimensional tr immed mean, whereas trimming based on resi- 
duals gives different asymptotics. 

I 

• General L-estimator (Koenker-Portnoy, 1987): Define ~ = j" w(0)~(0) dO, 
0 

where w(0) is an appropriate score function. 

• Outlier Identification (Pormoy, 1990): The observations fit by the extreme 
planes ~(0) and ~(I) can be used to give a high-breakdown method for search- 
ing for outliers. 

• Tests for non-stationarity: Koenker-Bassett (1982), Pormoy-Welsh (1991), 
Efron (1991), Portnoy (1991b). 

General Asymptotic Result  (Portnoy, 1991): Let u i be non.s tat ionary 
n 

(and "nearly" m-dependent). Let if(0) = 1 ~ , F i ( O  ) (the average c.d.f, of the 
n i = 1  

errors) and define 

1 3 ( 0 )  = 13 - ( Y - a ( o ) ,  o ,  . . .  , o ) '  

go = Um ± ~. x~x~'/~(Y-l(o)) 
n ~  n i = l  

Then, under conditions, for e-< 0_< 1 - e ,  

n"~(~(O)-[3(O))-b(O) = n U o  2 . . , ( R i ( O ) - E R i ( O ) )  
i=l 

+ Op(n -~'~ log n) 

Ri(O) = xi{O- l[vi  <- f-~(0)]} 

b(O)  = n -jA QO -1 ~ E Ri(0) 
i= t 

~v  Nv(O, Qo-1~Qo -1) 

where Z =  li~ COV(n-~ER~(O))  
n - - - ~  i = |  

Note: b(O) may tend to infinity; so this result permits rather general non- 
stationarity. It is also possible to apply this result to the nonparametric regres- 
sion problem discussed in section 4. 
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2. C O N D I T I O N A L  QUANTILES 

Given data (Y i ,  x i ) ,  define the 0 th conditional quantile to be a function 

ge(x l )  such that P(Yi  ~; ge(Xl)} = O; i.e., Yi = ge(xi) + u~ where 
P{u i < O] = 6 . Such conditional quantiles have many applications. 

• They are useful for assessing departures from model assumptions, especially 

"heteroscedasticity". If u i are identically distributed, all conditional quantiles 

are parallel. Otherwise they will be non-parallel, and the extent of lack of 

parallelism provides a test for heteroscedasticity (Efron, 1991; Portnoy, 1991). 

• In heteroscedastic cases, the model for the mean may be nonlinear, but there 
may be some quantile that abeys a linear model. For example, let 

Yi = ot + fix i + eZ'ui where u I are i.Ld. with Negative Exponential distribu- 
tion. Figure 2 gives several conditional quantile curves. Note that the quantile 
corresponding ro 8 = I - l/e is the only one giving a linear fit. 

\ 

u=0.8 

u=O.7 

u=l- I /e 

u=0.6 

/ u=O.4 / 
u"0.2 / ,  

Figure 2, Selected quantile functions of the dislributlon of Y given x. 

297 



• Specific quantiles may be of independent  interest. That is, more  extreme 
individuals may depend rather differently on the independent  variables than 
those near the median. For example,  considering modelling: 

Pollution levels in terms of source or geographic characteristics 

Students test performance in terms of study (or social) characteristics 

MortaSty rates for individuals in a specific risk category -- those at higher 
(or lower) risk may have very different mortality curves 

As a specific example, consider the data in Hendricks and Koenker,  JASA 

(forthcoming) concerning electricity demand  (by household)  over time in terms 
of weather characteristics. Here 

Y(t) = ~a~ ¢i(r) + u(t) 

where ¢i(t) represent various time periodicities (hourly. daily, weekly) and 

weather covariates (current temp.,  max temp. over past 24 hours,  etc,) 

In figure 3. note the very different response patterns for periods of high 
demand.  Clearly the low demand quantile curve corresponds to background 
use, while the high demand curves reflect use during active periods of the day 
(particularly, air conditioning). 

0 

Figure 9. 
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3. SMOOTHING SPLINES 

Consider the model, 

Model: Yi  = g ( x l )  + ui 

In the classical approach, we minimize over appropriate functions g ( x )  

E(r~- g(x~)) 2+ zj" (g'(x))~ax . 

This approach has extensive development and theory (Wahba, 1990; Silverman, 

1985) 

virtues: * Elegant theory (Reproducing Kernel Hilbert Space) 
• Sparse linear computations 
• Optimality at Gaussian 

problems: • Squared error and L 2 penalty chosen for math convenience -- 

hard to interpret and n o t  "natural" 

• Not robust (poor if u i non-normal) 

• Computational problems as ~. varies (each ~. gives a separate 
problem) 

• Hard to include monotonicity or convexity constraints (qua- 
dratic programming may be quite difficult) 

• Need specific distributional assumption to estimate quantiles 

We can try replacing squared error with ~-~P0(Yi- g(xi)), but this still 

leads to a difficult quadratic programming problem. Thus, consider minimizing 
(over g): 

~Pe(Yi - g ( x i ) )  + k [  I g " ( x ) l  d x  

Result: The optimal ~ has the form 

g(x) = cti(x - xi)2 + f3i(x - xi) + ":~ 

for x i <- x < xi+ 1 i = 1 . . . . .  n 

(see Koenker and Ng, 1991) 
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Thus ,  the problem yields the Schuette  (1978) formulat ion 

subject to continuity constraints; here A i -~ xi+ 1 - x i .  

T h e  solution is again given by pa ramet r i c  p r o g r a m m i n g  (in k): 

min ~ , ( O u  i + ( 1 - 0 ) v i )  + k ~ A i ( a /  + b i )  subject to 

ui - vi = Yi - 'Y i u i  > 0 v i > 0 

a i - b i = ix i a i >_ 0 b i > 0 ot O =  o~ n = 0 

oti A 2  + ~ i A i  + Yi = Yi+l 20~iAi + [~i = 13i+1 

Advantages :  • natural: absolute discrepancies are more intui t ive 

• robust to outlying errors 

• gives quantiles directly 

• computationally easy: ~. small -- g ( x )  fits all obs., ~ large -- 

g ( x )  = global linear fit 

As ~. decreases, get breakpoints and new solution with one 
simplex pivot (so can get solutions for all ~.) 

• monotonici ty  and convexi ty  constraints are easy: still get 

parametric l i n e a r  programming  problem ! 

• dimensionality: as ~. increases, the solut ion at each new 

breakpoint either replaces a quadratic segment  by a linear one 

or interpolates one  new observat ion;  thus permi t t ing  a direct 
assessment of  d imension as the difference between the 

number  of interpolated observat ions and the d imension of  the 

interpolating segments.  

F igures  4 and 5 give examples of  median smoothing  splines for two data 

sets. F igure  6 gives the est imated 10th, 50th, and 90th percenti le curves 

cor responding  to a specific value of  the smooth ing  parameter ,  ~.. 
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4. A KERNEL METHOD:  WEIGHTED REGRESSION QUANTILES 

Choose ~(x; O) to minimize (over [5): 

~ w i ( x )  P0(Yi - x~.'lS) 

where for some kernel k and window width h., 

wi(x)  "~ ~ k [ h. 

Assume h. ~ **, k has bounded support, and that 5"xiwi(x ) - 4 x  
n ---) ** ). Then 

~o(x) - x '~(x;  O) 

provides a nonparametric estimator of the conditional quantile. 

Advantages: 

Problems: 

( a s  

• multivariate extension immediate 

• Theory straightforward: the non-i.i.d, theorem applies 
directly with bias 

b(x)  = op(h .2) .  

Theory may extend to splines using asymptotic equivalence of 

the me thods  (Messer,  1991). 

,, oversmoothing at local max or rain (see following example) 

• choice of  k and h. (although known approaches should 
still work) 

• how to predict outside convex hull of  observations (e.g,, 
future predictions for time series) 

• computational: separate linear program for each x (in a 
given grid) 
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Some examples follow. Figures 7 and 8 give estimated quantile curves for 
the Schuette data using a triangular kernel and a logistic kernel respectively. 
The lack of  smoothness requires some further work: perhaps using locally 
weighted quadratic regression quantiles (instead of linear ones) would provide 
improvement. Comments  based on using a uniform kernel in Chaudhuri 
(1991) and by Wang and Scott (1991) suggest this is so. Figures 9, 10, and 11 
give estimated quantiie curves for the Motorcycle data for different window 
widths, h. Adaptive choice of h would probably improve the estimates sub- 
stantially; but clearly choosing h large enough to smooth out the breaks 
results in significant oversmoothing. This method may not be appropriate for 
producing smooth curves, but should be useful for prediction at specific x -  
values since the asymptotic theory shows that the conditional quantile estima- 
tors can be used directly to provide predicition intervals. 
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