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Abstract: The internal rate of return of a finite sequence of cash flows is studied in 

terms of three natural axioms: (1) continuity of the rate with respect to the cash flows, 

(2) monotonicity, i.e. the rate increases when any cash flow increases, (3) 

normalization, or agreement with the usual rate of return on standard projects. 

Examples of rate of return functions are constructed which satisty these axioms, and 

their economic significance is discussed. 

Introduction. 

This paper is a preliminary version of a more extensive work [5], where we give 

complete proofs and more precise definitions, as well as a more detailed discussion 

of the problem. 

Consider an investment project 

T = { co, cl ..... Cn} 

where q denotes the cash flow at time i. We assume that co is negative, reflecting 

the nature of T as a legitimate investment project which starts with an outflow of cash, 

and since we assume that we are dealing with quantities that are independent of the 

choice of units, we take co = -1. Let 

n 

p(u) = ~_ciu -i 
i=0 

the present value of T at rate i=  u-t. 
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(Note: It is easier to work with the accumulation factor (1+i) rather than the rate i. This 

necessitates introducing "-1 " into our formulas in various places in order to conform 

to the more conventional language of rates.) 

Suppose that T is a standard project. We mean by this that T consists of a 

sequence of outflows of funds followed by a sequence of inflows. Precisely, for some 

positive integer k, q <0 f o r 0 < i <  k, q _>0 for i>k,  and q>0 for at least one value 

of i. Then it is well known that p(u) has a unique positive zero Uo. In this case uo -1 

is known as the internal rate of return (abbreviated henceforth as i.r.r.) or yield of the 

project and will be denoted by I(T). 

The problem of extending the definition of I(T) to more general projects has been 

considered by many authors and from several different points of view. See e.g. [3], for 

a lengthy list of references. We are concerned with the problem of exlending I to 

apply to all investment projects, and to satisfy three natural axioms of a mathematical 

nature. 

A1. Continuity. I(T) should be a continuous function of the cash flows. 

A2. Monotonicity. Increasing a cash flow increases I(T). 

A3. Normalization. I(T) should agree with the internal rate of return constructed 

above when T is a standard project. 

A few remarks are in order. While the range of the i.r.r, function assigned to standard 
projects is (-1, oo), the continuity axiom will also necessitate -1 as a possible value. 

This requires suitable modification of A2. We cannot expect strict monotonicty in the 

case of projects with an i.r.r, of -1. 

An example of a family of internal rate of return functions satisfying these axioms 

arises from the work of Teichroew, Robichek, and Montalbano [6,7]. They fix a rate 

d > -1, which is known as the deposit, ( financing, borrowing ) rate. The assumption 

is that capital can be obtained by paying an interest rate of d. They then define 

inductively for any r > -1. 

Bo(r )  = -I, 
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(Bk(r)(l+d) + ck+l, if Bk(r) 2 0 
Bk+dr) = 

t Bk(r)(l +r) + ck+l, if Bk(r) g 0 

One easily shows that B”(r) is decreasing in r, and is negative for sufficiently large r. 

The TRM internal rate of return subject to deposit rate d, is defined by 

Id(T) = the unique zero of B,(r) if this exists, or -1 if B,,(r) c 0 throughout. 

Id(T) can be shown to satisfy the three axioms: Al, A2, and A3. 

I,(T), defined as lim d+ o. Id(T) is shown in [5] to agree with the Arrow -Levhari 

internal rate of return defined in [l]. (More precisely, it agrees with a discrete analogue 

of this rate. Arrow and Levhari dealt with the continuous case.) It satisfies continuity, 

normalization. and a weak form of monotonicity, in that it is not strictly increasing, but 

rather nondecreasing. Increasing a cash flow may leave I, unchanged. 

An internal rate of return function, which we calf the mixed rate of return, and which 

appears to be new is defined as follows. 

Imix = (Cw 1 - 1 

as u runs over the roots of p(u) = 0, and 

-1, if p is increasing at u 

RI= 1, if p is decreasing at u 
0, if neither 

When there are no roots to p(u) = 0, the sum is taken to be 0, and so the value of lhx 

will be -1. 

There is an interesting interpretation to this function. Suppose for example that p is 

positive on an open interval (cd), negative just to the left of c and negative just to the 

right of d. Clearly p is increasing at c and decreasing at d, so the contribution made to 
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the sum in Irnix from these two zeroes is (d-c), the length of the interval. In general 

we can deduce that 

Irnix(T) = [ The measure of { u: p(u) _> 0} ] -1 

This shows that Imix is connected with the interest preference concept of [4]. To say 

that one project has a higher I~x means, in some sense, that there are more interest 

preference rates for which that project will be profitable. In other words, it can be 

thought of as a global indicator of the worth of the transaction, as opposed to the 

highly localized TRM functions Id, which indicate the value of the project for those 

particular individuals with interest preference rate d. This interpretation is admittedly 

subject to the objection that very high rates are given undue weight. One could 

produce more realistic Imix functions by using a measure other than the standard one 

on (0,oo). This would necessitate giving up the normalization axiom. One can 

I~owever use more general positive set functions in place of a measure. As long as a 

set function agrees with the usual measure on intervals of the form (0,r), axiom A3 will 

hold. Of course, any such set function, other than the usual measure, will necessarily 

be nonadditive. The problem of choosing set functions so that the resulting Imix 

satisfies the continuity axiom is highly nontrivial, and we will not pursure it further 

here. 

Universal Unprofitability. 

An investment project T for which p(u) _< 0 for all u is called universally unprofitable. 
(This was defined in [4].) One feature that we may wish to require of an i.r.r function is 

that it detects in some fashion these highly undesirable projects. A natural axiom 

which accomplishes this is as follows. 

A4. Universally unprofitable axiom. I(T) = -1 if and only if T is universally 

unprofitable 

This clearly holds for Imix, but not for the TRM functions Id, as we indicate in the 

two dimensional example below. It is true however, that knowing Id for all d will serve 

to identify universal unprofitability, since it is not hard to show that T is universally 

unprofitable if and only if Id < d, for all d > -1. 
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Extensions of the Normalization Axiom. 

Consider the class of all projects for which there is a unique positive root to p(u) = 0 

(called L-normal in [4]). A stronger version of the normalization axiom would require 

that the i.r.r, function recover this unique yield in all such cases. This is obviously 

satisfied for Imix. It is not however true for Id as shown by the following. 

Example, Let T= { -1 ,  2 , - 2 ,  1}. Then p(u)= (-1+2u -1-2u-2+u "3) has the unique 

positive zero of u = 1, so many people would automatically assign an i.r.r, of 0 to this 

project. It is indeed the case that Imix(T) --- 0. However Id('l') = 0 only in the case 

that d = O. For example, if d = 1, 

Bo(r) =-1, Bl(r)= 1-r. 

B2(r) = 
-2 r ,  i f  r _< 1 

- 1 - r  2, i f  r > t .  

f" 1 -4 r ,  i f  r _< 0 
B3(r) = ~ - 2 r 2  -2r  + 1 ,  i f  0 _< r <_ 1 

L-( r+r2+r  3),, i f 1< r. 

From this we deduce that I I (T)  = 2 

The TRM functions will however capture the unique yield for a larger class of 

projects than standard ones. Given T, define for k=  0,1 ...... n the functions Ak by 

k 
Ak(r) = T.  ci(f +r)k-i  

i=0 

the outstanding investment in the contract at duration k, at rate r. Clearly 

An(r) = (l+r) n p(l+r) 

and moreover at deposit rate r, 

Ak(r) = Bk(r), for k = 0,1 ... . .  n. 
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The project T is called a pure investment at rate r, if 

Ak(r) ~ 0 for k = 0,1 .... n-1. 

This class, introduced in [6], was discussed at length in [2,Chapter 6] and also in the 

author's review of the discussion to [4]. For convenience, we review the main features 

here, and at the same l ime, simplify some of the proofs. An obvious induction 

argument shows that if T is pure at rate r, 

A. ( r )  = ~ ( r ) ,  k = 0,1 ..... n 

independently of the deposit rate d. Hence, given q _< r, we can compute Bk'S at 

deposit rate q to conclude that 

Ak(q) = Bk(q) --- Bk(r) = Ak(r), 

and arguing similarly for q >_ r, we see that Ak is decreasing for k = 0,1 ..... n. 

This shows that T is also pure at any rate higher than r. 

From the fact that co is negative, we deduce that any investment project is pure at 

sufficiently high rates. Consider however the following class,which strictly includes the 

standard projects. (It was simply denoted by * in [4] but it is convenient to give it a 

name.) 

Definition: An investment project T will be called a genuine pure investment if 

there exists r such that T is pure at rate r and moreover, the final balance An(r) >- 0. 

If T is a genuine pure investment, then taking a larger point if necessary, we can 

find r such that T is pure at r and An(r) actually equals 0. Since An is decreasing, 

r will be the unique yield of T, and the relationship above between An and Bn shows 

that 

Id(T) = r, for all d > - l .  

A Two Dimensional Example. 

It is instructive to consider the case n = 2, which is already sufficiently complicated to 

illustrate the major points of the discussion above. We consider projects of the form 
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T = {-1,x,y}, and we can identify all such projects with a point of the plane. The 

standard contracts, which in this c a s e  coincide with the projects for which p has a 

unique positive root, are those in the upper half plane, together with the positive 

horizontal axis (i.e. y > 0, or y=0, and x > 0). By the continuity axiom we must assign 

an i.r.r, of -1 to [(x,0) : x < 0}. By monotonicity we then must assign -1 to the open 

lower left quadrant, and by continuity again we must assign -1 to the negative 

vertical axis. It remains to extend our function to the open lower right quadrant, 

{(x,y): x > 0, y< 0}. 

Suppose we want to satisfy axiom A4. The universally unprofitable projects are 

precisely those for which x 2 + 4y _< 0. We must assign -1 to the points on and below 

the parabola x2+ 4y =0. Finally, we must fill in the region between the parabola and 

the horizontal axis in a continuous and monotone way, with a function that always 

takes values strictly greater than -1. There are many possibilities. The function Imi× 

accomplishes this in a very natural fashion by assigning ~/x2+4y -1. See Figure 1. 

Y 

I 
x + ~x2+ 4y 

-1  2 

-I 

- I ~  ~x2+4y -1 

C 

Figure 1. For T = | -1,x,y}, Irnix(T) is shown for various regions. The curve C 

is the parabola x 2+4y  =0. 

For any d > -1, the function Id fills in the lower right quadrant by assigning 

x+ y/(l+d) -1, above the line y = -( l+d)x and -1 below. See Figure 2. It is clear by 

comparing this with figure 1 that axiom A4 does not hold for Id. 
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We also see from this that the Arrow-Levhari function I,~ assigns x-1 to the entire 

lower right quadrant. This is obvious from the idea motivating this function, which is to 

consider truncations of the project which maximize present value. 

x + ~ x 2 +  4y  
-1 2 

-1 

X 

x+ y l + d  -1 

Figure 2. For T = { -1,x,y}, Id(T ) is shown for various regions. The line L 

is given by y+( l+d)x=0 .  
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