ACTUARIAL RESEARCH CLEARING HOUSE 1993 VOL. 3

REVIEW OF BAD-DEBT RESERVES

FOR THE PERIOD ENDING JUNE 30, 1992

Bruce E. Ollodart, F.C.A.S., M.A.A.A.

TABLE OF CONTENTS

INTRODUCTION
Objective
Data Used
Standards of Practice
Background

ANALYSIS
Overview of Methodology
Considerations
Explanation of Methodology
Analysis of Payout Patterns
Results of Analysis

GUIDE TO EXHIBITS

EXHIBITS - Numbers 1 through 7

TECHNICAL APPENDIX - Pages i through vii

ADDENDUM - Pages 1 through 2

INTRODUCTION

objective

At the request of the Company we conducted a limited-scope actuarial review. The objective of our review was to develop a methodology (independent of the Company's current methods) and corresponding analysis, based on statistical methods and using the Company's historical data, to estimate a reasonable value for the Company's corporate level bad-debt reserves at a valuation date of June 30, 1992. Bad-debt reserves are defined as the amounts held to cover bad-debt write offs arising from cumulative sales made as of the valuation date. Our review was limited to the three largest U.S. operating divisions of the company.

Data Used

The data that formed the basis for our review consisted of:

- Company calendar quarter amount of write offs net of recoveries, recoveries, number of write offs, and reserves gross of recoveries for bad-debt for first quarter 1987 through second quarter 1992 (the experience period),
o Company sales data for the experience period,
o Telephone conversations with certain credit managers of the Company,
- Government economic statistics, and
- Credit insurance industry information.

Our review was conducted in a manner consistent with the Standards of Professional Conduct and Qualifications of the American Academy of Actuaries and the Standards of Practice adopted by the Actuarial Standards Board.

Background

The company is a large multi-national manufacturing concern that produces a variety of construction related items for homes and commercial buildings. Data was supplied by the Company separately for three divisions and was then combined for analysis purposes.

ANALYBIS

Overview of Methodology

Any singular methodology used to estimate bad-debt reserves has inherent advantages and disadvantages based on the trends and changes within the business environment and company administrative policies. Our preferred approach is to select an estimate of reserves based on comparing results of different reserving methods as opposed to reliance on any singular method. This approach is consistent with generally accepted actuarial methods used for estimating reserves for other types of contingencies such as health insurance and workers' compensation losses.

In the context of this report the amount of paid loss is defined as the amount of bad-debt write offs reported by the Company. Counts are equal to the number of bad-debt write offs as reported by the Company. An incurred loss is defined as the paid losses during a period plus the change in reserves during that period. These definitions were made to help provide consistency and a linkage to the actuarial concepts, methods, and assumptions being promulgated.

For our review, we calculated three estimates of the Company's bad-debt reserves as of June 30, 1992. The estimates were derived using the following methods and assumptions:
o Payout on incurred loss method.

- Ratio of paid losses to historical reserves method.
- Ratio of incurred losses to historical reserves method.

Each of these methods relied on multiple linear regression models of the incurred and/or paid losses. These methods are based on generally accepted principles and techniques of the actuarial profession. However, the application of these principles and

```
techniques to the estimation of bad-debt reserves for non-insurance
companies is a recent development.
```


considerations

Homogeneity

Reserving accuracy may be improved by subdividing data into groups exhibiting similar characteristics. We applied the estimation methods to the three divisional data groups combined. While each division would provide a more homogeneous data grouping for analysis purposes, the resulting volatility and lack of credibility because of the small volume of data for each division could distort the estimates and could more than offset the benefits of increased data homogeneity. The bad-debt experience of the three divisions, while possibly different on an absolute basis, should respond in a comparable manner to general economic changes which appear to be a significant factor driving the Company's bad-debt experience. Because the three divisions are all tied to the construction industry and/or the general condition of the U.S. economy, the factors that influence the individual divisional bad-debt reserves should be relatively homogeneous for all three divisions.

Payout Patterns

The payout patterns for bad-debt losses were determined based on information provided by the Company and insurance industry data. No historical payout pattern data for the Company was available for this review. We reviewed insurance industry payout pattern data for the surety and credit lines of insurance (which cover risks comparable to

Abstract

those corresponding to the Company's bad-debt reserves) as a possible supplement to the Company's payout pattern assumptions. After review it was determined that the insurance data appeared to require adjustment to be reasonably consistent with the payout patterns that we anticipated based on the Company's information. The reason for this appears to be the additional reporting and payment lags present in insurance situations as compared to the direct reporting and payout relationship of the company with their own customers. Therefore, insurance industry payout patterns were used only after adjustment to shorten the average payout duration.

External Influences

A variety of external factors may directly or indirectly impact the accuracy of the estimates contained in this report. Within the scope of our review, it was possible to quantify the impact of certain external factors. These factors are reflected in our multiple regression model and include such items as unemployment rates, construction expenditures, and the Gross Domestic Product.

Other external factors in addition to those that we reviewed may impact the accuracy of the estimates contained in this report. In the course of our review, we became aware of no such factors and did not attempt to identify all such factors which would be expected to impact the results of this analysis.

Explanation of Methodology

The bad-debt reserve estimation methodology that we employed in this analysis emphasized the use of estimation techniques that are
relatively independent of the company's current bad-debt reserve estimation methodology. The following steps were followed to develop our bad-debt reserve estimates:

0

- We reviewed certain government statistics for quarterly periods corresponding to the Company's experience period. Based on a comparison of the graphs of Exhibit 5 to graphs of these government statistics, we selected a sub-set of the government statistics which appeared to move in a direction comparable to the movements of the Company's frequency, severity, and loss costs. The selected government

```
statistics (unemployment rate, employment number,
construction sales, and gross domestic product) are
displayed on Exhibit 7.
```

Linear multiple regression models were fitted to the TMMA severity, frequency and loss cost data using the selected government statistics as the independent variables. Approximately 20 different models were tested. of the models tested, six are displayed on Exhibit 4, Pages 1 through 6. It was observed early in our model testing that separate models for frequency, severity, and loss costs were not required because the independent variables that we determined best predicted these quantities were the same (that is, the same basic model worked on frequency, severity and loss costs). Demonstration of this observation is made by comparing the models displayed on Exhibit 4, pages 1, 4, and 5 where the same independent variables were used for each of the three quantities being modeled. Exhibit 4, Pages 2 and 3, display our best models for the loss costs. Exhibit 4, Page 2 - Loss Cost Model 2 - is a model of the Company's paid loss costs. Exhibit 4, Page 3 - Loss Cost Model 3 - is a model of the Company's incurred loss costs. Additional details regarding the multiple regression models are contained in the Technical Appendix.

Payout patterns were estimated for the Company's bad-debt quarterly incurred losses. The payout pattern assumptions are displayed on Exhibit 3, Page 2. See the section below on Analysis of Payout Patterns for details.

Incurred losses were computed using the Model 3 loss cost projections and the Company's sales data (Incurred losses equal loss costs multiplied by sales). The selected payout patterns were applied to the Company's incurred losses to determine expected loss payments to be made after June 30 , 1992 (unpaid losses as of June 30 , 1992) on incurred losses
as of June 30 , 1992. The sum of these unpaid losses equals the indicated bad-debt reserves as of June 30, 1992. An important assumption underlying this methodology is that the calendar quarter incurred loss costs produced by Model 3 are approximately equal to the occurrence quarter incurred loss costs for the same quarter. This assumption has been shown to be reasonable for short duration liabilities, which the bad-debts appear to be. These calculations are displayed on Exhibit 3, Page 1.

A second methodology was applied by multiplying the second quarter 1992 modeled loss cost times the second quarter 1992 amount of sales to compute an indicated quarterly loss. These amounts were computed for Model 2 (paid losses) and Model 3 (incurred losses). Ratios of paid losses to reserves were selected (based on the latest five quarter average) and divided into the paid losses as computed above producing an estimate of the bad-debt reserves needed as of June 30, 1992. Ratios of incurred losses to reserves were selected (based on the latest five quarter average) and divided into the incurred losses as computed above producing an additional estimate of the bad-debt reserves needed as of June 30, 1992. An important assumption underlying this methodology is that the historical reserves of the company have been adequate and that the ratios of paid losses to reserves and incurred losses to reserves have been relatively stable over the experience period on which the average was selected. Exhibit 2, Pages 1 and 2, display the calculations for this methodology.

The three estimates of bad-debt reserves were summarized and compared to the Company's actual bad-debt reserves as of June 30, 1992. This comparison is displayed on Exhibit 1.

Payout patterns were determined based on information provided by the Company and insurance industry data. An analysis using a payout pattern is based on the assumption that the average historical pattern of losses paid for an occurrence period that is mature will be reasonably predictive of the pattern of losses paid for occurrence periods which are not mature. An occurrence period is defined as the period during which losses occur or during which the exposure that resulted in a lass was assumed by the Company. An occurrence period is not mature if losses have been incurred but not necessarily paid. An occurrence period is mature if the losses that were incurred are paid. The payout pattern represents the portion of the total loss paid during each subsequent period (payout quarter) after the losses have occurred.

According to Company management there are two basic types of bad-debt losses that occur:
o A customer goes into bankruptcy which occurs as a surprise to the Company.
o A customer is experiencing some business difficulties which are identified by the Company's credit managers. The Company may attempt to reduce the amount of exposure (bills outstanding) in anticipation of more serious difficulties in the future. The customer may go along with the Company's strategy and recover, may switch to another supplier and leave the Company with the bills outstanding, or may eventually go into bankruptcy.

A payout pattern was developed based on the assumption that the types of losses described above would be comparable to the types of losses that occur under credit insurance policies. The payout pattern assumed in our analysis was based on credit insurance industry paid loss data. The resulting credit insurance payout
pattern was judgmentally shortened in duration by approximately 4 quarters and then smoothed over a 16 quarter period. We assumed this payout pattern is representative of the Company's future payout on quarterly incurred losses. Refer to Exhibit 3, Page 2 for details of the payout pattern assumed.

Results of Analysis

A summary of the results of our analysis is displayed on Exhibit 1. This exhibit displays the three estimates of bad-debt reserves derived using the methodologies described above. These estimates are compared to the Company's actual reserves as of June 30, 1992. Also shown on Exhibit 1 is our selected estimate of the bad-debt reserves. As shown on Exhibit 1, the Company's bad-debt reserve of approximately $\$ 18,464,000$, as of June 30 , 1992, falls within our range of reasonable estimates of approximately $\$ 15,713,000$ to $\$ 19,991,000$ and is $\$ 1,964,000$ higher than our selected estimate of \$16,500,000.

Our selected estimate is closest to the estimate based on the Payout on Incurred Loss Method. This estimate appeared to be the most reasonable of the three. It also appears that more confidence should be placed on the methods that rely on the incurred loss estimates. This is because the regression model provided a superior fit to the incurred losses relative to the paid losses.

Bruce E. Ollodart, FCAS
Hartford, Connecticut

GUIDE TO EXHIBITB

Following is a list of the exhibits contained in this report:

- Exhibit 1 - Summary of Estimated Reserves.
- Exhibit 2, Page 1 - Estimate of Reserves using the Incurred/Reserve Ratio Method.
o Exhibit 2, Page 2 - Estimate of Reserves using the Paid/Reserve Ratio Method.

Exhibit 3, Page 1 - Estimate of Reserves using the Payout on Incurred Loss Method.

Exhibit 3, Page 2 - Analysis of the payout pattern.
Exhibit 4, Page 1 - Multiple Regression Loss Cost Model 1 model of paid loss costs.

- Exhibit 4, Page 2 - Multiple Regression Loss Cost Model 2 model of paid loss costs.
- Exhibit 4, Page 3 - Multiple Regression Loss Cost Model 3 model of incurred loss costs.

Exhibit 4, Page 4 - Multiple Regression Frequency Model.
Exhibit 4, Page 5 - Multiple Regression Paid Severity Model.
o Exhibit 4, Page 6 - Multiple Regression Loss Cost Model 4model of incurred loss costs.
o Exhibit 5, Pages 1 through 3 - Graphs and the corresponding twelve month moving averages of the company's data including severity, frequency, loss costs, paid/reserve ratios, and incurred to reserve ratios.

Exhibit 6, Pages 1 through 4 - Company quarterly sales and loss data for the three divisions reviewed and the three divisions in the aggregate.

- Exhibit 7 - Quarterly U.S. Government economic statistics used in our analysis.

Bad-Debt Reserve Analysis Summary of Estimated Reserves As Of 6/30/92

	Reserve Estimation Method Used	Estimated Reserve	Actual * Reserve	Difference

(1) Exhiot 2, Page 1, Row (5)
(2) Exhibit 2, Page 2, Row (5)
(3) Exhibit 3, Page 1, Column (5), Total

* Sum of 6/30/92 Gross Reserves for the three divisions reviewed - refer to Exhibit 6, Pages 2 inrough 4, Column (3).

Bad-Debt Reserve Analysis

Estimate of Reserves As Of 6/30/92

Incurred/Reserve Ratio Method
(1) Model 3 incurred Loss Cost at 2nd Qtr 1992 \$558
(2) Average Sales at 2nd Otr 1992 (000) $\$ 537.757$
(3) Indicated Incurred Losses \$3,001,182
(4) All Yrs Incurred/Reserve Ratio 0.191
(5) Indicated Reserve As of 6/30/92\$15,713,254
(1) Exhibit 4, Page 3, Column (5)
(2) Exhibit 5, Page 3, Column (1)
(3) $[(1) \times(2)] / 100$
(4) Exhibit 5, Page 3, Column (6)
(5) (3) / (4)

Note: This method assumes that historically the Company's estimated reserves have been adequate on average and that a reasonably stable relationship exited between historical incurred losses and reserves as measured over the latest experience period.

Bad-Debt Reserve Analysis

Estimate of Reserves As Of 6/30/92
Paid/Reserve Ratio Method

(1)	Model 2 Paid Loss Cost at 2nd Otr 1992	$\$ 443$
(2)	Average Saies at 2nd Qtr 1992 (000)	$\$ 537,757$
(3)	Indicated Paid Losses	$\$ 2,384,825$
(4)	All Yrs Paid/Reserve Ratio	0.119
(5)	Indicated Reserve As of 6/30/92	$\$ 19,991,057$

(1) Exhibit 4, Page 2, Column (6)
(2) Exhibit 5, Page 3, Column (1)
(3) $[(1) \times(2)] / 100$
(4) Exhibit 5, Page 3, Column (7)
(5) $(3) /(4)$

Note: This method assumes that historically the Company's estimated reserves have been adequate on average and that a reasonably stable relationship exited between historical paid losses and reserves as measured over the experience period.

Bad-Debt Reserve Analysis

Estimate of Reserves As Of 6/30/92

Payout on Incurred Loss Method

Occurrence Quarter	$\begin{gathered} \text { Model } 3 \\ \text { Incurred } \\ \text { Loss Cost } \\ (1) \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { Salas }(000) \\ (2) \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { Incurred } \\ \text { Lossos } \\ (3) \end{array} \end{aligned}$
4/88	\$233	\$566,040	\$1,318,998
1/89	238	574,903	1,370,281
2/89	267	572.139	1,526,264
3/89	274	565,656	1,548,839
4/89	359	568,993	2,045,402
1/90	325	563,744	1,830,102
2/90	313	558,141	1,745,825
3/90	305	560,062	1,707,632
4/90	364	548,975	1,995,606
1/91	379	529,536	2,006,474
2/91	415	526,349	2,182,337
3/91	469	517,659	2,428,446
4/91	522	510,208	2,665,632
1/92	561	519,518	2,913,224
2/92	558	537,757	3,001,182
Total			\$30,286,243

Indicated Reserve As of 6/30/92

Losses Unpaid Pattern	Unpaid Losses
(4)	(5)
0.055	$\$ 72,545$
0.110	150,731
0.165	251,834
0.220	340,745
0.275	562,486
0.330	603,934
0.385	672,143
0.440	751,358
0.518	$1,033,724$
0.596	$1,195,859$
0.674	$1,470,895$
0.752	$1.826,192$
0.814	$2,169,825$
0.876	$2,551,984$
0.938	$2.815,109$
	$\$ 16,469,360$

(1) Exhibit 4, Page 3, Column (5)
(2) Exhibit 5, Page 3, Column (1)
(3) (1) $\times(2)$
(4) Exhibit 3, Page 2, Column (3)
(5) $(3) \times(4)$

Bad-Debt Reserve Analysis

Bad-Debt Payout Pattern Assumed

Payout Quarter	Incremental Payout Pattern	Cumulative Payout Pattern	Losses Unpaid Pattern
			(2)

Total 1.000
Average Payout Duration Assumed 2.0 Years
(1) Based on credit insurance data adjusted to a shorter payout duration to reflect the faster payout anticipated for the Company.
(2) Cumulative sum of amounts in (1)
(3) 1 - (2)

Exhiblt 4
Bad-Debt Reserve Analysis
Multiple Regression Loss Cost Model 1

Bad-Debt Reserve Analysis Mutiple Regression Loss Cost Modal 2

OtiN Ending

Ralative	Actue
Ouprter	Ereg
	(1)

Fate ($\%$) Number
 QIA:

187	-2	$-$		
287	-1	-		
387	0	-		
487	1	2.53	6.5	108,218
188	2	2.35	6.1	109, 108
288	3	2.75	50	109,682
388	4	2.91	5.8	110,529
488	5	2.74	5.6	110,0e9
189	6	2.52	53	111,033
289	7	2.53	5.4	112,158
3189	8	256	5.3	112,448
4199	0	2.55	5.0	115,038
190	10	2.48	5.3	114:856
290	11	1.97	5.3	114,689
390	12	1.61	5.4	114.192
490	13	1.91	5.2	113.710
191	14	2.22	5.2	113,623
201	15	2.52	5.6	113,806
391	16	2.66	6.0	113,545
491	17	2.89	6.7	114,155
192	18	2.85	6.9	114,201
292	19	2.74	6.8	113.230
			7.1	113,646
			7.3	113.951
			7.8	114,322

(4) Pive Monfes
(9)
$\$ 560.9 \quad \$ 369.8$
(6) Produci $223.9 \quad 4.5153$ $\begin{array}{llll}595.2 & 383.3 & 225.5 & 4.550\end{array}$

584.7	388.7	231.2	4.825 .5	2.57
582.8	380.8	227.7	4.855 .3	2.70

580.51392 .0

303.1	398.1	2
105.5	401.5	230

$1591.0 \quad 400.2$ 2
$582.4 \quad 407.9$

$\$ 71.2$	406.6
1391.8	471.3

$567.9 \quad 460.8$

	339.1	473.3

NOIE: Reter to Techniced Appondbx for Explanatory Footnoten.

Aogression Outpur.	
Constant	
Std Elf of Y Eat	
P Squared	
Ne. of Observations	
Degrees of Fieedom	
Column:	(2)
X Coetficient(s)	-0.0116
Sid Err of Consi.	0.2683

0.787
0.223
0.712
19

Coatficient(s) Sid Err of Conl.
0.0116
(3)
0.0001 0.0001
$\begin{array}{ll}(4) & (5) \\ 0.0029 & -0.010\end{array}$

(6)	
0.0013	-0.0022
0.0057	0.0025

Frequency Model

Bad-Debt Resorve Analysis
Multiple Regression Paid Soverity Model

Bed-Debi Feserye Andytis
Extiol

$\begin{aligned} & \text { Qtr/Yr } \\ & \text { Ending } \end{aligned}$	Twelve Month Moving Averages					Incurred to Reserve Ratio (6)	Paid to Reserve Ratio (7)	Paid Severity (8)	Incurred Severity (9)	$\frac{\text { Frequency }}{(10)}$	Paid Loss $\frac{\text { Cost }}{(11)}$	Incurred Loss Cost (12)
	Sales (1)	Net Reserve (2)	Net Paid (3)	Counts (4)	Net Incurred (5)							
487	\$553,956	\$3,854	\$775	14	\$858	0.222	0.201	\$55.38	\$61.25	2.53	\$140	\$155
188	553,024	3,933	927	13	1,005	0.256	0.236	71.31	77.33	2.35	168	182
288	563,589	4,358	725	16	1,150	0.264	0.166	46.74	74.16	2.75	129	204
388	567,283	5,052	529	17	1,224	0.242	0.105	32.05	74.15	2.91	93	216
488	566,040	5,089	1,168	16	1,204	0.237	0.229	75.32	77.68	2.74	206	213
189	574,903	5,611	951	15	1,473	0.262	0.169	65.57	101.57	2.52	165	256
289	572,139	6,287	1,037	15	1,713	0.272	0.165	71.50	118.14	2.53	181	299
389	565,656	6,735	1,223	15	1,671	0.248	0.182	84.33	115.22	2.56	216	295
489	568,993	7,993	552	15	1,809	0.226	0.069	38.03	124.78	2.55	97	318
190	563,744	9,330	510	14	1,847	0.198	0.055	36.39	131.93	2.48	90	328
290	558,141	10,693	363	11	1,726	0.164	0.034	33.00	156.86	1.97	65	309
390	560,062	12,285	255	9	1,847	0.150	0.021	28.36	205.25	1.61	46	330
490	548,975	12,564	1,568	11	1,847	0.147	0.125	149.33	175.90	1.91	286	336
191	529,536	12,963	1,572	12	1,971	0.152	0.121	133.74	167.70	2.22	297	372
291	526,349	13,254	1,777	13	2,067	0.156	0.134	134.08	156.02	2.52	338	393
391	517,659	13,781	2,020	14	2,548	0.185	0.147	146.93	185.29	2.66	390	492
491	510,208	14,873	1,778	15	2,870	0.193	0.120	120.51	194.54	2.89	348	562
192	519,518	15,823	1,897	14	2,846	0.180	0.120	137.93	206.98	2.65	365	548
292	537,757	16,768	1,999	15	2,944	0.176	0.119	135.49	199.56	2.74	372	547
					Yrs. Avg.	0.191	0.119					

(1), (2), (3), (4) and (5) are twelve month moving averages of the corresponding data from Exhibit 6, Page 1.
(6) (5) / (2)
(7) (3) / (2)
(8) $(3) /(4)$
(9) $(5) /(4)$
(10) $[(4) /(1)] \times 100,000$ (Number of claims per $\$ 100$ million of sales)
(11) $(8) \times(10)$
(12) $(9) \times(10)$

	Year	Quarter	$\frac{\text { Sales }}{(1)}$	Net Reserve (2)	(3)	Counts (4)	$\begin{array}{r} \text { Net } \\ \text { Incurred } \\ (5) \end{array}$
	1987	1	\$504,775	\$3,734	\$281	13	\$209
		2	541,155	3,422	1,017	5	705
		3	611,163	4,126	688	13	1,392
		4	558,731	4,135	1.115	25	1,124
	1988	1	501,046	4,047	888	9	800
		2	583,417	5,122	207	15	1,282
		3	625,936	6,905	(95)	17	1,688
		4	553,760	4,281	3,670	21	1,046
-	1989	1	536,499	6,135	21	5	1,875
		2	572,361	7,827	551	15	2,243
		3	600,002	8,697	649	17	1,519
		4	567,108	9,312	985	21	1,600
	1990	1	515,503	11,485	(147)	3	2,026
		2	549,949	13,277	(35)	3	1,757
		3	607,688	15,065	218	9	2,006
		4	522,758	10,428	6,236	27	1,599
	1991	1	437,748	13,081	(133)	8	2,520
		2	537,201	14,440	785	9	2,144
		3	572,927	17,175	1,193	11	3,928
		4	492,956	14,796	5,265	31	2,886
	1992	1	474,988	16,879	343	4	2,426
		2	610,158	18,220	1,193	13	2,534

(1), (2), (3), (4) and (5) sum of corresponding data on Exhibit 6, Pages 2 thru 4.
(Amounts in 000)

	Year	Quarter	Sales (1)	$\begin{array}{r} \text { Net } \\ \text { Reserve } \\ (2) \end{array}$	$\begin{array}{r} \begin{array}{r} \text { Gross } \\ \text { Reserve } \end{array} \\ \hline(3) \end{array}$	Gross Paid (4)	$\frac{\text { Recovery }}{(5)}$	Net Paid (6)	$\frac{\text { Coumts }}{(7)}$	Gross Incurred (8)	$\begin{array}{r} \text { Net } \\ \text { Incurred } \\ (9) \end{array}$
	1987	1	\$216,299	\$2,019	\$2,200	\$148	\$18	\$130	9	\$166	\$148
		2	214,299	1,597	1,778	877	100	777	3	455	355
		3	260,911	2,137	2,318	594	3	591	10	1,134	1,131
		4	255,908	2,769	2,950	1,015	362	653	17	1,647	1,285
	1988	1	214,787	2,135	2,316	959	116	843	6	325	209
		2	213,105	2,602	2,783	589	112	477	14	1,056	944
		3	238,507	3,199	3,380	753	424	329	13	1,350	926
		4	240,567	1,575	1,756	2,674	107	2,567	12	1,050	943
	1989	1	222,805	3,178	3,359	82	97	(15)	2	1,685	1,588
		2	201,349	4,269	4,450	770	218	552	1	1,861	1,643
		3	223,955	4,360	4,541	582	31	551	0	673	642
		4	243,371	3,724	3,905	1,059	84	975	4	423	339
	1990	1	209,989	4,753	4,934	26	142	(116)	2	1,055	913
		2	194,480	5,769	5,950	63	103	(40)	1	1,079	976
		3	222,426	6,253	6,434	238	54	184	7	722	668
		4	225,843	3,157	3,338	3,150	61	3,089	24	54	(7)
	1991	1	182,451	4,266	4,447	406	138	268	6	1,515	1,377
		2	478,898	4,808	4,989	973	262	711	8	1,515	1,253
		3	215,616	5,288	5,469	1,220	24	1,196	11	1,700	1,676
		4	213,896	5,417	5,598	1,971	51	1,920	20	2,100	2,049
	1992	1	190,692	6,939	7,120	8	41	(33)	1	1,530	1,489
		2	188,076	8,117	8,298	352	140	212	5	1,530	1,390

(2) Estimated by subtracting 1992 year to date recovery from 6/30/92 gross reserve and then rolling backwards using net incurred and net paid amourts.
(3) Estimated by rolling back reserve from 6/30/92 amount using gross incurred and gross paid amounts.

All other data as provided by company

Bad-Debt Reserve Analysis
 Division 2
 (Amounts in 000)

	Year	$\underline{\text { Quarter }}$	Sales (1)	Net Reserve (2)	Gross Reserve (3)	Gross Paid (4)	Recovery (5)	Net Paid (6)	Counts (7)	Gross Incurred (8)	Net Incurred (9)
	1987	1	\$146,991	\$877	\$938	\$151	\$0	\$151	4	\$62	\$62
		2	182,355	1,011	1,072	0	0	0	0	134	134
		3	212,766	1,091	1,152	113	15	98	3	193	178
		4	158,734	400	461	519	64	455	5	(172)	(236)
	1988	1	135,432	952	1,013	8	0	8	1	560	560
		2	207,070	1,294	1,355	0	270	(270)	0	342	72
		3	233,115	1,437	1,498	307	730	(423)	4	450	(280)
		4	163,961	832	893	172	(24)	196	4	(433)	(409)
	1989	1	147,864	1,087	1.148	0	(5)	5	1	255	260
		2	201,268	1,618	1.679	29	8	21	0	550	552
$\underset{\sim}{\sim}$		3	229,328	2,160	2,221	113	15	98	4	655	640
0		4	179,877	3,053	3,114	132	18	114	4	1,025	1,007
	1990	1	154,559	3,988	4,049	15	16	(1)	1	950	934
		2	201,404	4.618	4,679	5	1	4	1	635	634
		3	248,114	5,768	5,829	50	0	50	1	1,200	1,200
		4	172,093	4,632	4,693	2,586	1	2,585	2	1,450	1,449
	1991	1	135,454	6,003	6,064	4	273	(269)	1	1,375	1.102
		2	225,025	7,128	7,189	0	5	(5)	0	1,125	1,120
		3	222,320	8,978	9,039	0	1	(1)	0	1,850	1,849
		4	150,656	6,687	6,748	3,391	4	3,387	10	1,100	1,096
	1992	1	142,148	7.587	7.648	0	60	(60)	0	900	840
		2	211.041	7.705	7,766	982	1	981	7	1.100	1,099

(2) Estimated by subtracting 1992 year to date recovery from $6 / 30 / 92$ gross reserve and then rolling backwards using net incurred and net paid amounts.
(3) Estimated by rolling back reserve from 6/30/92 amount using gross incurred and gross paid amounts.

All other data as provided by company

Bad-Debt Reserve Analysis
 Division 3
 (Amounts in 000)

	Year	Quarter	Sales (1)	$\begin{array}{r} \text { Net } \\ \text { Reserve } \\ (2) \end{array}$	Gross Reserve (3)	Gross Paid (4)	$\frac{\text { Recovery }}{(5)}$	Net Paid (6)	$\frac{\text { Counts }}{(7)}$	Gross Incurred (8)	Net Incurred (9)
	1987	1	\$141,485	\$838	\$840	\$0	\$0	\$0	0	(\$1)	(\$1)
		2	144,501	814	816	241	1	240	2	217	216
		3	137,486	898	900	0	1	(1)	0	84	83
		4	144,089	966	968	8	1	7	3	76	75
	1988	1	150,827	960	962	37	0	37	2	31	31
		2	163,242	1,226	1,228	1	1	0	1	267	266
$\underset{\sim}{\sim}$		3	154,314	2,269	2,271	-1	0	(1)	0	1,042	1.042
$\xrightarrow{\boldsymbol{\sim}}$		4	149,232	1,874	1,876	949	42	907	5	554	512
	1989	1	165,830	1,870	1,872	41	10	31	2	37	27
		2	169,744	1,940	1,942	0	22	(22)	14	70	48
		3	146,719	2,177	2,179	0	0	0	13	237	237
		4	143,860	2,535	2,537	34	138	(104)	13	392	254
	1990	1	150,955	2,744	2,746	0	30	(30)	0	209	179
		2	154,065	2,890	2,892	3	2	1	1	149	147
		3	137,148	3,044	3,046	5	21	(16)	1	159	138
		4	124,822	2,639	2,641	564	2	562	1	159	157
	1991	1	119,843	2,812	2,814	88	220	(132)	1	261	41
		2	133,278	2.504	2,506	79	0	79	1	(229)	(229)
		3	134,991	2,909	2,911	-2	0	(2)	0	403	403
		4	128,404	2,692	2,694	47	89	(42)	1	(170)	(259)
	1992	1	142,148	2,353	2,355	438	2	436	3	99	97
		2	211,041	2,398	2,400	0	0	0	1	45	45

(2) Estimated by subtracting 1992 year to date recovery from 6/30/92 gross reserve and then rolling backwards using net incurred and net paid amounts.
(3) Estimated by rolling back reserve from $6 / 30 / 92$ amount using gross incurred and gross paid amounts.

All other data as provided by company

					BadGovern	ebt Reser ent Econo	$\begin{aligned} & \text { alysis } \\ & \text { tatistics } \end{aligned}$			
						Construction	les cillio		Gross	
	Year	Ort/Ending	Unemployment Rate (1)	Employment Number \qquad (2)	Pituate Res. (3)	Private NonRes. (4)	$\frac{\text { Public }}{(5)}$	$\frac{\text { Total }}{(6)}$	Dom. Product (Billions) (7)	Total Housing Starts (8)
	1987	Mar	6.5%	108,218	\$560.9	\$369.9	\$226.4	\$1,157.2	\$4,460.0	349.1
		Jun	6.1	109,108	596.3	369.9	223.9	1,190.1	4,515.3	480.2
		Sep	5.9	109,882	595.2	383.3	225.5	1,204.0	4,559.3	447.8
		Dec	5.8	110,529	584.7	388.7	231.2	1,204.6	4,625.5	343.2
	1988	Mar	5.6	110,899	582.9	380.8	227.7	1,191.4	4,655.3	297.2
		Jun	5.3	111,933	570.5	385.9	234.0	1,190.4	4,704.8	443.6
		Sep	5.4	112.158	586.5	392.0	235.6	1,214.1	$4,734.5$	404.9
		Dec	5.3	112,816	603.1	396.1	243.6	1,242.8	4,779.7	342.4
	1989	Mar	5.0	115,038	605.5	401.5	238.4	1,245.4	4,809.8	303.8
		Jun	5.3	114,958	591.9	400.2	248.8	1,240.9	4,832.4	404.6
		Sep	5.3	114,689	582.4	407.9	252.5	1,242.8	4,845.6	366.4
		Dec	5.4	114,192	571.2	406.6	265.4	1,243.2	4,859.7	301.5
	1990	Mar	5.2	113,710	591.6	$47!.3$	324.9	1,387.8	4,880.8	294.5
U		Jun	5.2	113,623	567.9	468.8	319.4	1,356.1	4,900.3	358.0
N		Sep	5.6	113,806	539.1	473.3	327.5	1,339.9	4,903.3	307.0
		Dec	6.0	113,545	505.1	447.5	334.7	1,287.3	4,855.1	233.1
	1991	Mar	6.7	114,155	469.8	427.9	320.8	1,218.5	4,824.0	185.5
		Jun	6.9	114,201	464.7	416.2	323.3	1,204.2	4,840.7	300.8
		Sep	6.8	113,230	487.4	392.9	328.2	1,208.5	4,862.7	284.8
		Dec	7.1	113,545	503.8	384.4	337.9	1,226.1	4,868.0	243.0
	1992	Mar	7.3	113,951	511.1	378.6	350.7	1,240.4	4,896.9	262.0
		Jun	7.8	114,322	531.5	376.2	360.0	1,267.7	4,891.0	340.8

(6) $(3)+(4)+(5)$
(7) Adjusted for inflation to 1987 dollars. Note: Shadedfigures are estimated.

The following notes provide certain details regarding the multiple regression models. Additional information can be obtained on request:

- Explanatory Footnotes - The following explanatory footnotes relate to calculations displayed on Exhibit 4:

Page 1

- Column (1) references Exhibit 5, Page 3, Column (11).
- Columns (2), (3), (4), (5), (6), and (7) reference Exhibit 7, Columns (1), (2), (3), (4), (5), and (7), respectively.
- Column (8) equals the Constant of the Regression output plus the sum of the x Coefficient (s) of the Regression Output times the corresponding data values of the columns indicated above the x Coefficient (s).
- Regression Output was produced by Lotus 1-2-3, Version 3.1, multiple linear regression functions.

Page 2

- Column (1) references Exhibit 5, Page 3, Column (11).
- Columns (2), (3), (4), and (5) reference Exhibit 7, Columns (1), (2), (4), and (5), respectively.
- Column (6) equals the Constant of the Regression Output plus the sum of the x Coefficient (s) of the Regression Output times the corresponding data values of the columns indicated above the X Coefficient (s).
- Regression output was produced by Lotus 1-2-3, Version 3.1, multiple Linear regression functions.

Page 3

- Column (1) references jxhibit 5, Page 3, Column (12).
- Columns (2), (3), and (4) reference Exhibit 7, Columns (2), (4), and (5), respectively.
- Column (6) equals the Constant of the Regression Output plus the sum of the X Coefficient (s) of the Regression Output times the corresponding data values of the columns indicated above the X Coefficient(s).
- Regression Output was produced by Lotus 1-2-3, Version 3.1, multiple linear regression functions.

Page 4

- Column (1) references Exhibit 5, Page 3, Column (10).
- Columns (2), (3), (4), (5), (6), and (7) reference Exhibit 7, Columns (1), (2), (3), (4), (5), and (7), respectively.
- Column (8) equals the constant of the Regression Output plus the sum of the X Coefficient(s) of the Regression Output times the corresponding data values of the columns indicated above the x Coefficient(s).
- Regression Output was produced by Lotus 1-2-3, Version 3.1, multiple linear regression functions.

Page 5

- Column (1) references Exhibit 5, Page 3, Column (8).
- Columns (2), (3), (4), (5), (6), and (7) reference Exhibit 7 , Columns (1), (2), (3), (4), (5), and (7), respectively.
- Column (8) equals the Constant of the Regression Output plus the sum of the x coefficient (s) of the Regression Output times the corresponding data values of the columns indicated above the X coefficient (s).
- Regression Output was produced by Lotus 1-2-3, Version 3.1, multiple linear regression functions.

Page 6

- Column (1) references Exhibit 5, Page 3, Column (12).
- Columns (2), (3), (4), and (5) reference Exhibit 7, Columns (8), (2), (4), and (5), respectively.
- Column (6) equals the Constant of the Regression Output plus the sum of the x Coefficient(s) of the Regression output times the corresponding data values of the columns indicated above the X Coefficient(s).
- Regression Output was produced by Lotus 1-2-3, Version 3.1, multiple linear regression functions.
o Frequency, severity, paid loss costs, and incurred loss costs were the dependent variables for which multiple regression models were developed. After some initial
testing of separate models for frequency, severity, and loss costs it was determined that: all four dependent variables correlated highly with the same independent variables. Hence, it was determined that a single model of the loss costs rather than separate models of frequency and severity would be used for reserve estimation purposes. This determination can be made by comparing the models displayed on Exhibit 4, pages 1, 4, and 5, where the same independent variables were used to model different dependent variables.
o Loss cost model 2 used only four independent variables (unemployment rate, employment number, private non-residential construction sales, and public construction sales). Loss cost model 3 used these same independent variables as loss cost model 2 excluding the unemployment rate. Other independent variables tested were eliminated
because they did not contribute significantly to the goodness of fit measurements (that is, no significant change in the r-squared coefficient was observed) and/or because the X coefficients associated with these variables exhibited large degrees of error (that is, the standard errors of estimate for the X coefficients were large relative to the value of the X coefficients being estimated).

All independent variables were reviewed for multicollinearity and no significant multicollinearity was found.

Our best fitting models used unemployment rates and/or employment numbers that were lagged by three quarters. This significantly improved the predictive power of these independent variables. Other lag periods (one quarter and two quarters) and lagging other independent variables were tested with no appreciable improvement in fit.

Revisions to government statistics could change the models selected for our analysis. Historically, the government has often made revisions to their published statistical data. To the extent such revisions are made in the future, the models should be updated for the new statistics, reviewed for reasonability, and revised if indicated.

For the best fitting models the sign of the coefficients can be explained as follows:

> The negative sign of the coefficient for the unemployment rate is apparently caused by the lagging of the unemployment rate combined with the short tail nature of these liabilities. After unemployment rates have already changed direction the Company responds to the change and adjusts their credit policies

TECRNICAL APPENDIX

appropriately. The effect of these changes then shows up some time later in the reserves and resulting write offs. For example, when the unemployment rate increases the Company responds by tightening their credit policies which results in lower bad-debt write offs.

The sign of the coefficient for the employment number is apparently caused by the effect employment has on the overall economic growth of the nation. For example, as employment increases, the major customers of the Company become more profitiable and hence produce fewer bad-debt write offs. On the other hand more economic growth implies larger lines of credit which could result in larger bad-debt wr:ite offs when they occur. The change in the sign of this coefficient between loss cost models 2 and 3 appears to be caused by the Company's response to anticipated economic changes that are reflected in the bad-debt reserves. These reserves constitute part of the incurred losses but are not part of the paid losses.

The negative sign of the coefficient for the private non-residential construction sales is apparently caused by the effect construction sales has on the overall economic health of the Company's major customers. For example, as these sales increase, the major customers of the Company become more profitable and hence produce fewer bad-debt write offs.

The positive sign of the coefficient for the public construction sales is apparently related to the observation that public construction sales tend to increase, relative to private construction sales, when the economy is weak and construction capacity is high

TECHNICAL APRENDIX

(which provides government with lower cost construction work). This variable is reflecting the overall
economic health of the Company's major customers. For example, as these sales increase, the major customers of the Company become less profitable (operate at smaller profit margins) and hence produce more bad-debt write offs.

Addendum

Considerations Regarding the Use and Update of Bad-Debt Reserve Model

This addendum provides information that the Company might consider when using and updating the bad-debt reserve model that was developed in our report:

- The model relies on multiple regression fits between the Company's historical data and certain economic statistics. The relationship between the Company's data and these statistics can change over time, particularly if the statistics are revised or changes in the Company's operations are significant
- Unanticipated changes in the economy or financial condition of the Company's customers may not be reflected in the economic statistics or the Company's historical data. Therefore, the bad-debt reserve model may not accurately reflect such changes in the estimated reserve
- The Company should consider monitoring the accuracy of the bad-debt reserve model to determine how well the model predicts bad-debt reserves as compared to actual baddebt write-offs. The model uses broad averages and tends to smooth irregularities. Therefore, a reasonable monitoring proce:s might be one that measures accuracy over a multi-year period.
- The bad-debt reserve model relies on certain assumptions. These assumptions should be reviewed regularly to determine if they are reasonable. The following assumptions should be included in such a review:
- The timing of write-offs relative to the bad-debt provision (the payout pattern as defined in our report) was assumed to be comparable to credit insurance,
- Write-off severity, frequency, and loss costs were assumed to be correlated with the same economic variables,
- The difference between net and gross reserves was assumed to be a constant amount over the historical experience period, and
- Certain economic statistics were estimated for the more recent quarters.

The considerations given above include those that we believe are most relevant to the use and update of the bad-debt reserve model. There may be other considerations based on actuarial judgment and experience that are not readily identifiable in advance.

