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Abstract

Historically, it has always been a challenging mathematical task to get an explicit
formula for the solution of a polynomial equation of the degree n, when n>2. As we know the
yield rate of a portfolio is usually an implicit solution of the algebraic equation of degree
greater than 2, i.e., it usually cannot be calculated explicitly by means of a finite number of
fractions and radicals. Therefore, the yield of a portfolio of fixed income securities may be
estimated by means of iterative methods such as Newton’s method, for example.

In this paper we give two explicit formulae that estimate the yield of a portfolio of fixed
income securities that are not interest-sensitive. The yield is explicitly estimated in terms of the
discounting interest rates of the securities that comprise the portfolio.



1. Introduction, Definitions, Ideas

Let A denote a vector of cash flows: A = (Ao, As, ..., An), at the times 0=to, t1, t2, ..., tn,
where Ai can be positive, negative or zero. Every transaction and portfolio can be represented
as a series of cash flows. Therefore, we will use the words “transaction” and “portfolio”

interchangeably. The rate of interest “y” is called a yield rate if it satisfies the following
equation:

P(y) 1=ivt‘ﬁx =0 1)

where v = %, (see (5.3) in Kellison (1991)).
+y

The yield rate is crucial for correct assessment of transactions.

Let us mention that we will not restrict ourselves on polynomials in the equation (1) in
this paper, i.e., times ti,i=1, 2, ..., n, can be any real numbers, including the most frequently
used, fractions of the year.

A well known result from algebra is that in the general situation there is no explicit
formula to solve the equation (1), even if it is only a polynomial. The only available methods in
general are iterative. Hence, no explicit formula for yield exists that works in the general
situation. We should be motivated to find an explicit formula to estimate yield, even if there is
very sophisticated software that estimates yield by iterative methods. People struggle in all
areas of science to find explicit solutions of algebraic equations even though numerical
solutions are available. The reason for that is that an explicit formula explains relations
between the terms, which contribute to our understanding of a given problem. In particular,
from the formulae that we present in this paper, we learn about relations between yield and
discount rates of the given portfolio, which is impossible to see from any software based on
numerical methods. The difference between knowing a numerical result and knowing a
formula is the same as the difference between knowing a fact and deducting (deriving) a fact.
We need both.

The nonexistence of a formula for explicit solution of the equation (1) is just the first
problem with the yield rate.

The second major problem “inherited” from algebra arises from the fact that sometimes
there is more than one real number solution to equation (1), and sometimes there are no real
number solutions at all. Worse yet, we can construct transactions for both cases—multiple real
number solutions, and no real number solutions. In Kellison (1991), Promislow (1980),
Teichroew, et al. (1965) and Jean (1968), we can find some examples of such transactions, and



various attempts to correctly assess the transactions with either multiple yield rates, or with no
yield rates.

Example 1. This is Example 5.3 from Kellison (1991). A transaction is observed where a
person borrows one unit for one year at rate i=8 percent and lends the same amount for one
year at rate j=10%. The yield rate, as a solution of the equation (1) does not exist in this
transaction.

Example 2. This is Example 5.12 in Kellison (1991). Consider a transaction in which a
person makes payments of $100 immediately and $132 at the end of 2 years in exchange for a
payment in return of $230 at the end of one year. Equation (1) for this portfolio is
100 — 230v +132v® = 0 which transforms into 100y® =30y +2=0 , where y denotes the
unknown yield rate.

These quadratic equations have the following (two) solutions:

1 1 .
A =11 and v, :E,l.e., y,=01land y,=0.2

Example 3. This is Example 5.4. in Kellison (1991). The cash flow is (Ao, A1, An) = (100, -
200, 101). The equation (1) is 100 —200v +101v? = 0 which transforms to100y* +1=0. This

equation does not have a real solution for y.

Various authors tried to identify necessary and sufficient conditions that the coefficients
of (1) should satisfy that would guarantee a unique real number solution of (1), a unique yield
of the corresponding transaction. However, every condition on coefficients of (1) reduces the
set of available transactions. For example, a concept of simple project is defined as a transaction
in which the signs of all Ai’s are different from that of Ao. The existence of the unique yield rate
has been proven for simple projects in Teichroew, et al. (1965). The difficulties emerge with the
nonsimple projects. In order to study nonsimple projects, Teichroew, et al. (1965) introduce two
different interest rates, lending and borrowing rates.

Jean (1968) proved the existence of a unique yield rate for the transactions when either
first or last inflows are negative. The difficulties of determining yield emerge for transactions
with negative middle inflows.

In Chapter 5 of Kellison (1991) and in Becker (1988) some more general sufficient
conditions that cash flows A must satisfy were given in order to have a unique solution of (1).
One such sufficient condition is that the outstanding investment balance is positive at all times
t=1,2,...,n.



This was a very brief illustration of the main ideas and useful classical results. Those
results are very important, but in order to be achieved, very strong restrictions on the set of
available transactions had to be made, including that the times ti are assumed to be natural
numbers, i.e., that the equation (1) is a polynomial. There is no need to go into details of any of
the above results, because we approached the problem of yield very differently by setting
assumption of arbitrage free market rather than making assumptions on the coefficients of the
equation (1) as was the case in all the above papers.

An interesting idea came from Promislow (1980). Promislow says: “Individual must
assess a transaction by using quantities that depend on his particular circumstances and that
are independent of the transaction itself, as opposed to using yield rates, which depend solely
on the transaction and are independent of any particular individual.”

In our paper, as a “particular circumstance” of an investor, we see the current discount
rates of the portfolio. No assumptions about the coefficients of the equation (1) are made in
advance in this paper, unlike most of the other research about the yield, e.g., Becker (1988),
Kellison (1991), Promislow (1980), Teichroew, et al. (1965) and Jean (1968). The idea is to
assume other, in many situations more natural, restrictions on the series of transactions, the
restrictions consistent with the “no arbitrage” principle. The assumptions that the discount
rates are given and that we are in the “arbitrage free” market restrict the set of available
transactions of the equation (1) in a natural way. In fact, we restrict our research to the set of
transactions such that have the coefficient -Ao equal to the value of the portfolio, i.e., it is the
present value of the cash flows Ai, where each Ai is discounted with the corresponding
discount rate ri of the portfolio. This means that we follow the advice of Promislow (1980) not
to look at the transactions as isolated events. The fact that the yield rate is affected by current
market rates is utilized. The goal is to find an explicit estimate of yield that depends on current
interest rates, i.e., on the discount rates of the “zeros” in the portfolio of interest.

For that purpose we will limit ourselves to portfolios of fixed income securities which
are not interest-sensitive. This means that all securities in any observed portfolio P have fixed
cash flows. Let us denote the set of discount rates of the portfolio P by R = (11, 12, ..., ). These
may be discount rates of any strips or zero coupon bonds, adjusted for any spread over spot
rates. These discount rates do not need to be spot rates, even though they are spot rates if we
deal with Treasury securities and if we assume holding them until maturity. Let me also
repeat that we assume that the portfolio P is a part of an “arbitrage free” market M.

Under these assumptions, Example 1 shows that yield “y” is infinite, if a risk spread is
not included into consideration, i.e. in that case it is a “free lunch.”

In this paper, two formulae, (10) and (17), which estimate yield of a legitimate (available



in arbitrage free market M) transaction P, in terms of the given discount rates R=(r1, 1, ..., 1n) of
P will be proven. These formulae are important results because they are explicit and therefore
enable us to avoid computation by iterative techniques, and in addition, give us a new relation
between yield and discount rates of the given portfolio. We will be able to estimate yield of
legitimate transactions manually, and to create a simple worksheet to calculate yield, as
demonstrated in the numerical examples later. The formulae (10) and (17) estimate yield rate of
the arbitrage free transaction defined by the cash flow A1, Az, ..., A, at times ti, t2 ..., tn, and
the corresponding discount rates 1, r2, ..., r. We do not need to know the cash flow -Ao at t=0,
the “value of the portfolio,” as an input for the formulae (10) and (17). This is in sync with the
fact that Ao is uniquely determined in the arbitrage free market M.

A zero-coupon bond maturing at time t is a bond that pays its face value at t and no coupon
prior. Every portfolio of fixed income securities that are not interest-sensitive can be
considered as a collection of zero-coupon bonds (“zeros”). Spot rates give us the yield to
maturity of the associated riskless zero-coupon bonds.

The formula (10) is a linear approximation of yield, and the formula (17) takes into
account convexity as well.

2. Derivation of the Results
2.1 Linear Approximation

Let us consider a set Z = (Z, Z>, ..., Zn), n >1, of zero coupon bonds with face amounts of
$1, with maturities at times: T=( ti, tz, ..., tn), and a vector of corresponding discount rates:
R =(ry, 12, ..., ). In order to simplify notation we will sometimes identify a unit zero coupon
bond Zi with its price at t=0. In this notation

1

i=———,
(1+ ri)ti

i :1,2,...n (2)

Let us denote vectors in R, as usually by: X=(x1, x2, ..., xn) € R"

Let us consider the portfolio P consisting of zero coupon bonds with cash flows Ai at times ti,
i.e., P={-Ao, A1Z1, A2Z>, ..., AnZn }. Then the present value of portfolio P is given by the following
formula

~ A =PV(P) =Y AZ



Notice that every bond is a special case of such a portfolio, where the first (n-1) cash flows Ai
are the coupon payments, and A~=Face value + coupon payment. This means that every
portfolio of fixed income securities can be broken down to a set of “zeros”

P={-Ao, A1Z1, A2Z>, ..., AnZn }.

Example 4. In order to demonstrate the above notation, let us consider portfolio P that
consists of two bonds. The bond A matures in 2 years. Coupon rate is 7 percent, and spread is
0.1 percent. The bond B matures in 3 years, has coupon rate 8 percent, and we assume no
spread for B. Notice that we do not need to know the spot rates in the market M; we only need
to know the final, adjusted discount rates ri, 12, 13, 14, 5. Then portfolio P, broken into building
blocks (2), has the following cash flows A = (7, 107, 8, 8, 108), adjusted discount rates R= (0.071,
0.071, 0.08. 0.08, 0.08) and the corresponding times T= (1, 2, 1, 2, 3). ///

"

In the above notation yield “y” satisfies the equation:

Z(1+ y)" Z(1+r) (3)

The following holds

_Abzé'&iz Z(1+r) (4)

Let us introduce a function A of n variables xi:

ACX) = A, Xgpees X ) = Z(1+x) (5)

Let us assume here that ri, 12, ..., 1 are sufficiently close to each other. This is a realistic
assumption because usually the discount rates of similar durations are close to each other. The
assumption that the discount rates are “sufficiently close” is not very restrictive. For example,
no matter how steep the yield curve is, the point (r3, r2, ..., ) is just one point in R". Whether or
not it a large neighborhood in some absolute units is sufficiently small for our purpose
depends on the shape of the multivariable surface of the function
A(x1,x2, ..., Xn) around the point R = (r1, 12, ..., ) in R™.



Let us apply the multivariable Taylor formula of the first order on the function A(X) in
the neighborhood of the given point of discount rates R = (11, 12, ..., rn). Then it follows that

o HAGG )
A(X, Xy yeeny X ) & Z(1+r) .221: 1+ 1) ©6)

By the definition of the yield of portfolio P and by definition of the function A given by
equation (5) it follows:

—A = Z . y) =AY, Y, Y) )

If we substitute Y=(y, y, ..., y) from the neighborhood of R for X=(xi, x2, ..., xn) in the equation
(6) we get:

_Z":tiA(y—ri)

ACY, Y- Y) # Z(l AT (®)

From (3), (7), and (8) we get:

Zn:tip\(y_ri) _

=d(E ©)

Solving this equation for y gives:

Z”: t.r, A,
y = -t (L+r)

t, A, (10)

This is the linear formula that estimates yield explicitly in terms of given discount rates. The
above results can be summarized in the following proposition:

Proposition 1. Assume we have a portfolio of fixed income securities P in an arbitrage
free market M. As we know we can consider it as a set of “zeros”, i.e.,



P ={-Ao, A1Zi, A2Z>, ..., AnZn }, where Zi are unit zeros given by (2), with the current discount
rates R = (11, 2, ..., ) of the portfolio P, at times 0=ty ty, t2, ..., tn, respectively. Then the yield of
the portfolio can be estimated by the formula (10).

Let us notice that the “arbitrage free” assumption transforms to an assumption on the
coefficients of the equation (1), i.e., it is assumed that the cash flow at the time t=0, -Ao is
present value of the cash flows A1, Ao, ..., An, with respect to the current discount rates R=(r1, 2,
..., In). No classical result uses such assumptions regarding the coefficients of the equation (1).

Corollary 1. The yield of portfolio P with discount rates R = (r1, r2, ..., n) and cash flows
A =(Ag Ay, ..., An), at the times 0=ty, t, to, ..., tn, in an arbitrage free market M is the weighted
average of the discount rates ri. The weights of the discount rates ri are equal to

LA
L+r)"

P t|A| 1)
Z (1+ ri )ti+1

i=1

Remark: In Babbel and Merrill (1996), on pages 22-24, it has been proven that YIM can
be approximated as a weighted average of the spot rates and that the weights applied to spot
rates are the dollar durations of their respective zeros relative to the dollar duration of the
entire portfolio. In the proof of that statement the portfolio function P(y) defined by (A3) in
Babbel and Merrill (1996) was considered as a function of one variable "y" (yield) and its

£ao__7

derivative with respect to “y” was denoted by % Also, both zero coupon bonds Cn(y) and

Cm(y) were defined by the relation (A4) as functions of one variable, y, and Taylor formula for
functions of one variable was used around the yield “y” for both functions Cn(y) and Cm(y). The
formula (A8) was proven for portfolio of only two zero coupon bonds.

_s,(aC, /oy)+s,(oC,, /oy)
V= oP /oy

(A8)



If we expand that formula to n “zeros” and if we use our notation, than the formula (A8)
becomes

n
y= ZWi s, , where weights are given as ratios of dollar durations by formulae

T A
_ @y

'Z”:tiA,

o (1+ Y)ti+1

and S = (s, sz, ..., sn) is the set of the spot rates of the portfolio of risk-free fixed income
securities.

This means that our formula (10) is a refining of the formula (A8) from Babbel and
Merrill (1996) because our weights are calculated by means of the exact discount rate in each
time point, while weights of (A8) are all calculated at the yield rate “y” that has yet to be
determined. The other advantage of formula (10) over (A8) is that the yield “y” is on one side
of (10), left side, and all discount rates are on the right side, while the formula (A8) has yield on
both sides. Our multidimensional approach, and Taylor development around the point R =
(11, 12, ..., ), not around “y”, enabled that separation which then enabled us to get a second
order approximation of yield, our formulae (17), in terms of the discount rates. If we wanted
to use formula (A8) to estimate yield, we would have again to use an iterative method, because

y” is on both sides of (A8) and cannot be solved explicitly in terms of the spot rates si, while
the formula (10) is an explicit expression of yield in terms of the discount rates of the portfolio.

2.2 Second Order Approximation

If, instead of (6), we use the multivariable Taylor formula of the second order, we will
get a better estimate of yield than (10).

In order to simplify further derivations, let us introduce the following notation for first
and second derivatives of the functions Zi(ri):

t (t
DZ=-—_— piz= &t
(L+r) (L+r)vZ, 2

10



The second order Taylor formula of the multivariable function A(X) in the neighborhood of R
can be written as

AX)~ 22,4+ DZA G )+ 5D DZA M -1)’ (12)

From (2), and (3) we have:

A(Y)= éZiAi (13)
Substituting Y for X in (12), and applying (13) we get
iZ;:DZiAi(Y—fi)+%iZ;:DZZiAi(y—ﬁ)2zo (14)
After some derivations we get:

(%éDzziAijyz +(Zl: DZ,A —iZ::DZZiAirin+%gDZZiAiri2 —iZl:DziAri =0 (15)

Let us introduce notation for coefficients of the equation (15):

A 1t +DA
ZZD LA = 2_2_1: 1+ 1)" (16.a)
n nt(t +1 ;
F = ZDZ A - ZD Z,AY, _—Z (1+r)t+1 _izﬂ: |((l|_|_+r))tﬁ2r| (16.b)

c;=—ZDzziAﬁri2—ZDzi/sﬁri =

1Zn:t'(t +1Ar’ Z“: t AT,
247 (@+1n)"? H(@+rn) (16.c)

11



If F?2—-4EG >0, then the formula

~F+yF2—4EG

gives a better estimate of yield than the linear approximation (10). We have to pick up the
solution “y” of (17) which is close to the discount rates, because the derivations of the formulae
were done under the assumption that that Y=(y, y, ..., y) is in the neighborhood of

R=(r1, 12 ..., ).

Example 4 continued: The formula (10) gives

0.071*7 2*0.071*107 0.08*8 2*0.08*8 3*0.08*108

+ + + +
y = L1071 1.072° 1.08 1.08° 1.08°  _ (07630
7 2*107 8  2*8 3*108 '

+ + + +
1.071> 1.071® 1.08> 1.08° 1.08*

It is easy to verify that the present value function (1) takes value P(0.0763) = 0.013 which is very
close to zero. This means that even the linear approximation of yield is very good.

The formula (17) gives y = 0.076326, and P(0.076326) = -0.000011, practically zero. This
calculation is done by a spreadsheet, see the results below.

If we approximate yield of the portfolio by the weighted average of yields (0.071, 0.08),
where weights are values of bonds; A =99.81945, and B = 100, then we have Avg(y) = 0.0755,
and P(0.0755) = 0.361, which is a worse result even than our linear approximation (10).

Maturitv Spot Cash
Times in Rates Flows
i Years ti Si Ai Zi Ai*Zi Ai*DZ Ai*DZi*S Ai*D?2Zi Ai*D2Zi*S Ai*D2Zi*S
0 0 -199.81945
1 1 0.0710 7 0.9337 7 -6 0 11 1 0
2 2 0.0710 107 0.8718 93 -174 -12 488 35 2
3 1 0.0800 8 0.9259 7 -7 -1 13 1 0
4 2 0.0800 8 0.8573 7 -13 -1 35 3 0
5 3 0.0800 108 0.7938 86 -238 -19 882 71 6
Sums 200 -438 -33 1,429 110 8
Formula
(10)
v 0.07630 P(v)= 0.013374
Formula
17)
E 715
F -548
G 38
V1= 0.076326 P(v1)= -0.000011
V2= 0.690260 P(v2)= -128.33
Avg(y) 0.075504 P(Avg(y))= 0.361057

12



The solution y2 of (17) does not need to be yield because it is not in the neighborhood of
the discount rates 0.071, and 0.08, and it is not yield, as the polynomial (1) takes value
P(0.69026) = -128.33, not close to zero.

3. Numerical Examples

Example 2 continued: Let us assume some realistic spot rates in the market M, e.g.,
$1=0.03=3%, $2=0.0325=3.25% and as before A1=-230, A2 =132, then

-A=A1Z1+A272 = — 230 132

+ ~ =-99.480112 = ~100.
1.03  1.0325

This means that the transaction from the Example 2 is not allowed in the arbitrage free market
M in which s:1=0.03, and s2=0.0325. The only allowed transaction with given cash flows A1=-230,
A2=132 is described by 99.48 — 230v +132v* =0, rather than by100—230v +132v? = 0. The
corresponding equation in terms of yield became 99.48y* —31.04y +1.48 = 0, rather

than100y2 —30y +2 =0.

The formula (10) gives the unique estimate for yield.

—230*0.03 132*2*0.0325

2 + 3
L0 0o —0.056014,

+
1.03* 1.0325°

which is a linear estimate. The formula (17) gives much better estimate y1=0.058932. The
second solution of (17), y2 = 0.180767 is not a solution because it does not satisfy the condition
to be close to the discount rates R = (11, 12).

The equation that describes the allowed transaction, 99.48y* —31.04y +1.48 =0, has two
exact solutions, and they are y1=0.058738, y2 = 0.253848. The formula (17) nicely approximated
y1, the solution that is close to spot rates of the market M.

Example 3 continued: In order to be able to use our formulae for the cash flow (A1, A2) =
(-200, 101), the discount rates need to be very close (as assumed before the proof of the
formulae), for example 11=0.06, r>=0.0612. Let us show what happens in this case.

-Ao= AiZ1+A2Z2 = — 200 101

+ > =—98.992783 #100.
1.06 1.0612

13



This means that the transaction from Example 3 is not legitimate in the arbitrage free
market M with discount rates (0.06, 0.0612) at durations of 1 year, and 2 years, respectively. The
only allowed transaction with given cash flows Ai=-200, A2 =101 is described by
98.99278347 — 200v +101v* = 0, rather than by 100 — 200v +101v? = 0. The equation in terms of
yield becomes

98.99278347y”* — 2.01443306Yy —0.00721653 = 0, rater than 100y* +1=0.

The equation (17) gives the yield y = 0.026074. The other solution from (17) y =-0.024354
need not to be yield because it is far from the discount rates (0.06, 0.0612). Then polynomial (1)
takes value P(0.026074) = 0.00718, which is pretty close to zero, even though this example
represents an extreme situation.

Because there is NO real solution of the equation with such cash flows, everybody
would have to adjust some of the coefficients of the equation (1) in order to get some estimate
of the yield. The question arises: How to adjust the coefficients in order to get some estimate of
yield in such case? The formulae of this paper offer one answer. They estimate the yield
without any adjustments of the cash flows A1, A.,..., An, which means that only the coefficient -
Ao has to be (implicitly) adjusted. In this example, as well as in Example 2, the assumption
that the discount rates have to be sufficiently close plays a big role. If we are not happy with
the estimate, that is because the discount rates ri, r2are not close enough. The estimates would
be better if the discount rates were closer.

Corollary 2 (of formulae (10) and (17). In case of a transaction that does not have a real
number solution for yield we might be able to find an estimate of yield for the portfolio that
has the same cash flows A1, A, ..., An. The estimate of yield will depend on the current
discount rates ri, 12, ..., rn . Then the cash flow -Ao is adjusted to be the present value of cash
flows

A1, A, ..., An, discounted by 11, 12, ..., n, respectively. The final result is the legitimate
transaction, an approximation of the original transaction, with the yield rate which is

approximated by (10) and (17).

Example 5: Calculate yield of the portfolio that consists of n=10 zero coupon bonds, with
Maturity Times, T =(0.5;1; 1.5; 2; 4; 6; 7; 8; 9; 10),

14



Discount Rates, R = (0.03; 0.0325; 0.035; 0.0375; 0.04; 0.0425; 0.045; 0.0475; 0.05; 0.055),
Cash Flows, A = (4000; 1,000,000; 250,000; 400,000; 700,000; 85,000; -1,000,000; 100,000; 100,000;

1,000,000) Vectors T, R, and A are given in columns 2, 3,and 4, respectively, of the following

table:
Maturity
Times in
i Years ti
0 0
1 0.5
2 1
3 1.5
4 2
5 4
6 6
7 7
8 8
9 9
10 10
Sums
Formula
(10)
y 0.049154
Formula
17)
E 24,154,958
F -9,070,926
G 389,182
y1 0.049404
y2 0.326127

Spot
Rates
i

0.0300
0.0325
0.0350
0.0375
0.0400
0.0425
0.0450
0.0475
0.0500
0.0550

Cash
Flows
Ai
-2,230,127
4,000
1,000,000
250,000
400,000
700,000
85,000
-1,000,000
100,000
100,000
1,000,000

Zi

0.9853
0.9685
0.9497
0.9290
0.8548
0.7790
0.7348
0.6899
0.6446
0.5854

Ai*Zi

3,941
968,523
237,427
371,607
598,363

66,216
734,828
68,987
64,461
585,431
2,230,127

Ai*DZi

-1,913
-938,037
-344,097
-716,351

-2,301,396
-381,099
4,922,296
-526,870
-552,522
-5,549,105
-6,389,094

Ai*DZi*r

-57
-30,486
-12,043
-26,863
-92,056
-16,197
221,503
-25,026
-27,626

-305,201
-314,053

Ai*D?Zi

2,786
1,817,020
831,151
2,071,375
11,064,403
2,558,938
-37,682,648
4,526,809
5,262,114
57,857,967
48,309,916

Ai*D2Zi*ri

84
59,053
29,090
77,677

442 576
108,755
-1,695,719
215,023
263,106
3,182,188
2,681,833

Ai*D2Zi*ri*

3
1,919
1,018
2,913

17,703
4,622
-76,307
10,214
13,155
175,020
150,260

This was an example of a “nonsimple transaction,” as defined in Teichroew, et al. (1965)
and a transaction with a middle “negative inflow” as defined in Jean (1968); not an easy
transaction to determine yield according to Teichroew, et al. (1965) and Jean (1968). The

formula (10) gives y = 0.049154, while formula (17) gives better estimate, y1=0.049404. Note

that we have fractional times ti (could be any real numbers) and that there are three changes of
the signs in the sequence A of cash flows. The second solution of (17) y2= 0.326127 is not yield.
It is easy to verify that y2 does not satisfy equation (1) of this example. We did not expect that to

be the case, because y: is too far from discount rates of the market in this example.

15



4. Conclusion

Yield rate is important to investors for assessing transactions. In this paper we estimate
the yield rate by means of quantities that depend on the market (the current interest discount
rates of the “zeros” that comprise the portfolio), as opposed to calculating yield rates solely by
means of the cash flows, independently of any particular environment. We deal with interest
rates to calculate yield, rather than dealing only with the coefficients of the equation (1). We
limit ourselves to the portfolio P, which consists of fixed income securities that are not interest-
sensitive in an arbitrage free market M. A natural assumption for the discount rates of the
portfolio is utilized; that they are sufficiently close to each other. Under these assumptions we
were able to prove two explicit estimates for yield in terms of discount rates in the portfolio;
formula (10) is a linear approximation of yield, and formula (17) uses second derivatives
(convexity) as well. The approximations (10) and (17) approximate the yield that is closest to
the discount rates of the portfolio P.
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