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With a pure mathematics background but lately interested in 

actuarial science, I share a grievance, perhaps, with other 

"switchers" to applied areas: the literature is not always as 

precise as we ~ould like. Sometimes we don't know just what is 

being claimed. In this note we close s small gap that may have 

existed in the actuarial literature for years. More importantly, 

we illustrate how some simple mathematics is used in "unusual" 

ways to solve an actuarial/business question. (This author has 

worked as an actuary, and this is but one example among many.) 

The notation fellows ~] since that text is required for the 

actuarial examinations, whereas research papers are not. Here iS 

the situation: 

An investor or businessman undergoes a project for n years. 

The outstanding monetary balance, Bt, at the end of year t may be 

positive, negative or zero, for t = 1,2,..., n-l. The initial 

amount (at beginning of year I) is B 0 . If B t ~ O, the investor's 

interest preference rate as a lender, or "project return rate", as 

a decimal is r for the next year; if B t < O, the investor is in 

borrower status, and his interest preference rate, or "project 

financing rate", is f for next year. Ordinarily r exceeds f but 

this~s not required. 6t the end of the n..years, when the project 

is complete and a~l funds are accounted for~_the.outstanding bal- 

ance is zero: B n ~ O. The actual cash flows, positive or negative, 

at time t - 0,1,2 .... ,n-l, are denoted by the constants C . So 
t 

we have: 

B O - C O 

B t = Bt_l(l+r) + C t if Bt_l~ O I 

B t = Bt_l(1+f) + C t if B t 1 <0 ~ ) t = 1,2 ...... n 

B - 0 
s 

58 



Clearly B is a polynomial in r and f. This question arises: 
n 

Assuming solution pairs (r,f) exist for B n = O, are r and 

f unique functions of each other? 

For this discussion, we assume both r and f exceed -I. (In- 

terest rates of -100% or less rarely arise in practice.) In ~j 

and ~] the authors may claim the answer to our query is "yes" 

However, their "function" may mean merely "relation" (e.g., in 

[4, p. 16~ they reference a "set of functions k = k(r) or 

r = r(k)" where k is our f (italics supplied). Kellison ~, p. 15 3 

r e f e r e n c e s  no o t h e r  p a p e r s  b u t  [ ~  a . d  ~ j ;  h e  u s e s  t h e  t e r m  " f u n c -  

t i o n a l  relationship" without proof. His one example gives a linear 

relationship b e t w e e n  r and f which is clearly a function, but higher 

degree polynomials B = 0 are not addressed. The other recent 
n 

text in interest theory for actuarial students, [1] , does not 

deal with the question. 

We now show that, if solution pairs (r,f) solve B n = O, then 

r is a unique function of f if at least one Bt> 0 for t ~ 0,I ..... 

n-l. (A similar proof shows f is a unique function of r if at 

least one B t < 0.) We a r g u e  by contradiction. 

Suppose (r,f) and (r',f) are distinct solutions to B = O, 
n 

• ' denote project balances associated with r'. where r > r' Let B t 

Clearly B 0 = B~ since both equal C O . As long as Bt_ I = B~_ 1 is 

! 
nonpositlve, B t = B t since (I) for Bt_ I = Bt_ I < O, we have 

B t = Bt_1(l+f) + C t and B~ = B~_l(l+f ) + Ct, or (2) if Bt_ I = 

B't_l = O, then B t = O.(l+r) + C t = C t and likewise if we prime 

B t and r. 

By assumption, there is a least index i such that B I ~ 0 

(where i may be zero). By the above reasoning B i = B~. However, 
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Bi+ 1 = Bi(l+r ) + Ci+ 1 while B~+ I = Bi(l+r' ) + Ci+ I. Since 

B i = B I > 0 and r 2r' 2-i, thus Bi+ I~BI+ I. To see what happens 

• B' . ~ 0 ,  next we consider four, exhaustive, possibilities: (I) Bi+ 17 i+l 

( 2 )  0 = B i+  1 ~ B'  , ( 3 )  0 P > ' , ( 4 )  P O T  ' i + i  Bi+1 B i + l  Bi+1 B i + l .  

In the case: 

(1) Bi+ 2 = Bi+1(l+r ) + Ci+ 2 and similarly if we prime the 

B's and the r. Clearly Bi+ 2>B'i+2 since Bi+ 1 ~ Bi+ I' and 

r 2 r'2 -I 

(2) Bi+ 2 = Bi+l(l+r ) + Ci+2, while B'i+2 Bi+l(' l+f) + Ci+ 2. 

B' since (l+r) - 0 but B' (l+f)~O Again Bi+2 > i+2 Bi+l i+l " 

(3) Bi+2 = Bi+l(l+f) + Ci+2 > Bi+l(l~f ) + Ci+ 2 BI+ 2 since 

f 
Bi+ 1 > Bi+ 1 and f > -I. 

(4) Bi+ 2 = Bi+l(l+r)+ Ci+ 2 > B'i+l (l+f) + Ci+ 2 = Bi+ 2' since 

Bi+l(l+r) 20 and B' (l+f)< 0 i+l 

t Thus in all four possible cases Bi+ 2> Bi+ 2. Continuing in 

this way we ultimately get B n ~ B'.n But Bn and B'n are both sup- 

posed to be zero. This completes the proof. 

It not only suffices that at least one B t exceed zero; it is 

also necessary (in almost all practical examples we would expect 

one or more positive, and one or more negative, Bt's): 

Let f = I (admittedly unrealistic but it simplifies the work). 

Let C 0 - C 2 = -I, C 1 = C 3 = 2, and n = 3. Since both B 1 and B~ 

are zero, B 2 = Bl(l+r ) - I and B½ = Bi(l+r')-lare both -i for 

any r >r' Yet B 3 = B~ = O. Likewise, if, given r, f is to be 

unique, at least one B t must be less than zero. So s unique one-to- 

one functional relationship between r and f requires a positive B t 

a n d  a negative one. 

I n  l l k e  f a s h i o n  one  c a n  s h o w  ( 1 )  Bn i s  an  i n c r e a s i n g  f u n c t i o n  
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of  r ~ - 1 ,  f o r  f i x e d  f > - 1 ,  i f  a t  l e a s t  one B t e x c e e d s  z e r o  

( o f  c o u r s e  we h e r e  r e m o v e  t h e  r e s t r i c t i o n  t h a t  B = 0 ) :  r a i s e  
n 

r '  t o  r and p r o c e e d  w i t h  B'  a s s o c i a t e d  w i t h  r '  a s  a b o v e ,  and 
t .L 

( 2 )  B n i s  a d e c r e a s i n g  f u n c t i o n  of  f ~-1> f o r  f i x e d  r 2 - 1 j  i f  

at least one B t is negative. Hence for B n to remain zero, r 

must be an increasing function of f: dr/dr ~ 0 on "segments" (see below). 

Also (I) and (2) show the partial derivative of B s with 

respect tO r (respectively, f) is positive (negative) on each 

"segment" as defined below. All this establishes some key re- 

suits ~n ~] , .rid t h e  r e m a i n i n g  r e s u l t s  in D] snd  &] f o l l o w  

as shown there. 

~ egerding our main proof, the fact that r end f are unique 

functions of each other also follows from the work in 9] from 

(i) the mean value theorem for those r (call them a "segment") 

for which B ° does not change degree in r or f, for fixed f, (sad 

vice versa), (2) the fact that on each segment r and f are increas- 

ing functions of each other, end (3) the fact that the segments 

"join" (continuity arguments). However, statements equally 

"simple" are ~xpllcitly proved in ~],and there is the above 

q u o t e  f rom [4 ] ,  a l a t e r  p a p e r  r e f e r e n c i n g  [ 3 3 . ~  

Finally, if we set r ffi f = i, a lack of un[q 

for i may exist if the polynomial B n has more than one sign change I 

in its coefficients (the Ct) ; that is, i 21'~-I may both solve ] 

B s - O, a fact which has complicated flnenclsl analysis for a long J 

/ time. Our work exhibits a t  least one eltoetlon where uniqueness 

is g u s r s ' n t e e d l  ~ /  

In any e v e n t ,  our  p r o o f  d i f f e r s  from ~ ,  u s i n g  o n l y  
simple a l g e b r a .  3 
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