ACTUARIAL RESEARCH CLEARING HOUSE 1993 VOL. 3

ON UNIQUENESS OF INTEREST RATES IN A BORROWING/LENDING MODEL

Donald P. Minassian
Butler University
Indianapolis, IN 46208

Note: \quad The enclosed proof is given in some detail for possible student use in undergraduate classes in the theory of interest.

With a pure mathematics background but lately interested in actuarial science, I share a grievance, perhaps, with other "switchers" to applied areas: the literature is not always as precise as we would like. Sometimes we don't know just what is being claimed. In this note we close a small gap that may have existed in the actuarial literature for years. More importantly, we illustrate how some simple mathematics is used in "unusual" ways to solve an actuarial/business question. (This author has worked as an actuary, and this is but one example among many.)

The notation follows [2] since that text is required for the actuarial examinations, whereas research papers are not. Here is the situation:

An investor or businessman undergoes a project for n years. The outstanding monetary balance, B_{t}, at the end of year t may be positive, negative or zero, for $t=1,2, \ldots, n-1$. The initial amount (at beginning of year 1) is B_{0}. If $B_{t} \geq 0$, the investor's interest preference rate as a lender, or "project return rate", as a decimal is for the next year; if $B_{t}<0$, the investor is in borrower status, and his interest preferencerate, or "project financing rate ${ }^{\prime \prime}$, is for next year. Ordinarily rexceeds fut thisps not required. At the end of the n. years, when the project is complete and all funds are accounted for; the outstanding balance is zero: $B_{n}=0$. The actual cash flows, positive or negative, at time $t=0,1,2, \ldots, n-1$, are denoted by the constants C_{t}. So we have:

$$
\begin{aligned}
& B_{0}=C_{0} \\
& B_{t}=B_{t-1}(1+r)+C_{t} \text { if } B_{t-1} \angle 0 \\
& B_{t}=B_{t-1}(1+f)+C_{t} \text { if } B_{t-1}<0 \\
& B_{n}=0
\end{aligned}
$$

Clearly B_{n} is a polynomial in r and f. This question arises:
Asaming solution pairs (r,f) exist for $B_{n}=0$, are rand f unique functions of each other?

For this discussion, we assume both r and f exceed -1. (Interest rates of -100% or less rarely arise in practice.) In [3] and [4] the authors may claim the answer to our query is "yes". However, their "function" may mean merely "relation" (e.g., in [4, p. 169] they reference a "set of functions $k=k(r)$ or $r=r(k) "$ wherek is our f (italics supplied). Kellison [2, p. 158] references no other papers but [3] and [4]; he uses the term "functional relationship" without proof. His one example gives a linear relationship between r and f which is clearly a function, but higher degree polynomials $B_{n}=0$ are not addressed. The other recent text in interest theory for actuarial students, [1] , does not
deal with the question.
We now show that, if solution pairs (r,f) solve $B_{n}=0$, then r is a unique function of fif at leastone $\mathrm{B}_{\mathrm{t}}>0$ for $t=0,1, \ldots$, n-l. (A similar proof shows fis a unique function of r if at least one $B_{t}<0$.) We argue by contradiction.

Suppose (r,f) and (r^{\prime}, f) are distinct solutions to $B_{n}=0$, where $r>r^{\prime}$. Let B_{t}^{\prime} denote project balances associated with r^{\prime}. Clearly $B_{0}=B_{0}^{\prime}$ since both equal C_{0}. As long as $B_{t-1}=B_{t-1}^{\prime}$ is nonpositive, $B_{t}=B_{t}^{\prime}$ since (1) for $B_{t-1}=B_{t-1}^{\prime}<0$, we have $B_{t}=B_{t-1}(1+f)+C_{t}$ and $B_{t}^{\prime}=B_{t-1}^{\prime}(1+f)+C_{t}$, or (2) if $B_{t-1}=$ $B_{t-1}^{\prime}=0$, then $B_{t}=0 \cdot(1+r)+C_{t}=C_{t}$ and likewise if we prime B_{t} and r.

By assumption, there is a leastindex i such that $B_{i}>0$ (where i may be zero). By the above reasoning $B_{i}=B_{i}^{\prime}$. However,
$B_{i+1}=B_{i}(1+r)+C_{i+1}$ while $B_{i+1}^{\prime}=B_{i}^{\prime}\left(1+r^{\prime}\right)+C_{i+1}$. Since $B_{i}=B_{i}^{\prime}>0$ and $r>r^{\prime}>-1$, thus $B_{i+1}>B_{i+1}^{\prime}$. To see what happens next we consider four, exhaustive, possibilities: (1) $B_{i+1}>B_{i+1} \geq 0$,
(2) $0=B_{i+1}>B_{i+1}^{\prime}$.
(3) $0>B_{i+1}>B_{i+1}^{\prime}$,
(4) $\mathrm{B}_{\mathrm{i}+1}>0>\mathrm{B}_{\mathrm{i}+1}^{\prime}$.

In the case:
(1) $B_{i+2}=B_{i+1}(1+r)+C_{i+2}$ and similarly if we prime the $B^{\prime} s$ and the r. Clearly $B_{i+2}>B_{i+2}^{\prime}$ since $B_{i+1}>B_{i+1}^{\prime}$ and $r>r^{\prime}>-1$
(2) $B_{i+2}=B_{i+1}(1+r)+C_{i+2}$, while $B_{i+2}^{\prime}=B_{i+1}^{i}(1+f)+C_{i+2}$. Again $B_{i+2}>B_{i+2}^{\prime}$ since $B_{i+1}(1+r)=0$ but $B_{i+1}^{\prime}(1+f)<0$.
(3) $B_{i+2}=B_{i+1}(1+f)+C_{i+2}>B_{i+1}^{\prime}(1+f)+C_{i+2}=B_{i+2}^{\prime}$ since $\mathrm{B}_{\mathrm{i}+1}>\mathrm{B}_{\mathrm{i}+1}^{\prime}$ and $\mathrm{f}>-1$.
(4) $B_{i+2}=B_{i+1}(1+r)+C_{i+2}>B_{i+1}^{\prime}(1+f)+C_{i+2}=B_{i+2}^{\prime}$ since $B_{i+1}(1+r)>0$ and $B_{i+1}^{\prime}(1+f)<0$.

Thus in all four possible cases $B_{i+2}>B_{i+2}^{\prime}$. Continuing in this way we ultimately get $B_{n}>B_{n}^{\prime}$. But B_{n} and B_{n}^{\prime} are both supposed to be zero. This completes the proof.

It not only suffices that at least one b_{t} exceed zero; it is also necessary (in almost all practical examples we would expect one or more positive, and one or more negative, $B_{t}{ }^{\prime} s$):

Let $f=1$ (admittedy unrealistic but it simplifies the work).
Let $C_{0}=C_{2}=-1, C_{1}=C_{3}=2$, and $n=3$. Since both B_{1} and B_{1}^{\prime} arezero, $B_{2}=B_{1}(1+r)-1$ and $B_{2}^{\prime}=B_{1}^{\prime}\left(1+r^{\prime}\right)-1$ are both -1 for any $r>r^{\prime}$. Yet $B_{3}=B_{3}^{\prime}=0$. Likewise, if, given r, f is to be unique. at least one b_{t} must be less than zero. So a unique one-toone functional relationship between r and f requires a positive B_{t} and a negative one.

In like fashion one can show (1) B_{n} is an increasing function
of $r>-1$, for fixed $f>-1$, if at least one B_{r} exceeds zero (of course we here remove the restriction that $B_{n}=0$): raise r^{\prime} to r and proceed with B_{t}^{\prime} associated with r^{\prime} as above, and (2) B_{n} is a decreasing function of $f>-1$, for fixed $r>-1$, if at least one B_{t} is negative. Hence for B_{n} to remain zero, r must be an increasing function of $f: d r / d f>0$ on "segments" (see below).

Also (1) and (2) show the partial derivative of B_{n} with respect to r (respectively, f) is positive (negative) oneach "segment" as defined below. All this establishes some key results in [3], and the remaining results in [3] and [4] follow as shown there.
[Regarding our main proof, the fact that r and fare unique functions of each other also follows from the work in f3] from (1) the mean value theorem for those r (call them a "segment") for which B_{n} does not change degree in r or f, for fixed f, (and vice versa), (2) the fact that on each gegment r and fare increasing functions of each other, and (3) the fact that the segments "join" (continuity arguments). However, statements equally "simple" are explicitiy proved in [3], and there is the above quote from [4], a later paper referencing [3] ${ }_{2}$]

Finally, if we set $r=f=i$, a lack of uniqueness problem for i may exist if the polynomial B_{n} has more than one sign change in its coefficients (the C_{t}); that is, $i>1^{\prime}>-1$ may both solve $B_{n}=0$, fact which has complicated financial analysis for a long time. Our work exhibits at lesst one situation where uniqueness is guarinteed:

In any event, our proof differs from simple algebra.
[3]], using only

References

1. S.A.Broverman, Mathematics of Investment and Credit, ACTEX, Winston and Avon, Connecticut, 1991.
2. S.C.Kellison, The Theory of Interest, second edition, Irwin, Homewood, IL, 1991.
3. D.Teichroew, A. Robichek, and M. Montalbano, Mathematical analysis of rates of return under certainty, Management Science. 11, no.3, (1965).
4. D.Teichroew, A. Robichek, and M. Montalbano, An analysis of criteria for investment and financing decisions under certainty, Management Science, 12, no. 3, (1965).
