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Abstract 

Bivariate Schuette graduation is applied to mortality rates among black 
male retired workers (Social Security data) at sSes 70 to 83, calendar years 1984 
to 1992. Graduated values for various choices of the parameters are compared. 
The Schuette method is also adapted to calculate regression quantiles, providing 
upper and lower envelopes for the graduated values. 

Mortality rates Uij as  functions of age i and calendar year of experience j can be graduated by a 

two--~mensional Schuette method, that is, choosing vij to minimize 

M --- ~ toli I~ i  - ~lj[ + ar~ IA=~v,jI + /~ ] ;  iA~ ? / i j [  . (1) 
For any given parameters (oL,/~), the optimal solution {ttij} is one of a finite number of basic solutions 

(in the linear-programrn]ug sense); and one can use parametric-programmiug techniques to find the 

parameter region in which a given solution is optimal. The method is described in [Portnoy, 1994]. 

The data set used here covers black male Social Security recipients (retired workers), aged 70 to 

83 in 1984 through 1992; see Table 1. (Age is the "vertical" variable, associated with the parameter a.) 

Solution of (1) requires a design matrix with 332 rows and 126 columns. For a given pair (~,~), a short 

program in Splus generates the optimal solution in a few seconds, and in a few seconds more the 

"perspective" plots of graduated values. (Readers interested in specifics of the program should contact 

the author.) The time required increases somewhat as the parameters increase, presumably because of 

degeneracy.) 

The computer does the number-crunching, leaving to the graduator only one real question: what 

smoothing parameters to use, As a first step, I calculated the parameter region in which the 

no--graduntion solution is optimal. The technique described in Section 4 of [Portnoy, 1994] works quite 

easily and gives a pentagonal region with vertices (0,0), (379.5,0), (353.625,103.5), (36.9375,525.75), 

(0,525.75). The region is of little interest itself, but it gives us an idea of how large we must choose the 

(af t )  to see the effect of graduation. 
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It would be useful to know for what parameters the optimal solution is planar (all differences 

vanishing), but I was not able to carry out that exercise with the programs I had. With a and B each 

at 10 r the solution (which came with a warning about non-uniqueness) had l.lij = Uij at only 4 of the 

120 indices, and the largest residual differences were about 10 -z. 

With these numbers in mind, I applied the computer program to generate and then plot 

graduated values for pairs (a,/~) = (3axl000,3b×1000), where a and b are integers between 0 and 6. A 

few of the most instructive plots are shown at the end of the text. 

Figure 1 shows the ungraduated rates. Note that rates for later years are based on a 10% sample 

of Social Security beneficiaries; this explains the dramatically more erratic variations. 

Figure 2, graduated values for a =/3 = I000, shows the most extreme variations substantially 

reduced, even though the point (a,/~) is not very far from the no-graduation region. It is a 

characteristic of the 11 method that instead of moving extreme values gradually toward a smooth 

function, this graduation replaces values, one by one, by linear interpolants of nearby values. 

Figure 3 shows graduated values for a = 243000,/3 = 81000. The function is almost bi-linear 

(planar). Note the discernible increase over time in the rates at younger ages. These rates axe 

over-smoothed for many purposes, but not if our aim is to investigate the changing relation between 

race---specific mortality rates. 

The next two figures illustrate the interaction of the two smoothness parameters. When a is 

large, the graduated rates are nearly linear over age, while if B is large they are nearly linear over time. 

However, hnearity in age seems to bring a fairly smooth (though not hnear) variation over time, while 

forcing hnearity over t ime leaves us with an erratic pattern with respect to age. This may be in large 

part a quirk of the data set, which has much higher variance in the later calendar years. 

Figures 6 through 9 show several reasonable graduations. Which of them is "best" depends 

largely on the use to be made of the results; for the moment, ] only present them as examples. Note, in 

several of the figures, the irregularities that persist along the boundaries. The fact that  the Z-scale 

(which was not input but determined by the program) vaxies from one plot to another makes 

comparison of the graduations a bit difficult, but it does seem that when a = / 3  we will have hnearity 

(and maybe over-smoothing) for the later years before we get adequate smoothing for the earher years. 

This suggests that we might look at some parameter values with a ~/3. In Figure 9, with a = 3000 and 

/3 = 9000, the 1992 rates are rather smooth but convex (with respect to age); the 1984 rates are not 

much changed from their ungraduated values, which were not highly irregular. For intermediate years 

we have a moderately smooth sequence by age. 
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The results of Schuette graduation, whether in one or two dimensions, tend to be piecewise linear 

(if smoothness is based on second differences; piecewise quadratic with third differences, and so on). 

Some consider this a drawback of the method, preferring a smoother transition from one part of the 

domain to another. But this piecewise linearity is particularly appropriate if we suspect there may be 

changepoints, where there really is a "corner" that may be smoothed out by other graduation methods. 

Presenting a single set of graduated values leaves the "consumer" without any indication of the 

reliability of these values. This lack can be remedied by giving upper and lower envelopes; the wider 

the divergence between the envelopes, the more caution is indicated in using the graxluated values, The 

two-dimensional Schuette method can be adapted fairly easily to provide such envelopes. 

Alter the problem to one of finding {vii} to minimize 

E 'wij p0(nij - vlj) + o~ E I A ' l v l J  I +/~ E I Jx~ % I , (2) 
p . ,  f 2O .y  ify>O~ 

where ~Y} = t 2(1-0) ly[ i f y  ~ 0 ~ = lYl + (2~L-1)Y 

When 0 = .5 this reduces to (1), and the optimal values {vii} provide a "median" in the sense that  at 

most half of the weight lies above the {uij} surface and at most half below - - o t h e r w i s e ,  simply 

increasing or decreasing each vii by the same small amount would decrease the fit measure without 

changing the smoothness measure. 

For values of g < .5 the fit measure charges a higher penalty when vii exceeds uij than when it 

falls short by the same amount; thus, the optimal values of vii will exceed the observed data less 

frequently. In fact one can easily check that at most a fraction 0 of the weight will be associated with 

points where Vij ~" •ij, and at most a fraction 1-0 with points where vii < nij. This i8 the meaning of 

the term regression quantiles; it is the generalization to a functional situation of the familiar notion of 

quantiles of a single random variable. 

Figures 10 and 11 show the 0.1 and 0.9 quantiles, respectively, for a = 3000,/~ = 9000, the 

"median" for which w u  shown in Figure 9, The two surfaces are in close agreement for most ages in 

years 1984 through 1987, then diverge in years 1988 through 1992. In fact at quite a few points the 

"upper" and "lower" envelopes agree. Obviously this does not mean that  we are absolutely certain 

about the correct mortality rates at those ages, only that  the data do not support a significant deviation 

from the "median" vaiues. Thus it is not correct to speak of the region between the two envelopes as a 

"confidence region" for the graduated rates. (In fact, occasionally we find a combination (aft , / , j)  for 

which the quantile solution vii(0) is not monotonic in 0.) A satisfactory interpretation of the quantiles 

remains as a challenge. 
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There are several other open questions. Degeneracy (having more variables take on their basic 

values than the dimension of the space) becomes s problem when one or both smoothing parameters are 

large; we need to make the program more efficient here. We also need a better way of exhibiting the 

graduated values so that the eye can quickly interpret the results, at least in general terms. 

Finally, note that  it was my intention to use the Schuette graduation to compare mortality rates 

among blacks to those among whites, over the decade for which this data is available - -  thus extending 

the analysis in [Portnoy, 1991]. Once the technical aspects are in hand, I will do the analysis on the 

white data also; and I will try to get full data for the later years, rather than the 10% sample that is 

publicly available. It is to be expected that  a smoother set of initial data will behave differently, and 

may raise some new questions. 

Re/erenceJ 

Portnoy, E. "Recent Trends in Mortality Rates by Race," in ARCH 1991.1, 27--48. 

, "Bivaxiate Schuette Graduation," in ARCH 1994.1, 127-134. 

Annual Statistical Supplement to Socia~ Sec~rit~ Btdletin, for years 1983--1992. 

134 



Figure 1: UngrRduated rates. In this and all following figures, 
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Figure 2: Graduated rates with a = ~ = i000. 
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F i g u r e  4:  G r a d u a t e d  r a t e s  w i t h  a = 2 4 3 , 0 0 0 ,  ~ =  I 0 0 0 .  
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F i g u r e  3:  G r a d u a t e d  r a t e s  w i t h  a : 2 4 3 , 0 0 0 ,  ~ =  8 1 , 0 0 0 .  
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Figure 5: Graduated rates with a = [000, 3 = 81,000. 
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Figure 6: Gra~iuated rates with ~ = fl = 3000. 
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F i g u r e  7 :  G r a d u a t e d  r a t e s  ~ i t h  a : ~ : 9 0 0 0 .  
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F i g u r e  8 :  G r a d u a t e d  r a t e s  w i t h  a : ~ : 2 7 , 0 0 0 .  
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F i g u r e  9 :  G r a d u a t e d  r a t e s  v i t h  a = 3 0 0 0 ,  D = 9 0 0 0 .  
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F i g u r e  1 0  : L o w e r  d e c i  l e  ( 8 = O.  1)  f o r  a = 3 0 0 0 ,  ~ = 9 0 0 0 ,  
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F i K u r e  i t :  Upper d e c i l e  (~ = 0 . 9 )  f o r  a = 3000, # = 9000. 

Figure  12: F igures  lO~nd 11 superi=posed.  
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